跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王翔正
研究生(外文):Hsiang-Cheng Wang
論文名稱:堆疊式有機太陽能電池與石墨烯陰極太陽能電池之研究
論文名稱(外文):Investigation of Tandem Polymer Solar Cell and Graphene Cathode Inverted Solar Cell
指導教授:吳志毅
指導教授(外文):Chih-I Wu
口試委員:陳美杏吳育任陳奕君吳肇欣
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:聚合物有機太陽能電池界面改質堆疊式太陽能電池石墨烯陰極
外文關鍵詞:Polymer solar cellsurface modificationtandem solar cellgraphene cathode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究一些界面改質的方法,利用這些改質方法,堆疊式有機太陽能電池與石墨烯陰極太陽能電池得以以濕式製程製作出來,並探討元件最佳化過程與界面改質前後的性質變化。
本論文第一部分先討論主動層材料選擇,將其製作成單層太陽能電池並最佳化,接著討論堆疊式太陽能電池的中間連接層性質與適合的材料,為了讓中間連接層可以以濕式旋轉圖佈方式成膜,紫外光表面處理(UV-Ozone)與氧電漿表面處理(O2 plasma)被應用在主動層表面,改善其疏水的性質。堆疊式太陽能電池的主動層厚度設計過以得到相匹配電流,原件成功做出並達到5.129%的效率。被紫外光臭氧與氧電漿處理過的主動層表面進一步以儀器量測表面性質的變化,並且找到為何以紫外光表面處理的元件會表現不好的原因。
本論文第二部分研究以石墨烯當做陰極的倒置型單層太陽能電池,為了改善石磨烯表面疏水的性質,一種親疏水介面材料HBC-6ImBr被用來改變石墨烯表面性質,借由連續堆疊三層石墨烯,以PTB7:PC71BM為主動層的石墨烯陰極太陽能電池達到3.515%的效率。
In this thesis, several ways of surface modification are investigated. Tandem polymer solar cells and single junction solar cells with graphene as cathode are successfully fabricated via surface modification. The performance of solar cells and the property change after surface modification are carefully studied.
In the first topic, we discuss the candidate materials for tandem solar cell. Single junction solar cells are optimized based on our front cell and rear cell material. Interconnection layer is then discussed. In order to let interconnection layer be coated on active layer, two commonly-used surface modification methods, UV-Ozone and O2 plasma, are introduced. Tandem solar cells are carefully designed and put into experiment. Devices are successfully fabricated with PCE of 5.129%. The surface properties of polymer film after UV-Ozone and O2 plasma pretreatment are further investigated. The reasons for poor performance of UV-Ozone-modified devices are found
In the second topic, a single junction solar cell based on graphene cathode is fabricated. Hydrophobicity of graphene is improved with the aid of HBC-6ImBr. Three layers of graphene are transferred on glass substrate as cathode, and PCE of 3.515% is achieved based on PTB7:PC71BM.
口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Polymer Solar Cell 2
1.2.1 Background 2
1.2.2 Principle 4
1.2.3 Operation Mechanism 5
Chapter 2 Experimental Setup and Materials 8
2.1 Experimental Equipment 8
2.1.1 Glove Box 8
2.1.2 Solar Simulator 9
2.1.3 Ultraviolet and X-ray Photoelectron Spectroscopy 9
2.1.4 External Quantum Efficiency 10
2.2 Materials 11
2.2.1 Substrate 11
2.2.2 Electron Transport Layer 11
2.2.3 Hole Transport Layer 13
2.2.4 Active Layer 14
2.3 Device Fabrication 18
2.3.1 Solution Preparation 18
2.3.2 Fabrication of Solar Cell 19
Chapter 3 Tandem Solar Cell 21
3.1 Introduction 21
3.1.1 Motivation 21
3.1.2 Overview 21
3.1.3 Principle of tandem solar cell 24
3.2 Active layer 25
3.2.1 Active layer materials 25
3.2.2 Optimization of single junction solar cells 26
3.3 Interconnection layer 30
3.3.1 Material selection 30
3.3.2 Surface modification 33
3.4 Tandem solar cells 34
3.4.1 Tandem solar cells design 34
3.4.2 Using UV-Ozone to modify the surface property 35
3.4.3 Using O2 plasma to modify the surface property 38
3.5 Investigating two different surface modification methods 43
3.5.1 Single junction solar cell with different treatment on P3HT:ICBA 43
3.5.2 Absorption and EQE measurement 45
3.5.3 XPS and UPS measurement 47
3.5.4 UV light time test 49
3.6 Conclusion 50
Chapter 4 Use Graphene as Electrode in Solar Cell 51
4.1 Introduction 51
4.1.1 Motivation 51
4.1.2 Overview 52
4.2 Graphene solar cell 53
4.2.1 Graphene transfer 53
4.2.2 Inverted solar cell with graphene cathode 54
4.3 Conclusion 57
Chapter 5 Conclusion and Future Work 58
5.1 Conclusion 58
5.2 Future Work 59
REFERENCE 60
[1] Chapin, D.M., C.S. Fuller, and G.L. Pearson, Journal of Applied Physics, 1954.25(5): p.676
[2] Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulkheterojunction
solar cells. Adv. Mater. 21, 1323–1338
[3] Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells.Nature Photonics,6(3), 153-161.
