(34.201.11.222) 您好!臺灣時間:2021/02/25 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李駿勳
研究生(外文):Chun-Hsun Lee
論文名稱:增強型氮化鎵高電子遷移率電晶體之功率應用特性優化
論文名稱(外文):Performance Improvement of Enhancement mode GaN-Based High Electron Mobility Transistors for Power Application
指導教授:黃建璋黃建璋引用關係
指導教授(外文):Jian-Jang Huang
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:高電子遷移率電晶體p型氮化鎵覆蓋層電流坍塌現象原子層沉積技術雙異質結構電場板結構
外文關鍵詞:GaN HEMTE-modep-GaN cap layercurrent collapseatomic layer deposition (ALD)double heterostructurefield plate structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁鎵/氮化鎵高電子遷移率電晶體擁有高能帶及高電子遷移率的材料特性,使其大量應用於高電壓電子元件及高效率電源轉換系統。其異質接面所產生的大量二維電子氣提供元件大電流、低阻抗之元件特性,因而近年來越來越被重視。然而當元件在高速切換下,材料缺陷所造成的漏電流以及電流坍塌現象使得電晶體無法達到所預期之高效率電能轉換。本研究致力於增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體之研發及其動態電特性之分析。
根據先前研究氮化鋁鎵/氮化鎵高電子遷移率電晶體的實驗經驗,我們發展金氧半結構並探討其電性,發現藉由原子層沉積系統所沉積出的氧化鋁能夠成功鈍化p型氮化鎵表面受到電漿轟擊所留下的缺陷,抑制長脈衝下的電流坍塌現象,進一步分析單、雙異質結構對於電性的影響及抑制電流坍塌效應之能力,發展出有效利用於p型氮化鎵金氧半高電子遷移率電晶體轉換效率提升之方法。
另外我們在氮化鋁鎵/氮化鎵高電子遷移率電晶體上發展電場板結構並且探討其電流特性,經由實驗結果發現在增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體加上電場板結構,能夠大幅提高增強型元件之閾值電壓。我們由電場板增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體之電流行為提出模型,並且解釋其閾值電壓大幅上升之原因。
The applications of gallium nitride high electron mobility transistors (GaN HEMTs) have become more and more important in recent years. Due to the outstanding material properties including wide-band-gap and high electron mobility, GaN HEMTs are widely applied to high voltage electronics and high efficiency power conversion systems. The two dimensional electron gas (2DEG) formed in heterojunction ensures the large operating output current and low on-resistance of the device. However, the leakage current and current collapse phenomenon concerning to the material defects reduce the power conversion efficiency of the device in high speed switching. In this research, enhancement-mode (E-mode) AlGaN/GaN HEMTs are demonstrated; the electrical characteristics and dynamic characteristics are also investigated.
Based on our previous experience of developing AlGaN/GaN HEMTs, we construct MIS structures with atomic layer deposition (ALD) Al2O3. The Al2O3 can passivate the surface defects formed by plasma bombardment and suppress current collapse in long pulse mode. Also, we investigate the impact of epi structures on electrical characteristics and the phenomenon of current collapse. The power conversion efficiency in p-GaN MIS-HEMTs can be effectively improved by double heterostructure.
In this research, p-GaN gate double heterostructure HEMTs with various gate field plate lengths are fabricated and we investigate the influence of field plates on the current behavior of p-GaN gate HEMTs. Transfer curves of the devices indicate field plates extended toward the source play some role in suppressing channel current, and the threshold voltage tilt toward even higher voltage in double heterostructure. P-GaN gate HEMTs with field plates show three stages current raises, and exhibit much higher threshold voltage than the one without field plate (i.e. Vth=5.90V ). We propose a Threshold Enhancement model to explain the mechanism of three stage current behavior.
