跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 05:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李政頡
研究生(外文):Cheng-Chieh Lee
論文名稱:咔唑與苯並咪唑碳氮連接之雙極性衍生物為主體材料之藍色磷光及熱活性型螢光有機發光二極體之研究
論文名稱(外文):Study of Carbazole-N-Benzimidazole Bipolar Materials as Host Materials of Blue Phosphorescent and Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
口試日期:2017-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:57
中文關鍵詞:有機發光二極體效率磷光熱活性型螢光
外文關鍵詞:Organic light-emitting diodeefficiencyphosphorescencethermally activated delayed fluorescence.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究包含兩部分。在本篇論文的第一部分,我們使用台大化學所梁文傑實驗室所提供的咔唑與苯並咪唑碳氮連接之雙極性衍生物9-(2-(2-phenyl-1H-benzo[d]imidazol-1-yl)phenyl)-9H-carbazole (A-o-CBZBIZ) 、 和9-(3-(9H-carbazol-9-yl)-2-(2-phenyl-1H-benzo[d]imidazol-1-yl)phenyl)-9H-carbazole (A-dio-CBZBIZ)作為主體材料,與bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic)作為客體材料,進行藍色磷光有機發光二極體之研究,藉由調變元件結構,在A-o-CBZBIZ系統中得到57.45 cd/A 的最高電流效率、50.16 lm/W 的最高功率效率及27.87% 的最高外部量子效率。
而在第二部分,我們使用台大化學所梁文傑實驗室所提供的9,9''-(2-(1-phenyl-1H-benzo[d]imidazol-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-DiCbzBz) 以及9,9'',9'',9''-(3-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene- 1,2,4,5tetrayl)tetrakis(9H-carbazole) (o-4CzBz)作為主體材料,並分別搭配bis[4-(9,9-dimethyl-9,10-dihydroacridine) phenyl]sulfone (DMAC-DPS)和(4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN)作為客體材料,來製作藍色和綠色熱活性型螢光有機發光二極體。藉由調變元件結構,在藍色熱活性型螢光有機發光二極體,我們得到32.37 cd/A 的最高電流效率、33.15 lm/W 的最高功率效率及18.46% 的最高外部量子效率,以及在綠色熱活性型螢光有機發光二極體,我們得到102.70 cd/A 的最高電流效率、103.60 lm/W 的最高功率效率及29.55% 的最高外部量子效率。
There are two topics in this thesis. In the first part, carbazole-N-benzimidazole bipolar materials 9-(2-(2-phenyl-1H-benzo[d]imidazol-1-yl)phenyl)-9H-carbazole (A-o-CBZBIZ) and 9-(3-(9H-carbazol-9-yl)-2-(2-phenyl-1H-benzo[d]imidazol-1-yl)phenyl)-9H-carbazole (A-dio-CBZBIZ) provided by Prof. Man-Kit Leung’s group, Department of Chemistry in National Taiwan University, were used as the host materials for blue phosphorescent organic light-emitting diodes (OLEDs), doped with bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic). By tuning the device structure, maximum current efficiency of 57.45 cd/A, maximum power efficiency of 50.16 lm/W and maximum EQE of 27.87% were obtained in A-o-CBZBIZ system.
In the second part, (2-(1-phenyl-1H-benzo[d]imidazol-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-DiCbzBz) and 9,9'',9'',9''-(3-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene- 1,2,4,5tetrayl)tetrakis(9H-carbazole) (o-4CzBz), provided by Prof. Man-Kit Leung’s group, Department of Chemistry in National Taiwan University, were utilized as host materials of the blue and green thermally activated delayed fluorescence (TADF) OLEDs. bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) and (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) were used as blue and green TADF dopant materials, respectively. By tuning the device structure, in o-DiCbzBz-DMAC-DPS-based blue TADF OLEDs, maximum current efficiency of 32.37 cd/A, maximum power efficiency of 33.15 lm/W and maximum EQE of 18.46% were obtained. In o-4CzBz-4CzIPN-based green TADF OLEDs, we obtained a good performance with maximum current efficiency 102.7 cd/A, maximum power efficiency of 103.6 lm/W and maximum EQE of 29.55%.
摘要 I
Abstract III
Contents V
List of figures VI
List of tables VIII
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Introduction of OLED 1
1.3 Review of blue phosphorescent host material 4
1.4 Review of blue and green TADF OLEDs 11
1.5 Motivation 20
Chapter 2 Experiments 21
2.1 Device Fabrication 21
2.2 Measurement systems of OLED 22
2.2.1 B-J-V characteristics, operation lifetime, and EQE measurements 22
2.2.2 Transient electroluminescence (TrEL) 23
Chapter 3 Carbazole-N-Benzimidazole bipolar materials as hosts of blue phosphorescent OLEDs 24
3.1 Photophysical characteristics of host materials 25
3.2 Device architecture of blue phosphorescent OLEDs 29
3.3 A-dio-CBZBIZ as blue OLED host material 31
3.4 A-o-CBZBIZ as blue OLED host material 35
Chapter 4 o-DiCbzBz and o-4CzBz as Host Materials for Blue and Green TADF OLEDs 39
4.1 Introduction 39
4.2 o-DiCbzBz: DMAC-DPS blue TADF OLED optimization 40
4.3 o-4CzBz:4CZIPN green TADF OLED optimization 46
Chapter 5 Summary 51
References 52
[1]Park, J. S., Chae, H., Chung, H. K., Lee, S. I., "Thin film encapsulation for flexible AM-OLED: a review." Semicond. Sci. Technol, 2011, 26(3), 034001.
