跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張彥凱
研究生(外文):Yen-Kai Chang
論文名稱:摻雜氧化鋅之三族氮化物電阻式記憶體
論文名稱(外文):Resistive Switching in ZnO Embedded Ⅲ-nitride Nanostructures
指導教授:彭隆瀚
指導教授(外文):Lung-Han Peng
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:電阻式記憶體空間電荷分布電流
外文關鍵詞:ReRAMSCLC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出了一種新式的電阻式記憶體,與一般使用金屬氧化物製作方式不同。我們利用plasma-enhanced atomic layer deposition (PEALD)生長氮化物及氧化物的薄膜,其中氮化物為的氮化鎵(GaN)以及氮化鋁(AlN)、氧化物為氧化鋅(ZnO)。藉由在Si (100)基板上形成multilayer的結構,接著鍍上銦錫氧化物(ITO)以及電極後測量分析其電性。
本論文主要分為三部分。第一部分為電阻式記憶體元件之製作,包含了電漿輔助型原子層沉積系統(PEALD)的原理與操作、沉積材料成長速率之校正、X射線光電子能譜特性分析,以及元件完整的製程。第二部分為量測系統介紹與各式電流傳導機制的說明,量測系統包含變溫量測以及常溫量測的設置,並做毫秒操作與奈秒操作的比較;電流傳導機制則包含電極-介電質接面電流限制(electrode-dielectric interface limited conduction mechanism)、本體限制(bulk limited conduction mechanism)。第三部分為電阻式記憶體元件之電性量測,包含了分析元件變溫I-V圖形、電阻切換的I-V圖形、電流模型fitting說明、穩定度分析以及奈秒與毫秒脈衝作為元件寫入(Set)與重置(Reset)壽命讀寫次數的量測。
我們用電漿輔助型原子層沉積系統沉積AlN/GaN/ZnO/GaN/AlN (2/2/8/2/2 nm)此種氮化物夾雜氧化物結構,藉由自行撰寫的LabVIEW程式利用GPIB與電腦連結,建立一套完整且自動化的電阻式記憶體量測系統。透過電流fitting分析電阻切換的I-V圖形可以發現利用space charge limited current (SCLC)可以解釋其電阻變化的原因、穩定度分析發現大電阻與小電阻的狀態在10000秒內十分穩定、面積大小會影響單點脈衝操作,故此在大面積時用毫秒脈衝操作可以至少持續10000次;在小面積時用奈秒脈衝操作可以至少持續4000以上。
In this thesis we demonstrate a new device mechanism and material system different from using metal oxide for realizing resistive random access memory (RRAM). We use plasma-enhanced atomic layer deposition (PEALD) to grow nitride films and oxide film. The nitride film are gallium nitride (GaN) and aluminium nitride (AlN) , oxide film is zinc oxide. By growing multilayer on Si (100) substrate by PEALD, sputtering ITO and electrode, we measure and analyze device electrical properties.
There are three main parts in this thesis. First, we introduce how to make our memory devices, including the mechanism and operation of PEALD, the calibration of growth rate and X-ray photoelectron spectroscopy analysis of each material, and the whole device fabrication process. Second, we introduce electrical measurement system and the conduction mechanism in dielectric films. The electrical measurement system includes alternating temperature and room temperature and compares millisecond (ms) and nanoseconds (ns) pulses . The conduction mechanisms in dielectric films include electrode-dielectric interface limited conduction mechanism and bulk limited conduction mechanism. Third, we discuss the electrical measurements, including the temperature characteristics of the I-V curves, the resistive switching I-V curves, current fitting, retention analysis , relationship between the set and reset conditions for device life-time cycling test by millisecond (ms) pulse with nanoseconds (ns) pulse.
We use PEALD to grow the multilayer structure AlN/GaN/ZnO/GaN/AlN of thickness (2/2/8/2/2 nm), and connect instrument and computer through LabVIEW and GPIB, and then build an automated measurement system for resistive random access memory (RRAM) measurement system. From current fitting, we use the mechanism of space charge limited current (SCLC) to explain resistive switching I-V curves, retention analysis about device can maintain 10000s, resistance on/off ratio of ~ 800, and more than 10000 times operation in millisecond (ms) pulse life-time cycling test for large area, more than 4000 times operation in nanoseconds (ns) pulse life-time cycling test for small area.
