|
[1]Park, J. S., Chae, H., Chung, H. K., Lee, S. I., "Thin film encapsulation for flexible AM-OLED: a review." Semicond. Sci. Technol, 2011, 26(3), 034001. [2]Gu, G., Burrows, P. E., Venkatesh, S., Forrest, S. R., Thompson, M. E., "Vacuum-deposited, nonpolymeric flexible organic light-emitting devices." Opt. Lett., 1997, 22(3), 172. [3]Gustafsson, G., Treacy, G. M., Cao, Y., Klavetter, F., Colaneri, N., Heeger, A. J., "The “plastic” led: A flexible light-emitting device using a polyaniline transparent electrode." Synth. Met., 1993, 57(1), 4123. [4]Baldo, M. A., O''brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., Forrest, S. R., "Highly efficient phosphorescent emission from organic electroluminescent devices." Nature, 1998, 395(6698), 151. [5]Baldo, M. A., Thompson, M. E., Forrest, S. R., "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer." Nature, 2000, 403(6771), 750. [6]Huang, J. J., Hung, Y. H., Ting, P. L., Tsai, Y. N., Gao, H. J., Chiu, T. L., Leung, M. K., "Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes." Org. Lett., 2016, 18(4), 672. [7]Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C., "Highly efficient organic light-emitting diodes from delayed fluorescence." Nature, 2012, 492(7428), 234. [8]Tang, C. W., VanSlyke, S. A., "Organic electroluminescent diodes." Appl. Phys. Lett., 1987, 51(12), 913. [9]Watanabe, S., Ide, N., Kido J., "High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers." Jpn. J. Appl. Phys., 2007, 46(3R), 1186. [10]Chen, Y., Chen, J., Zhao, Y., Ma, D., "High efficiency blue phosphorescent organic light-emitting diode based on blend of hole-and electron-transporting materials as a co-host." Appl. Phys. Lett., 2012, 100(21), 114. [11]Yang, X., Huang, H., Pan, B., Zhuang, S., Aldred, M. P., Wang, L., Ma, D., "Novel electron-type host material for unilateral homogeneous phosphorescent organic light-emitting diodes with low efficiency roll-off." J. Mater. Chem., 2012, 22(43), 23129. [12]Tsutsui, T., Saito, S., "Intrinsically Conducting Polymers: An Emerging Technology", 1993, (pp. 123-134). Springer Netherlands. [13]Rothberg, L. J., Lovinger, A. J., "Status of and prospects for organic electroluminescence." J. Mater. Res., 1996, 11(12), 3174. [14]Adachi, C., Baldo, M. A., Thompson, M. E., Forrest, S. R., "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device." J. Appl. Phys., 2001, 90(10), 5048. [15]Tang, C. W., VanSlyke, S. A., Chen, C. H., "Electroluminescence of doped organic thin films." J. Appl. Phys., 1989, 65(9), 3610. [16]Főrster, T., "10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation." Discussions of the Faraday Society, 1959, 27, 7-17. [17]Förster, T., "Zwischenmolekulare energiewanderung und fluoreszenz." Annalen der physik, 1948, 437(1‐2), 55. [18]Dexter, D. L., "A theory of sensitized luminescence in solids." J. Chem. Phys., 1953, 21(5), 836. [19]Uchida, M., Adachi, C., Koyama, T., Taniguchi, Y., "Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes." J. Appl. Phys., 1999, 86(3), 1680. [20]Chin, B. D., Suh, M. C., Kim, M. H., Lee, S. T., Kim, H. D., Chung, H. K., "Carrier trapping and efficient recombination of electrophosphorescent device with stepwise doping profile." Appl. Phys. Lett., 2005, 86(13), 133505. [21]Hamada, Y., Matsusue, N., Kanno, H., Fujii, H., Tsujioka, T., Takahashi, H., "Improved luminous efficiency of organic light-emitting diodes by carrier trapping dopants." Jpn. J. Appl. Phys., 2001, 40(7B), L753. [22]Holmes, R. J., D’Andrade, B. W., Forrest, S. R., Ren, X., Li, J., Thompson, M. E., "Efficient, deep-blue organic electrophosphorescence by guest charge trapping." Appl. Phys. Lett., 2003, 83(18), 3818. [23]Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E., Forrest, S. R., "Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials." Appl. Phys. Lett., 2001, 79(13), 2082. [24]Holmes, R. J., Forrest, S. R., Tung, Y. J., Kwong, R. C., Brown, J. J., Garon, S., Thompson, M. E., "Blue organic electrophosphorescence using exothermic host–guest energy transfer." Appl. Phys. Lett., 2003, 82(15), 2422. [25]Tokito, S., Iijima, T., Suzuri, Y., Kita, H., Tsuzuki, T., Sato, F., "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices." Appl. Phys. Lett., 