( 您好!臺灣時間:2021/03/05 18:49
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Wei-Chieh Chen
論文名稱(外文):Study on the InAs nanowire characteristics grown by a molecular beam epitaxy system
指導教授(外文):Hao-Hsiung Lin
口試委員(外文):Liu-Wen ChangJhih-Siang WangShun-Jen ChengCheng-Yen WenKuang-I LinYou-Ru Lin
中文關鍵詞:分子束磊晶技術InAs奈米線成長方向(001) Si 基板聚焦式離子束拉曼量測空間關聯模型
外文關鍵詞:Molecular beam epitaxyInAsnanowiregrowth direction(001) Si substratefocused ion beamRaman scatteringspatial correlation model
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  InAs是一個可以廣泛應用於許多不同領域的材料,包含了許多電子與光電元件。在本論文的第一個部分,我們以分子束磊晶技術,在具有奈米溝渠圖案的 (001)Si基板上成長了InAs的奈米線。由於InAs奈米線成長於(001)晶向的基板天生會朝向四個等效的<111>方向成長;因此在這個部分,我們針對奈米線的成長方向做了長晶手法上的控制,我們發展出一個叫做二階段成長的方法:先固定基板成長一段時間,目的是為了使InAs只成核於溝渠的一個端點,再旋轉基板成長,如此可以控制InAs奈米線超過90%以上皆往同一個 [111]方向成長;接著我們分析了穿透式電子顯微鏡得到的結果,發現在極小的V/III條件下,InAs奈米線極容易由溝渠端點的(111)Si的殘餘區塊長出;而在溝渠中央部分沒有(111)Si殘餘區塊,其V/III較高的位置則傾向長成島狀與團簇結構。
  接著,在本論文的第二部分,我們同樣以分子束磊晶技術,成長了InAs塊材。我們研究了當InAs經過聚焦式離子束技術成像過後,對於晶格品質所遭受到的破壞程度。我們使用拉曼量測技術,比較了有無經過聚焦式離子束技術成像的InAs之拉曼頻譜,發現經過聚焦式離子束技術成像的InAs拉曼頻譜在~230 cm-1的位置會多出一個較寬的訊號,我們以空間關聯模型擬合了這個訊號,確認這個訊號式來自於InAs晶格遭受到破壞之後所出現的訊號。我們同時觀察到,即便是在成像離子注量極低的情況下(離子注量為7.4 × 1010 cm−2),InAs所受到的破壞程度都非常大,更進一步的是,隨著離子注量以數量級的程度大幅上升,InAs晶格所受到的破壞程度卻沒有大幅度的增加。我們認為InAs即使在離子注量極低的情況下仍遭受到很大的破壞,其原因為聚焦式離子束技術之非常大的電流密度與極慢的掃描速率所導致;而當離子注量大幅度增加,破壞程度卻沒什麼變化的原因,這是因為:當離子注量升高時,由於InAs的熱導係數較低,會造成局部溫度上升,此溫度消除了因為離子注入所產生的缺陷。
InAs is a promising material since it can apply in many electronic or optoelectronic devices. In the first part of this thesis, we had grown InAs nanowire on the nanotrench-patterned (001) Si substrate by using molecular beam epitaxy. Naturally, InAs nanowire grown on (001)-oriented substrate would grow into four equivalent <111> directions. Thus, in this part, we developed a two-step growth method in order to control InAs growth direction. We first grown InAs without substrate rotation in order to seed InAs nucleus at the only one end of trench, then the growth proceeded with substrate rotation. The result of the sample grown by this two-step growth method reveal over 90% InAs nanowire with single [111] growth direction. Transmission electron microscope and one dimensional Fourier image analyses show that InAs NW can be easily grown from the (111) Si residue due to the tiny residue volume and low V/III ratio. In contrast, InAs nucleus, located at the center of the trench, developed into island and cluster because of the high V/III ratio and large lattice mismatch.