[2]Gu, G., Burrows, P. E., Venkatesh, S., Forrest, S. R., Thompson, M. E., "Vacuum-deposited, nonpolymeric flexible organic light-emitting devices." Opt. Lett., 1997, 22(3), 172.
[3]Gustafsson, G., Treacy, G. M., Cao, Y., Klavetter, F., Colaneri, N., Heeger, A. J., "The “plastic” led: A flexible light-emitting device using a polyaniline transparent electrode." Synth. Met., 1993, 57(1), 4123.
[4]Baldo, M. A., O''brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., Forrest, S. R., "Highly efficient phosphorescent emission from organic electroluminescent devices." Nature, 1998, 395(6698), 151.
[5]Baldo, M. A., Thompson, M. E., Forrest, S. R., "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer." Nature, 2000, 403(6771), 750.
[6]Huang, J. J., Hung, Y. H., Ting, P. L., Tsai, Y. N., Gao, H. J., Chiu, T. L., Leung, M. K., "Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes." Org. Lett., 2016, 18(4), 672.
[7]Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., "Highly efficient organic light-emitting diodes from delayed fluorescence." Nature, 2012, 492(7428), 234.
[8]Tang, C. W., VanSlyke, S. A., "Organic electroluminescent diodes." Appl. Phys. Lett., 1987, 51(12), 913.
[9]Watanabe, S., Ide, N., Kido J., "High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers." Jpn. J. Appl. Phys., 2007, 46(3R), 1186.
[10]Chen, Y., Chen, J., Zhao, Y., Ma, D., "High efficiency blue phosphorescent organic light-emitting diode based on blend of hole-and electron-transporting materials as a co-host." Appl. Phys. Lett., 2012, 100(21), 114.
[11]Yang, X., Huang, H., Pan, B., Zhuang, S., Aldred, M. P., Wang, L., Ma, D., "Novel electron-type host material for unilateral homogeneous phosphorescent organic light-emitting diodes with low efficiency roll-off." J. Mater. Chem., 2012, 22(43), 23129.
[12]Tsutsui, T., Saito, S., "Intrinsically Conducting Polymers: An Emerging Technology", 1993, (pp. 123-134). Springer Netherlands.
[13]Rothberg, L. J., Lovinger, A. J., "Status of and prospects for organic electroluminescence." J. Mater. Res., 1996, 11(12), 3174.
[14]Adachi, C., Baldo, M. A., Thompson, M. E., Forrest, S. R., "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device." J. Appl. Phys., 2001, 90(10), 5048.
[15]Tang, C. W., VanSlyke, S. A., Chen, C. H., "Electroluminescence of doped organic thin films." J. Appl. Phys., 1989, 65(9), 3610.
[16]Főrster, T., "10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation." Discussions of the Faraday Society, 1959, 27, 7-17.
[17]Förster, T., "Zwischenmolekulare energiewanderung und fluoreszenz." Annalen der physik, 1948, 437(1‐2), 55.
[18]Dexter, D. L., "A theory of sensitized luminescence in solids." J. Chem. Phys., 1953, 21(5), 836.
[19]Uchida, M., Adachi, C., Koyama, T., Taniguchi, Y., "Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes." J. Appl. Phys., 1999, 86(3), 1680.
[20]Chin, B. D., Suh, M. C., Kim, M. H., Lee, S. T., Kim, H. D., Chung, H. K., "Carrier trapping and efficient recombination of electrophosphorescent device with stepwise doping profile." Appl. Phys. Lett., 2005, 86(13), 133505.
[21]Hamada, Y., Matsusue, N., Kanno, H., Fujii, H., Tsujioka, T., Takahashi, H., "Improved luminous efficiency of organic light-emitting diodes by carrier trapping dopants." Jpn. J. Appl. Phys., 2001, 40(7B), L753.
[22]Holmes, R. J., D’Andrade, B. W., Forrest, S. R., Ren, X., Li, J., Thompson, M. E., "Efficient, deep-blue organic electrophosphorescence by guest charge trapping." Appl. Phys. Lett., 2003, 83(18), 3818.
[23]Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E., Forrest, S. R., "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials." Appl. Phys. Lett., 2001, 79(13), 2082.
[24]Holmes, R. J., Forrest, S. R., Tung, Y. J., Kwong, R. C., Brown, J. J., Garon, S., Thompson, M. E., "Blue organic electrophosphorescence using exothermic host–guest energy transfer." Appl. Phys. Lett., 2003, 82(15), 2422.