2003, 83(3), 569. [26]Goushi, K., Kwong, R., Brown, J. J., Sasabe, H., Adachi, C., "Triplet exciton confinement and unconfinement by adjacent hole-transport layers." J. Appl. Phys., 2004, 95(12), 7798. [27]Lin, M. S., Yang, S. J., Chang, H. W., Huang, Y. H., Tsai, Y. T., Wu, C. C., Wong, K. T., "Incorporation of a CN group into mCP: a new bipolar host material for highly efficient blue and white electrophosphorescent devices." J. Mater. Chem., 2012, 22(31), 16114. [28]Huang, J. J., Leung, M. K., Chiu, T. L., Chuang, Y. T., Chou, P. T., Hung, Y. H., "Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device." Org. Lett., 2014, 16(20), 5398. [29]P. S. Wang, Blue Phosphorescent Organic Light-Emitting Diodes with Bipolar Carbazole-triazole Derivatives as Host Material, and Inverted Organic Photovoltaic Cells, National Taiwan University Master Thesis, 2014. [30]Chopra, N., Lee, J., Zheng, Y., Eom, S. H., Xue, J., So, F., "Effect of the charge balance on high-efficiency blue-phosphorescent organic light-emitting diodes." ACS Appl. Mater. Inter. 2009, 1(6), 1169. [31]Huang, H., Yang, X., Pan, B., Wang, L., Chen, J., Ma, D., Yang, C., "Benzimidazole–carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications." J. Mater. Chem., 2012, 22(26), 13223. [32]Hung, W. Y., Chi, L. C., Chen, W. J., Chen, Y. M., Chou, S. H., Wong, K. T., "A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow–green electrophosphorescence, and two-color-based white OLEDs." J. Mater. Chem., 2010, 20(45), 10113. [33]Pan, B., Wang, B., Wang, Y., Xu, P., Wang, L., Chen, J., Ma, D., "A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescent organic light-emitting diodes." J. Mater. Chem. C, 2014, 2(14), 2466. [34]Luo, J., Gong, S., Gu, Y., Chen, T., Li, Y., Zhong, C., Yang, C., "Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters." J. Phys. Chem. C, 2016, 4(13), 2442. [35]Higuchi, T., Nakanotani, H., Adachi, C., "High‐Efficiency White Organic Light‐Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters." Adv. Mater., 2015, 27(12), 2019. [36]Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., Adachi, C., "Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence." Nat. Photon., 2014, 8(4), 326. [37]Zhang, J., Ding, D., Wei, Y., Han, F., Xu, H., Huang, W., "Multiphosphine‐Oxide Hosts for Ultralow‐Voltage‐Driven True‐Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency beyond 20%." Adv. Mater., 2016, 28(3), 479. [38]Kim, B. S., Lee, J. Y., "Phosphine oxide type bipolar host material for high quantum efficiency in thermally activated delayed fluorescent device." ACS Appl. Mat. Interfaces, 2014, 6(11), 8396. [39]Cho, Y. J., Yook, K. S., Lee, J. Y., "A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs." Adv. Mater, 2014, 26(24), 4050. [40]Lee, D. R., Kim, B. S., Lee, C. W., Im, Y., Yook, K. S., Hwang, S. H., Lee, J. Y., "Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes." ACS Appl. Mat. Interfaces, 2015, 7(18), 9625. [41]Cho, Y. J., Jeon, S. K., Chin, B. D., Yu, E., Lee, J. Y., "The design of dual emitting cores for green thermally activated delayed fluorescent materials." Angew. Chem. Int. Ed., 2015, 54(17), 5201. [42]Wang, H., Xie, L., Peng, Q., Meng, L., Wang, Y., Yi, Y., Wang, P., "Novel thermally activated delayed fluorescence materials–thioxanthone derivatives and their applications for highly efficient OLEDs." Adv. Mater., 2014, 26(30), 5198. [43]Adachi, C., "Third-generation organic electroluminescence materials." Jpn. J. Appl. Phys, 2014, 53(6), 060101. [44]Lee, D. R., Kim, M., Jeon, S. K., Hwang, S. H., Lee, C. W., Lee, J. Y., "Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices." Adv. Mater., 2015, 27(39), 5861. [45]P. S. Wang, Blue Phosphorescent Organic Light-Emitting Diodes with Bipolar Carbazole-triazole Derivatives as Host Material, and Inverted Organic Photovoltaic Cells, National Taiwan University Master Thesis, 2014. [46]P. H. Chen, Transient Electroluminescence of Blue Phosphorescence Organic Light-emitting Diode with Different Host Materials and Dynamic of Exciton in Organic Thin Film on Silicon Surface, National Taiwan University Master Thesis, 2014.
|