In the second part of this thesis, we studied the effect of focused ion beam imaging on the crystallinity of InAs by using Raman scattering measurement. We found that the Raman spectrum for the imaged sample would show an additional broad band signal at ~230 cm-1. Spatial correlation model was used to fit this signal and confirmed that this signal was induced by FIB imaging. We found that the crystallinity of InAs suffer a severe damage even under the noisiest imaging condition (7.4 × 1010 cm−2). However, the InAs damage showed a fluence-independent behavior whit increasing ion fluence. We attribute the severe damage to the high beam current density and the low scanning speed of the FIB imaging process. These process conditions along with the low InAs thermal conductivity also lead to a high local temperature in the exposed region, which largely annihilated the defects and results in the nearly fluence independent behavior.

致謝 I
中文摘要 III
Abstract V
目錄 VII
表目錄 IX
圖目錄 X
第一章、序論 1
1.1 InAs (砷化銦)簡介 1
1.2 InAs與Si基板之整合 1
1.3 論文內容概述 3
第二章、InAs奈米線成長與其結構特性研究 5
2.1 本章摘要 5
2.2 簡介 6
2.3 實驗 10
2.3.1 InAs奈米線的成長 10
2.3.2 InAs奈米線的方向定義 12
2.3.3 SEM量測與InAs奈米線形貌統計方式 13
2.3.4 TEM量測與一維傅立葉過濾影像介紹 13
2.4 結果與討論 15
2.5 此章總結 24
第三章、FIB成像對InAs晶格品質的影響 32
3.1 本章摘要 32
3.2 簡介 33
3.3 實驗 36
3.3.1 InAs磊晶層成長 36
3.3.2 FIB離子束成像 36
3.3.3 拉曼散射量測 37 儀器架設 38 雷射光點 38 選擇律(selection rule)的計算 39
3.4 結果與討論 41
3.4.1 InAs磊晶層之拉曼散射頻譜 41
3.4.2 聚焦式離子束成像對InAs表面之影響 44
3.5 本章結論 54
第四章、結論 77
參考文獻 79
[1.1]Wayne H. Lau and Michael E. Flatté, “Effect of interface structure on the optical properties of InAs/GaSb laser active regions,” Appl. Phys. Lett., vol. 80, pp. 1683-1685, 2002.
[1.2]W. W. Bewley, E. H. Aifer, C. L. Felix, I. Vurgaftman, and J. R. Meyer, “High-temperature type-II superlattice diode laser at λ=2.9 mm,” Appl. Phys. Lett., vol. 71, pp. 3607-3609, 1997.
[1.3]Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, Gail J. Brown, M. Tidrow, “High quality type II InAs/GaSb superlattices with cutoff wavelength ~3.7 mm using interface engineering,” J. Appl. Phys., vol. 94, pp. 4720-4722, 2003.
[1.4]H. H. Gao, A. Krier, V. Sherstnev, and Y. Yakovlev, “InAsSb/InAsSbP light emitting diodes for the detection of CO and CO2 at room temperature,” J. Phys. D: Appl. Phys., vol. 32, pp. 1768-1772, 1999.
[1.5]W. Dobbelaere, J. De Boeck, C. Bruynseraede, R. Mertens and G. Borghs, “InAsSb light emitting diodes and their applications to infra-red gas sensors,” Electron Lett., vol. 29, pp. 890-891, 1993.
[1.6]K. Yoh, T. Moriuchi, and M. Inoue, “An InAs channel heterojunction field-effect transistor with high transconductance,” IEEE Electron Device Lett., vol. 11, pp. 526-528, 1990.
[1.7]L. F. Luo, R. Beresford, W. I. Wang and H. Munekata, “Heterojunction field-effect transistors based on AlGaSb/InAs,” Appl. Phys. Lett., vol. 55, pp. 789-791, 1989.
[1.8]H. Son, J. Kim, M. Kim and S. Hong, “Memory Operation of InAs Quantum Dot Heterostructure Field Effect Transistor,” Jpn. J. Appl. Phys, vol. 40, pp. 2801-2803, 2001.