[25]Tokito, S., Iijima, T., Suzuri, Y., Kita, H., Tsuzuki, T., Sato, F., "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices." Appl. Phys. Lett., 2003, 83(3), 569.
[26]Goushi, K., Kwong, R., Brown, J. J., Sasabe, H., Adachi, C., "Triplet exciton confinement and unconfinement by adjacent hole-transport layers." J. Appl. Phys., 2004, 95(12), 7798.
[27]Lin, M. S., Yang, S. J., Chang, H. W., Huang, Y. H., Tsai, Y. T., Wu, C. C., Wong, K. T., "Incorporation of a CN group into mCP: a new bipolar host material for highly efficient blue and white electrophosphorescent devices." J. Mater. Chem., 2012, 22(31), 16114.
[28]Huang, J. J., Leung, M. K., Chiu, T. L., Chuang, Y. T., Chou, P. T., Hung, Y. H., "Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device." Org. Lett., 2014, 16(20), 5398.
[29]P. S. Wang, Blue Phosphorescent Organic Light-Emitting Diodes with Bipolar Carbazole-triazole Derivatives as Host Material, and Inverted Organic Photovoltaic Cells, National Taiwan University Master Thesis, 2014.
[30]Chopra, N., Lee, J., Zheng, Y., Eom, S. H., Xue, J., So, F., "Effect of the charge balance on high-efficiency blue-phosphorescent organic light-emitting diodes." ACS Appl. Mater. Inter. 2009, 1(6), 1169.
[31]Huang, H., Yang, X., Pan, B., Wang, L., Chen, J., Ma, D., Yang, C., "Benzimidazole–carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications." J. Mater. Chem., 2012, 22(26), 13223.
[32]Hung, W. Y., Chi, L. C., Chen, W. J., Chen, Y. M., Chou, S. H., Wong, K. T., "A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow–green electrophosphorescence, and two-color-based white OLEDs." J. Mater. Chem., 2010, 20(45), 10113.
[33]Pan, B., Wang, B., Wang, Y., Xu, P., Wang, L., Chen, J., Ma, D., "A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescent organic light-emitting diodes." J. Mater. Chem. C, 2014, 2(14), 2466.
[34]Luo, J., Gong, S., Gu, Y., Chen, T., Li, Y., Zhong, C., Yang, C., "Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters." J. Phys. Chem. C, 2016, 4(13), 2442.
[35]Higuchi, T., Nakanotani, H., Adachi, C., "High‐Efficiency White Organic Light‐Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters." Adv. Mater., 2015, 27(12), 2019.
[36]Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., Adachi, C., "Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence." Nat. Photon., 2014, 8(4), 326.
[37]Zhang, J., Ding, D., Wei, Y., Han, F., Xu, H., Huang, W., "Multiphosphine‐Oxide Hosts for Ultralow‐Voltage‐Driven True‐Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency beyond 20%." Adv. Mater., 2016, 28(3), 479.
[38]Kim, B. S., Lee, J. Y., "Phosphine oxide type bipolar host material for high quantum efficiency in thermally activated delayed fluorescent device." ACS Appl. Mat. Interfaces, 2014, 6(11), 8396.
[39]Cho, Y. J., Yook, K. S., Lee, J. Y., "A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs." Adv. Mater, 2014, 26(24), 4050.
[40]Lee, D. R., Kim, B. S., Lee, C. W., Im, Y., Yook, K. S., Hwang, S. H., Lee, J. Y., "Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes." ACS Appl. Mat. Interfaces, 2015, 7(18), 9625.
[41]Cho, Y. J., Jeon, S. K., Chin, B. D., Yu, E., Lee, J. Y., "The design of dual emitting cores for green thermally activated delayed fluorescent materials." Angew. Chem. Int. Ed., 2015, 54(17), 5201.
[42]Wang, H., Xie, L., Peng, Q., Meng, L., Wang, Y., Yi, Y., Wang, P., "Novel thermally activated delayed fluorescence materials–thioxanthone derivatives and their applications for highly efficient OLEDs." Adv. Mater., 2014, 26(30), 5198.
[43]Adachi, C., "Third-generation organic electroluminescence materials." Jpn. J. Appl. Phys, 2014, 53(6), 060101.
[44]Lee, D. R., Kim, M., Jeon, S. K., Hwang, S. H., Lee, C. W., Lee, J. Y., "Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices." Adv. Mater., 2015, 27(39), 5861.
[45]P. S. Wang, Blue Phosphorescent Organic Light-Emitting Diodes with Bipolar Carbazole-triazole Derivatives as Host Material, and Inverted Organic Photovoltaic Cells, National Taiwan University Master Thesis, 2014.
[46]P. H. Chen, Transient Electroluminescence of Blue Phosphorescence Organic Light-emitting Diode with Different Host Materials and Dynamic of Exciton in Organic Thin Film on Silicon Surface, National Taiwan University Master Thesis, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