[4] Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).
[5] Tang, C.W 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183-185
[6] https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/diode-equivalent-circuit-models/
[7] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens,
“Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, Journal of Applied Physics, 94,6849(2003)
[8] https://sharepoint.uvm.edu/sites/physx202/Wiki%20Pages/I-V%20curves%20and%20how%20to%20make%20the%20fitting%20work.aspx
[9] National Instruments, “Part II - Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code”, 2012.
[10] Hertz, H. “Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung” Annalen der Physik 267, 938-1000 (1887)
[11] Einstein, A. “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” Annalen der Physik 322, 132-148 (1905)
[12]A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, E. A. Meulenkamp, Phys. Rev. Lett. 89, 036801.
[13] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 2009, 21, 4087–4108
[14] B. S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, and R. Loutfy, J. Am. Chem. Soc.129, 2750 (2007).
[15] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, J. Phys. Chem. B 109, 9505 (2005).
[16] Steven K. Hau, Hin-Lap Yip, Nam Seob Baek, Jingyu Zou, Kevin O’Malley, and Alex K.-Y. Jen, Applied Physics Letters 92, 253301 (2008)
[17] http://www.sigmaaldrich.com/catalog/product/aldrich/423475?lang=en®ion=TW
[18] https://en.wikipedia.org/wiki/PEDOT:PSS
[19] Yanming Sun , Jung Hwa Seo , Christopher J. Takacs , Jason Seifter , and Alan J. Heeger. Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679 – 1683
[20] James Bullock, Di Yan, Andres Cuevas, Yimao Wan and Christian Samundsett.
n- and p-type silicon solar cells with molybdenum oxide hole contacts. Energy Procedia 77 ( 2015 ) 446 – 450
[21] Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, Adv. Mater. 2010, 22, E135.
[22] L.-M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434.
[23] Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).

[24] Zhao, G. J., He, Y. J. & Li, Y. F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization. Adv. Mater. 22, 4355–4358 (2010).
[25] Yang Yang, Gang Li, “Progress in High-Efficient Solution Process Organic Photovoltaic Devices” (2015)
[26] M. Suezaki and M. Yokoyama. M. Hiramoto, “Effect of Thin Gold Interstitial-Layer on the Photovoltaic Properties of Tandem Organic Solar Cell.” Chemistry Letter 327 (1990)
[27] A. Yakimov and S. R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters” Applied Physics Letters 80 (9), 1667 (2002)
[28] Yongsheng Liu, Chun-Chao Chen, Ziruo Hong, Jing Gao, Yang (Michael) Yang, Huanping Zhou, Letian Dou, Gang Li & Yang Yang, “Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency” Scientific Reports 3, Article number: 3356 (2013)
[29] Gilles Dennler, Hans-Jürgen Prall, Robert Koeppe, Martin Egginger, Robert Autengruber, and Niyazi Serdar Sariciftci, “Enhanced spectral coverage in tandem organic solar cells” Applied Physics Letters 89 (9), 1667 (2002)
[30] A. G. F. Janssen, T. Riedl, S. Hamwi, H. H. Johannes, and W. Kowalsky, “Highly Efficient Organic Tandem Solar Cells Using an Improved Connecting Architecture.” Applied Physics Letters 91 (7), 073519 (2007).