口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figure viii
Chapter 1 Introduction 1
1.1 Limitation of silicon power devices 1
1.2 GaN Applications Overview 1
1.3 AlGaN/GaN HEMTs 4
1.4 Enhancement-mode AlGaN/GaN HEMTs 6
1.5 Phenomenon of Current Collapse 8
1.6 Field Plate Design of GaN HEMT 10
1.7 Thesis Outline 10
Chapter 2 MIS E-mode AlGaN/GaN HEMTs 12
2.1 Introduction 12
2.2 Development of MIS E-mode AlGaN/GaN HEMTs 13
2.2.1 Device Structure Design and Fabrication 13
2.2.2 I-V Characteristics and Discussion 15
2.3 Investigations of Current Collapse Phenomenon 19
2.3.1 Measurement Setup 19
2.3.2 Dynamic characteristics 22
2.3.3 Effect of insulator on current collapse 25
2.3.4 Mechanism of current collapse suppression 28
2.4 Summary 30
Chapter 3 Field Plate E-mode AlGaN/GaN HEMTs 31
3.1 Introduction 31
3.2 Development of Field Plate E-mode AlGaN/GaN HEMTs 31
3.2.1 Device Structure Design and Fabrication 31
3.2.2 I-V Characteristics 33
3.2.3 Mechanism of Current Behavior 39
3.3 Summary 47
Chapter 4 Conclusion 48
Reference 50
[1]M. A. Khan, J. Van Hove, J. Kuznia, and D. Olson, "High electron mobility GaN/Al x Ga1− x N heterostructures grown by low‐pressure metalorganic chemical vapor deposition," Applied Physics Letters, vol. 58, no. 21, pp. 2408-2410, 1991.
[2]M. Asif Khan, J. Kuznia, A. Bhattarai, and D. Olson, "Metal semiconductor field effect transistor based on single crystal GaN," Applied Physics Letters, vol. 62, no. 15, pp. 1786-1787, 1993.
[3]S. Nakamura, M. Senoh, and T. Mukai, "P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes," Japanese Journal of Applied Physics, vol. 32, no. 1A, p. L8, 1993.
[4]P. L. Hower, S. Pendharkar, and T. Efland, "Current status and future trends in silicon power devices," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 13.1. 1-13.1. 4: IEEE.
[5]M. T. Hasan, "Mechanism and Suppression of Current Collapse in AlGaN/GaN High Electron Mobility Transistors," 2013.
[6]T. Oka and T. Nozawa, "AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications," IEEE Electron Device Letters, vol. 29, no. 7, pp. 668-670, 2008.
[7]W. Chen, K.-Y. Wong, and K. J. Chen, "Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4: IEEE.
[8]Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Letters, vol. 26, no. 7, pp. 435-437, 2005.
[9]O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, "Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer," in Power Semiconductor Devices & IC''s (ISPSD), 2010 22nd International Symposium on, 2010, pp. 347-350: IEEE.
[10]M. Ishida, M. Kuroda, T. Ueda, and T. Tanaka, "Nonpolar AlGaN/GaN HFETs with a normally off operation," Semiconductor Science and Technology, vol. 27, no. 2, p. 024019, 2012.
[11]Y. Chang et al., "Inversion-channel GaN MOSFET using atomic-layer-deposited Al 2 O 3 as gate dielectric," in VLSI Technology, Systems, and Applications, 2009. VLSI-TSA''09. International Symposium on, 2009, pp. 131-132: IEEE.
[12]T. Hashizume et al., "Al2O3 insulated-gate structure for AlGaN/GaN heterostructure field effect transistors having thin AlGaN barrier layers," Japanese journal of applied physics, vol. 43, no. 6B, p. L777, 2004.
[13]R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," Electron Devices, IEEE Transactions on, vol. 48, no. 3, pp. 560-566, 2001.
[14]B. Jogai, "Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors," Journal of Applied Physics, vol. 93, no. 3, p. 1631, 2003.
[15]R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560-566, 2001.
[16]B. Jogai, "Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors," Journal of applied physics, vol. 93, no. 3, pp. 1631-1635, 2003.
[17]M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, "Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs," IEEE Electron Device Letters, vol. 34, no. 11, pp. 1379-1381, 2013.
[18]G. Yu, Y. Wang, Y. Cai, Z. Dong, C. Zeng, and B. Zhang, "Dynamic characterizations of AlGaN/GaN HEMTs with field plates using a double-gate structure," IEEE Electron Device Letters, vol. 34, no. 2, pp. 217-219, 2013.
[19]H. Huang, Y. C. Liang, G. S. Samudra, T.-F. Chang, and C.-F. Huang, "Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs," IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2164-2173, 2014.
