(44.192.112.123) 您好!臺灣時間:2021/03/01 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭詒澤
研究生(外文):Yize Hsiao
論文名稱:三重態-三重態消滅與複合受激態之有機發光二極體研究
論文名稱(外文):Study of Triplet-triplet Annihilation and Exciplex-based Organic Light-emitting Diode
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:有機發光二極體複合受激態三重態-三重態消滅暫態電激放光
外文關鍵詞:Organic light-emitting diode (OLED)ExciplexTriplet-triplet annihilation (TTA)Transient electroluminescence (TrEL)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究有兩個主題,其一為複合受激態之有機發光二極體的效率提升。其二為複合受激態觸發三重態-三重態消滅藍色有機發光二極體之效率提升。
複合受激態 (Exciplex) 為兩有機材料,分別具電子施體與電子受體特性,在界面處形成激發態的錯合物。我們針對使用複合受激態之有機發光二極體,調變厚度與混合比例來優化,得到6.57 % 外部量子效率及20.95 lm/W 之功率效率。
再者為研究複合受激態觸發三重態-三重態消滅藍色有機發光二極體 (Exciplex sensitized triplet-triplet annihilation ,簡稱ESTTA)。此系統由複合受激態經能量傳遞給藍色三重態-三重態消滅 (Triplet-triplet annhiliation, 簡稱TTA) 發光體,產生上轉換 (Upconversion) 的放光。其效率可能因單重態激子猝熄而降低。故本章以兩種手段,改善此系統的能量傳遞路徑,增加藍光效率。其一為加入藍色螢光客體材料4,4''-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) (DPAVBi),其二為插入 4,7-diphenyl-1,10-phenanthroline (BPhen) 作為三重態傳遞和單重態阻隔層 (Triplet diffusion and singlet blocking,簡稱TDSB)。在既摻雜客體材料亦插 TDSB 層之元件,能提升外部量子效率的藍色分量至2.316%。
上述研究皆屬於延遲型螢光放光,因此我們利用暫態電激發光 (Transient electroluminescence, 簡稱TrEL) 量測系統,來分析這種延遲放光。透過量測電訊號關掉後的電激放光,藉此研究激子於元件中的物理機制,以及能量轉移的過程。
There are two topics in this thesis. The first one is the optimization of exciplex-based organic light-emitting diode (OLED). The second part describes the methods to improve the efficiency of exciplex sensitized triplet-triplet annihilation (ESTTA) OLED.
When two organic materials act as electron donor and acceptor respectively and form the excited complexes at their interface, it is called exciplex. We optimized exciplex-based OLED to achieve higher efficiency by means of layer structure tuning. Finally, the power efficiency of 20.95 lm/W and external quantum efficiency (EQE) of 6.57% were obtained.
Exciplex generated by two species could transfer its energy to triplet-triplet annihilation (TTA) blue emitter, and created energy upconversion blue emission afterwards. We called this process exciplex sensitized triplet-triplet annihilation (ESTTA). Here, two methods have been adopted to improve the efficiency, which were: (1) doping blue fluorescence dye: 4,4''-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) (DPAVBi), and (2) inserting 4,7-diphenyl-1,10-phenanthroline (BPhen) as “triplet diffusion and singlet blocking (TDSB)” layer. By employing dopant combined with TDSB layer, ESTTA-OLED increased its blue EQE to 2.316%.
In these OLEDs, transient electroluminescence (TrEL) were employed to investigatet the carrier and exciton dynamics by measuring the turn-off responses.
目錄 I
圖目錄 III
表目錄 X
第1章 緒論 1
1.1 OLED的基礎知識 1
1.2 Exciplex與TTA,以及利用兩者的ESTTA 7
1.3 實驗動機 12
第2章 製程及量測系統 13
2.1 簡介 13
2.2 元件製程 13
2.3 量測系統 15
2.3.1 穩態 B-J-V 量測 15
2.3.2 暫態電激發光 (Transient electroluminescence,TrEL) 量測系統 16
第3章 具備複合受激態發光層有機發光二極體之元件優化 17
3.1 實驗動機與本章簡介 17
3.2 調變電子傳輸層厚度 19
3.3 變化發光層厚度 22
3.4 調變發光層混合比例 26
第4章 複合受激態觸發三重態-三重態消滅有機發光二極體之效率提升 30
4.1 實驗動機與本章簡介 30
4.2 優化ESTTA元件厚度 34
4.2.1 增厚電子傳輸層 34
4.2.2 增厚電洞傳輸層 40
4.2.3 ESTTA/ TTA/ Exciplex 控制元件比較 45
4.3 加入 DPAVBi 藍光客體材料,調變摻雜濃度 50
4.4 插入BPhen作為 TDSB 層,調變插入厚度 57
4.5 固定 TDSB = 1 nm 並調變發光層與電子傳輸層厚度 65
4.6 同時摻雜客體材料及插入 TDSB 層 71
第5章 結論 76
參考資料 78
附錄 84
第三章複合受激態優化過程,剛復機完,曾做出高效率元件 84
[1] J. T. Smith, B. O’Brien,Y. K. Lee, E. J. Bawolek, and J. B. Christen, “Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity.” IEEE/OSA J. Display Technol. 10, 514, 2014.
[2] S. Shama, U. Jindal, M. Goyal, S. Sharma, and V. Goyal, “A review- on different types of displays.” International Journal of Multimedia and Ubiquitous Engineering. 11, 327, 2016.
[3] P. S. Vincett, W. A. Barlow, R. A. Hann, and G.G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films.” Thin Solid Films 94, 171, 1982.
[4] W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials.” Org. Electron. 2, 1, 2001.
[5] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes.” Appl. Phys. Lett. 51, 913, 1987.