[31] V. Shorotriya, E.H.-E. Wu, G. Li, Y. Yao, Y. Yang, “Efficient light harvesting in multiple-device stacked structure for polymer solar cells ” Apply Physics Letter 88, 064104 (2006)
[32] Huiqiong Zhou , Yuan Zhang , Cheng-Kang Mai , Samuel D. Collins , Guillermo C. Bazan , Thuc-Quyen Nguyen , and Alan J. Heeger, “Polymer Homo-Tandem Solar Cells with Best Efficiency of 11.3%” Adv. Mater. 2015, 27, 1767-1773
[33] A. Hadipour, B. de Boer, J. Wildeman, F. Kooistra, J.C. Hummelen, M.G.R. Turbiez, M.M. Wienk, R.A.J. Janssen, P.W.M. Blom, “Solution-Processed Organic Tandem Solar Cells” Adv. Funct. Mater. 2006, 16 (1897)
[34] J.Y. Kim, S.H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger. “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing” Adv. Mater. 18, 572 (2006)
[35] Jingbi You1, Letian Dou1, Ken Yoshimura, Takehito Kato, Kenichiro Ohya, Tom Moriarty, Keith Emery, Chun-Chao Chen, Jing Gao, Gang Li1 & Yang Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency” Nat. Commun. 4, 1446 (2013)
[36] Tayebeh Ameri, Ning Li and Christoph J. Brabec, “Highly efficient organic tandem solar cells: a follow up review”, Energy Environ. Sci., 2013, 6, 2390-2413
[37] J.H. Hou, H.Y. Chen, S.Q. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 130, 16144 (2008)
[38] L.T. Dou, J.B. You, J. Yang, C.-C. Chen, Y.J. He, S. Murase, T. Moriarty, K. Emery, G. Li,Y. Yang, Nat. Photon. 6, 180 (2012)
[39] Jun Yang , Rui Zhu, Ziruo Hong, Youjun He, Ankit Kumar, Yongfang Li & Yang Yang, “A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells” Adv. Mater. 2011
[40] Elvira Fortunato, David Ginley, Hideo Hosono and David C. Paine, "Transparent Conducting Oxides for Photovoltaics". MRS Bulletin 32: 242–247.
[41] http://www.nanocarbon.cz/research.html
[42] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, “Electric field effect in automatically thin carbon film” Science, vol. 306, pp.666-669. Oct 22 2004.
[43] K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab & K. Kim, “A roadmap for graphene” Nature, vol. 490, pp. 192-200, Oct 11 2012
[44] J. S. Moon, D. Curtis, M. Hu, D. Wong, et al., “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates” IEEE Electron Device Letters, vol. 30, pp3 650-652, Jun 2009.
[45] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils” Science, Vol. 324, Issue 5932, pp. 1312-1314, Jun 5 2009
[46] Xuan Wang, Linjie Zhi, and Klaus Müllen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells” Nano Lett. 2008, 8(1), pp323-327
[47] Hyesung Park, Sehoon Chang, Xiang Zhou, Jing Kong, Tomás Palacios, and Silvija Gradečak, “Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency” Nano Lett. 2014, 14, 5148-5154
[48] Ji Won Suk, Alexander Kitt, Carl W. Magnuson, Yufeng Hao, Samir Ahmed, Jinho An, Anna K. Swan, Bennett B. Goldberg, and Rodney S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates” Acs Nano, vol. 5, pp. 6916-6924, Sep 2011
[49] Wei-Hsiang Lin, Ting-Hui Chen, Jan-Kai Chang, Jieh-I Taur, Yuan-Yen Lo, Wei-Li Lee, Chia-Seng Chang, Wei-Bin Su, and Chih-I Wu, “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate” Acs Nano, vol.8, pp.1784-1791, Feb 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top