[1.9]S. Jha, X. Song, S. E. Babcock, T. F. Kuech, D. Wheeler, B. Wu, P. Fay, A. Seabaugh, “Growth of InAs on Si substrates at low temperatures using metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 310, pp. 4772-4775, 2008.
[1.10]E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett., vol. 63, pp. 2248-2251, 1993.
[1.11]Elif Ertekin, P. A. Greaney, D. C. Chrzan, and Timothy D. Sands, “Equilibrium limits of coherency in strained nanowire heterostructures,” J. Appl. Phys, vol. 97, pp. 114325, 2005.
[1.12]F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B, vol. 74, pp. 121302(R), 2006.

[2.1]H. Joyce, J. Wong-Leung, Q. Gao, H. Tan, and C. Jagadish, “Phase perfection in Zinc Blende and Wurtzite III-V nanowires using basic growth parameters,” Nano. Lett., vol. 10, pp. 908-915, 2010.
[2.2]S. Ihn and J. Song, “InAs nanowires on Si substrates grown by solid source molecular beam epitaxy,” Nanotechnology, vol. 18, pp. 355603, 2007.
[2.3]S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, “Growth kinetic in position–controlled and catalyst-free InAs nanowire arrays on Si (111) grown by selective area and molecular beam epitaxy,” J. Appl. Phys., vol. 108, pp. 114316, 2010.
[2.4]G. Koblmüller, S. Hertenberger, K. Vizbaras, M. Bichler, F. Bao, J. Zhang, and G. Abstreiter, “Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy,” Nanotechnology, vol. 21, pp. 365602, 2010.
[2.5]L. Jensen, M. Bjö1rk, S. Jeppesen, A. Persson, B. Ohlsson and L. Samuelson, “Role of Surface diffusion in chemical beam epitaxy of InAs nanowires,” Nano. Lett., vol. 4, pp. 1961-1964, 2004.
[2.6]A. I. Persson, L. E. Fröberg, L. Samuelson and H. Linke, “The fabrication of dense and uniform InAs nanowire arrays,” Nanotechnology, vol. 20, pp. 225304, 2009.
[2.7]D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, F. Beltram and L. Sorba, “InAs/InSb nanowire heterostructures grown by chemical beam epitaxy,” Nanotechnology, vol. 20, pp. 505605, 2009.
[2.8]B. Mandl, J. Stangl, T. Mårtensson, A. Mikkelsen, J. Eriksson, L. Karlsson, G. Bauer, L. Samuelson, and W. Seifert, “Au-free epitaxial growth of InAs nanowire,” Nano. Lett., vol. 6, pp. 1817-1821, 2006.
[2.9]S. Pal, S. D. Singh, V. K. Dixit, A. Ingale, P. Tiwari, H. Srivastava, R. Kumar, C. Mukharjee, P. Prakash, and S. M. Oak, “Low- and high-density InAs nanowires on Si(001) and their Raman imaging,” Semicond. Sci. Technol., vol. 28, pp. 015025, 2013.
[2.10]A. I. Persson, M.W. Larsson, S. Stenström, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, “Solid-phase diffusion mechanism for GaAs nanowire growth,” Nat. Mater., vol. 3, pp. 677-681, 2004.
[2.11]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires,” Appl. Phys. Lett., vol. 78, pp. 3304-3306, 2001.
[2.12]K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano. Lett., vol. 8, pp. 3475-3480, 2008.
[2.13]M. Cantoro, G. Brammertz, O. Richard, H. Bender, F. Clemente, M. Leys, S. Degroote, M. Caymax, M. Heyns, and S. De Gendta, “Controlled III/V nanowire growth by selective-area vapor-phase epitaxy,” J. Electrochem. Soc., vol. 156, pp. H860-H868, 2009.
[2.14]M. Björk, H. Schmid, C. Breslin, L. Gignac, H. Riel, “InAs nanowire growth on oxide-masked <111> silicon,” J. Cryst. Growth., vol. 344, pp. 31-37, 2012.
[2.15]S. D. Brotherton and J. E. Lowther, “Electron and hole capture at Au and Pt centers in Silicon,” Phys. Rev. Lett., vol. 44, pp. 606-609, 1980.