Chapter 1 緒論 1
1.1 非揮發性記憶體的回顧 1
1.1.1 非揮發性記憶體的崛起 1
1.1.2 傳統揮發性記憶體遇到的困境 2
1.2 新式非揮發性記憶體的回顧 4
1.2.1 磁阻式記憶體 (MRAM) 4
1.2.2 相變化式記憶體 (PCRAM) 6
1.2.3 電阻式記憶體 (RRAM) 9
1.3 研究動機與論文概述 11
1.3.1 研究動機 11
1.3.2 論文概述 12
Chapter 2 電阻式記憶體的操作原理 13
2.1 Forming 13
2.2 Set 14
2.3 Reset 14
2.4 單極性(Unipolar)和雙極性(Bipolar)之比較 15
Chapter 3 電阻式記憶體之元件製作 17
3.1 原子層沉積系統 Atomic Layer Deposition 17
3.1.1 ALD技術發展沿革 17
3.1.2 ALD成長機制 19
3.1.3 ALD成長模式概述 21
3.2 PE-ALD 機台架構及材料分析 24
3.2.1 機台架構 24
3.2.2 PE-ALD 氧化物及氮化物材料測試與分析 30
氮化鎵GaN 34
氮化鋁AlN 35
3.2.3 電阻式記憶體元件製作 37
3.3 電阻率之量測與分析 42
Chapter 4 薄膜導電電流機制 48
4.1 電極-介電質 接面電流限制 (electrode-dielectric interface limited conduction mechanism) 48
4.1.1 Schottky emission (or Thermionic emission) 49
4.1.2 Direct tunneling 50
4.1.3 Fowler-Nordheim tunneling 52
4.1.4 Thermionic-field emission 53
4.2 本體限制 (bulk limited conduction mechanism) 55
4.2.1 Poole-Frenkel emission 55
4.2.2 Hopping conduction 56
4.2.3 Ohmic conduction 57
4.2.4 Trap-Assisted Tunneling 59
4.2.5 Space-charge limited conduction 60
Chapter 5 電阻式記憶體之電性量測 63
5.1 電阻切換量測系統 63
5.1.1 電流電壓量測系統 63
5.1.2 奈秒脈衝電阻切換量測系統 (ns) 67
5.1.3 變溫電壓電流量測系統 70
5.2 電阻式記憶體量測結果與分析 72
5.2.1 變溫電流電壓分析 73
5.2.2 直流電壓切換電阻分析 76
5.2.3 記憶時間 (Retention time) 電性分析 82
5.2.4 耐受度 (Endurance cycle) 電性分析 83
Chapter 6 結論與未來展望 87
參考資料 89
D. Kahng and S. M. Sze, "A floating-gate and its application to memory devices," The Bell System Technical Journal, vol. 46, no. 4, pp. 1288-1295, 1967.
D. Frohman-Bentchkowsky, "Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) Structure," Appl. Phys. Lett., vol. 18, no. 8, pp. 332-334, 1971.
D. Klein, "History of Digital Storage. Part6 : The RAM SSD and NAND," http://www.micronblogs.com, Feb 2009.
W. Van Winkle, "Solid state drive buyer’s guide 6. SLC vs. MLC, continued," http://www.tomsguide.com, Nov 2009.
Y. S. Shin, "Non-volatile memory technologies for beyond 2010," Symposium on VLSI Circuits Digest of Technical Papers, pp.156-159, 2005.
R. Waser, R. Dittmann, G. Staikov et al., "Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges," Adv. Mater., vol. 21, no. 25-26, pp. 2632-2663, 2009.
M. H. Chi, H. M. Wu, "Technologies and materials for memory with full compatibility to CMOS," in 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), pp. 823-826, 2008.
M. N. Baibich,J. M. Boroto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzer, A. Friederich, and J. Chazelas, Phys, Rev. let. 61,2472, 1988
T.Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139,L231, 1995.
S. Ikeda, J. Hayakawa, Y.Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura and H. Ohno, Applied Physics Letters, 93, 082508, 2008.