[20]L.-Y. Su, F. Lee, and J. J. Huang, "Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer," IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 460-465, 2014.
[21]F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, and J. Huang, "Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors," IEEE Electron Device Letters, vol. 36, no. 3, pp. 232-234, 2015.
[22]C.-H. Wang, S.-Y. Ho, and J. J. Huang, "Suppression of current collapse in enhancement-mode AlGaN/GaN high electron mobility transistors," IEEE Electron Device Letters, vol. 37, no. 1, pp. 74-76, 2016.
[23]E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, "Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement," IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3354-3359, 2008.
[24]F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, and P.-A. Rolland, "Effects of AlGaN back barrier on AlN/GaN-on-silicon high-electron-mobility transistors," Applied Physics Express, vol. 4, no. 12, p. 124101, 2011.
[25]F. Benkhelifa, S. Müller, V. Polyakov, and O. Ambacher, "Normally-Off AlGaN/GaN/AlGaN Double Heterostructure FETs With a Thick Undoped GaN Gate Layer," IEEE Electron Device Letters, vol. 36, no. 9, pp. 905-907, 2015.
[26]D. S. Lee, X. Gao, S. Guo, and T. Palacios, "InAlN/GaN HEMTs with AlGaN back barriers," IEEE Electron Device Letters, vol. 32, no. 5, pp. 617-619, 2011.
[27]Y.-L. Hsiao et al., "Material growth and device characterization of AlGaN/GaN single-heterostructure and AlGaN/GaN/AlGaN double-heterostructure field effect transistors on Si substrates," Applied Physics Express, vol. 7, no. 5, p. 055501, 2014.
[28]N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, "Enhanced effect of polarization on electron transport properties in AlGaN/GaN double-heterostructure field-effect transistors," Applied Physics Letters, vol. 76, no. 21, pp. 3118-3120, 2000.
[29]N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, "Two-dimensional electron gas transport properties in AlGaN/GaN single-and double-heterostructure field effect transistors," Materials Science and Engineering: B, vol. 82, no. 1, pp. 232-237, 2001.
[30]H. Kambayashi et al., "High quality SiO2/Al2O3 gate stack for GaN metal–oxide–semiconductor field-effect transistor," Japanese Journal of Applied Physics, vol. 52, no. 4S, p. 04CF09, 2013.
[31]M. Hatano, Y. Taniguchi, S. Kodama, H. Tokuda, and M. Kuzuhara, "Reduced gate leakage and high thermal stability of AlGaN/GaN MIS-HEMTs using ZrO2/Al2O3 gate dielectric stack," Applied Physics Express, vol. 7, no. 4, p. 044101, 2014.
[32]N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, "Enhanced electron mobility in AlGaN/InGaN/AlGaN double-heterostructures by piezoelectric effect," Japanese journal of applied physics, vol. 38, no. 7B, p. L799, 1999.
[33]E. Peng et al., "Bipolar characteristics of AlGaN/AlN/GaN/AlGaN double heterojunction structure with AlGaN as buffer layer," Journal of Alloys and Compounds, vol. 576, pp. 48-53, 2013.
[34]C. Chen et al., "AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect transistors," Applied physics letters, vol. 82, no. 25, pp. 4593-4595, 2003.
[35]Y. Tsividis, "Moderate inversion in MOS devices," Solid-State Electronics, vol. 25, no. 11, pp. 1099-1104, 1982.
[36]I. Hwang et al., "p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current," IEEE Electron Device Letters, vol. 34, no. 2, pp. 202-204, 2013.
[37]L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, "Threshold voltage extraction methods for MOS transistors," in Semiconductor Conference, 2000. CAS 2000 Proceedings. International, 2000, vol. 1, pp. 371-374: IEEE.
[38]A. Bazigos, M. Bucher, J. Assenmacher, S. Decker, W. Grabinski, and Y. Papananos, "An adjusted constant-current method to determine saturated and linear mode threshold voltage of MOSFETs," IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 3751-3758, 2011.
[39]A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics Reliability, vol. 42, no. 4, pp. 583-596, 2002.
[40]K. Terada, K. Nishiyama, and K.-I. Hatanaka, "Comparison of MOSFET-threshold-voltage extraction methods," Solid-State Electronics, vol. 45, no. 1, pp. 35-40, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