[6] S. Ogawa, “Organic Electronics Materials and Devices,” Springer, 2015.
[7] R. W. Sinkeldam, N. J. Greco and Y. Tor, “Fluorescent analogs of biomolecular building blocks design, properties, and applications.” Chem. Rev. 210, 2579, 2010.
[8] D. Volz, “Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays.” J. Photon. Energy 6, 020901, 2016.
[9] Y. J. Lee, S. H. Kim, G.H. Kim, Y. H. Lee, Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, “Far-field radiation of photonic crystal organic light-emitting diode.” J. Appl. Phys. 96, 7629, 2004.
[10] R. Seifert, S. Scholz, B. Lüssem, and K. Leo, “Comparison of ultraviolet- and charge-induced degradation phenomena in blue fluorescent organic light emitting diodes.” Appl. Phys. Lett. 97, 013308, 2010.
[11] T. Zhang, B. Chu, W. Li, Z. Su, Q. M. Peng, B. Zhao, Y. Luo, F. Jin, X. Yan, Y. Gao, H. Wu, F. Zhang, D. Fan, and J. Wang, “Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔE S−T of around zero.” ACS Appl. Mater. Interfaces 6, 11907, 2014.
[12] M. Aydemir, G. Haykır, A. Battal, V. Jankus, S. K. Sugunan, F. B. Dias, H. A. Al-Attar, F. Türksoy, M. Tavaslı, and A. P. Monkman, “High efficiency OLEDs based on anthracene derivatives: the impact of electron donating and withdrawing group on the performance of OLED.” Org. Electron. 30, 149, 2014.
[13] D. Y. Kondakov, “Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives.” J. Appl. Phys. 102, 114504, 2007.
[14] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, “Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes.” J. Appl. Phys. 106, 124510, 2009.
[15] B. Y. Lin, C. J. Easley, C. H. Chen, P. C. Tseng, M. Z. Lee, P. H. Sher, J. K. Wang, T. L. Chiu, C. F. Lin, C. J. Bardeen, and J. H. Lee, “Exciplex-sensitized triplet-triplet annihilation in heterojunction organic thin-film.” ACS Appl. Mater. Interfaces 9, 10963, 2017.
[16] H. Nakanotani, T. Furukawa, K. Morimoto, and C. Adachi, “Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers.” Sci. Adv. 2, e1501470, 2016.
[17] 李明哲,“三重態-三重態消滅藍色有機發光二極體之研究”,台大光電所碩士論文 (2016)。
[18] 藍義信,“有機發光二極體發光層之研究”,東華大學材料科學與工程學系碩士論文 (2010)。
[19] D. Y. Zhou, H. Z. Siboni, Q. Wang, L. S. Liao, and H. Aziz, “Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts.” J. Phys. Chem. C 118, 24006, 2014.
[20] W. C. H. Choy, K. N. Hui, H. H. Fong, Y. J. Liang, and P. C. Chui, “Improving the efficiency of organic light emitting devices by using co-host electron transport layer.” Thin Solid Films 509, 193, 2006.
[21] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes.” J. Appl. Phys. 80, 6954, 1996.
[22] J. H. Lee, K. Y. Chen, C. C. Hsiao, H. C. Chen, C. H. Chang, Y. W. Kiang, and C. C. Yang, “Radiation simulations of top-emitting organic light-emitting devices with two- and three-microcavity structures.” IEEE/OSA J. Display Technol. 2, 130, 2006.
[23] H. van Eersel, P. A. Bobbert, R. A. J. Janssen, and R. Coehoorn, “Effect of förster-mediated triplet-polaron quenching and triplet-triplet annihilation on the efficiency roll-off of organic light-emitting diodes.” J. Appl. Phys. 119, 163102, 2016.
[24] H. Z. Siboni and H. Aziz, “Triplet-polaron quenching by charges on guest molecules in phosphorescent organic light emitting devices.” Appl. Phys. Lett. 101, 063502, 2012.
[25] M. Aonuma, T. Oyamada, H. Sasabe, T. Miki, and C. Adachi, “Material design of hole transport materials capable of thick-film formation in organic light emitting diodes.” Appl. Phys. Lett. 90, 183503, 2007.
[26] S. Naka, H. Okada, H. Onnagawa and T. Tsutsui, “High electron mobility in bathophenanthroline.” Appl. Phys. Lett. 76, 197, 2000.
[27] S. C. Tse, S. K. So, M. Y. Yeung, C. F. Lo, S. W. Wen, and C. H. Chen, “The role of charge-transfer integral in determining and engineering the carrier mobilities of 9,10-di(2-naphthyl)anthracene compounds.” Chem. Phys. Lett. 422, 354, 2006.
[28] B. Chen, C. S. Lee, S. T. Lee, P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials.” Jpn. J. Appl. Phys. 39, 1190, 2000.
[29] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, “Recent progresses on materials for electrophosphorescent organic light-emitting devices.” Adv. Mater. 23, 926, 2011.
[30] D. Yokoyama, Y. Park, B. Kim, S. Kim, Y. J. Pu, J. Kido, and J. Park, “Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic light-emitting diodes.” Appl. Phys. Lett. 99, 123303, 2011.
[31] J. H. Lee, Y. H. Ho, T. C. Lin, and C. F. Wu, “High-efficiency fluorescent blue organic light-emitting device with balanced carrier transport.” J. Electrochem. Soc. 154, J226, 2007.
[32] H. A. Al-Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron–hole separation.” Adv. Mater. 28, 8014, 2016.
[33] M. S. Kim, B. K. Choi, T. W. Lee, D. Shin, S. K. Kang, J. M. Kim, S. Tamura, and T. Noh, “A stable blue host material for organic light-emitting diodes.” Appl. Phys. Lett. 91, 251111, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