葉林秀、林佳謀、徐明豐、吳德和. 物理雙月刊 2004
新式非揮發性記憶體之發展與挑戰 李明道
H. S. P. Wong, S. Raoux, S. Kim et al., "Phase change memory," Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.
相變化記憶體的未來及展望 簡維志
Simone Raoux, Feng Xiong, Matthias Wuttig and Eric Pop (2014). Phase change materials and phase change memory. MRS Bulletin, 39, pp 703-710. doi:10.1557/mrs.2014.139.
Wootae Lee, Gunho Jo, Sangchul Lee, , Jubong Park, , Minseok Jo, , Joonmyoung Lee, , Seungjae Jung, , Seonghyun Kim, , Jungho Shin, , Sangsu Park, , Takhee Lee, and , and Hyunsang Hwang , Nonvolatile resistive switching in Pr0.7Ca0.3MnO3 devices using multilayer graphene electrodes
YC YANG, F PAN, Q LIU, Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application, Nano Lett, 9 (4) (2009), pp. 1636-1643
Shimeng Yu,Ximeng Guan, and , and H.-S. Philip Wong , Conduction mechanism of TiN-HfOx-Pt resistive switching memory
Nuo Xu, Lifeng Liu, Xiao Sun, Xiaoyan Liu, Dedong Han, Yi Wang, Ruqi Han, Jinfeng Kang, and , and Bin Yu, Characteristics and mechanism of conduction,set process in TiN-ZnO-Pt resistance switching random-access memories
Chih-Yang Lin,a Chen-Yu Wu,a Chung-Yi Wu,a Chenming Hu,b and Tseung-Yuen Tsenga,z ,Bistable Resistive Switching in Al2O3 Memory Thin Films
Masayuki Fujimoto and , Hiroshi Koyama, Masashi Konagai, Yasunari Hosoi, , Kazuya Ishihara, , Shigeo Ohnishi, and , and Nobuyoshi Awaya , TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching
Chih-Yang Lin,a Chen-Yu Wu,a Chung-Yi Wu,a Chenming Hu,b and Tseung-Yuen Tsenga,z, Bistable Resistive Switching in Al2O3 Memory Thin Films
N Xu1, L F Liu1, X Sun1, C Chen1, Y Wang1, D D Han1, X Y Liu1, R Q Han1, J F Kang1 and B Yu , Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention
Shimeng Yu,a,d,z Bin Gao,a Haibo Dai,b Bing Sun,a,* Lifeng Liu,a Xiaoyan Liu,a Ruqi Han,a Jinfeng Kang,a,z and Bin Yuc ,Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers
Ismail M, Huang CY, Panda D, Hung CJ, Tsai TL, Jieng JH, Lin CA, Chand U, Rana AM, Ahmed E, Talib I, Nadeem MY, Tseng TY1. Forming-free bipolar resistive switching in nonstoichiometric ceria films
A Sawa , Resistive switching in transition metal oxides
Waser, R. and M. Aono, Nanoionics-based resistive switching memories Nature Material, 2007
Multilevel resistive switching in Ti/CuxO/Pt memory devices
R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
Solid State Technology, March 1, 2007
H. Kim, A. J. Kellock, and S. M. Rossnagel, “J. Appl. Phys.” 92, 7080 (2002).
Y. J. Lee and S. W. Kang, “J. Vac. Sci.” Technol. A 20, 1983 (2002).
S. M. Rossnagel, A. Sherman, and F. Turner, “J. Vac. Sci.” Technol. B 18, 2016 (2000).
Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007.- Proefschrift.
S. B. S. Heil, J. L. van Hemmen, C. J. Hodson, N. Singh, J. H. Klootwijk, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 25, 1357 (2007)
李柏廷, “電漿輔助型原子層沉積之發光二極體特性研究”, 國立台灣大學光電工程學研究所碩士論文(2014).
R. Al-Gaashani, S.Radiman, A.R.Daud, N.Tabet, Y.Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods”, Ceramics International 39 (2013) 2283–2292
“Structural and Electrical Characterization of GaN Thin Films on Si(100) American Journal of Analytical Chemistry, 2011, 2, 984-988
“XPS analysis of aluminum nitride films deposited by plasma sourcemolecular beam epitaxy” (www.interscience.com) DOI 10.1002/sia.2874
A Review on Conduction Mechanisms in Dielectric Films
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top