[2.16]E. Dimakis,. J. Lähnemann, U. Jahn, S. Breuer, M. Hilse, L. Geelhaar, and H. Riechert, “Self-assisted nucleation and vapor-solid Growth of InAs nanowires on bare Si(111),” Cryst. Growth. Des., vol. 11, pp. 4001-4008, 2011.
[2.17]U. P. Gomes, D. Ercolani, V. Zannier, J. David, M. Gemmi, F. Beltram, and L. Sorba, “Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon,” Nanotechnology, vol. 27, pp. 255601, 2016.
[2.18]U. P. Gomes, D. Ercolani, N.V. Sibirev, M. Gemmi, V. G. Dubrovskii, F. Beltram, and L. Sorba, “Catalyst-free growth of InAs nanowires on Si (111) by CBE,” Nanotechnology, vol. 26, pp. 415604, 2015.
[2.19]S. Conesa-Boj, E. Russo-Averchi, A. Dalmau-Mallorqui, J. Trevino, E. Pecora, C. Forestiere, A. Handin, M. Ek, L. Zweifel, L. Wallenberg, D. Rüffer, M. Heiss, D. Troadec, L. D. Negro, P. Caroff, and A. Fontcuberta i Morral, “Vertical “III-V” V-shaped nanomembranes epitaxially grown on a patterned Si[001] substrate and their enhanced light scattering,” Acs. Nano., vol. 6, pp. 10982-10991, 2011.
[2.20]M. Borg, H. Schmid, K. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. D. Kanungo, P. Werner, and H. Riel, “Vertical III−V Nanowire Device Integration on Si(100),” Nano. Lett., vol. 14 pp. 1914-1920, 2014.
[2.21]S. Hertenberger, D. Rudolph, J. Becker, M. Bichler, J. J. Finley, G. Abstreiter and G. Koblmüller, “Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability,” Nanotechnology, vol. 23, pp. 235602, 2012.
[2.22]E. Russo-Averchi, A. Dalmau-Mallorquí, I. Canales-Mundet, G. Tütüncüoǧlu, E. Alarcon-Llado, M. Heiss, D. Rüffer, S. Conesa-Boj, P. Caroff, and A. Fontcuberta i Morral, “Growth mechanisms and process window for InAs V-shaped nanoscales on Si[001],” Nanotechnology, vol. 24, pp. 435603, 2013.
[2.23]C. T. Foxon, S. V. Novikov, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, S. Khongphetsak, “A complementary geometric model for the growth of GaN nanocolumns prepared by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth, vol. 311, pp. 3423-3427, 2009.
[2.24]Y. Horikoshi and M. Kawashima, “Growth mechanism of GaAs during migration-enhanced epitaxy at low growth temperatures,” Jpn. J. Appl. Phys. vol. 28, pp. 200, 1989.
[2.25]S. Ghandhi, “VLSI fabrication principles: silicon and gallium arsenide (second edition),” Ch. 5.1.1, pp. 261-266, 1994.
[2.26]K. Tomioka, M. Yoshimura, and T. Fukui, “Sub 60 mV/decade switch using an InAs nanowire-Si heterojunction and turn-on voltage shift with a pulsed doping technique,” Nano. Lett., vol. 13 pp. 5822-5826, 2013.
[2.27]K. Tomioka, M. Yoshimura, and T. Fukui, “Steep-slope tunnel field-effect transistors using III-V nanowire/Si heterojunction,” VLSI, pp. 47-48, 2012.
[2.28]E. Russo-Averchi, G. Tütüncüoglu, A. Dalmau-Mallorqui, I. Canales Mundet, M. de la Mata, D. Rüffer, J. Arbiol, S. Conesa-Boj, A. Fontcuberta i Morral, “Bottom-up engineering of InAs at the nanoscale: From V-shaped nanomembranes to nanowires,” J. Cryst. Growth, vol. 420, pp. 47-56, 2015.

[3.1]R. M. Langford and A. Petford-Long, “Broad ion beam milling of focused ion beam prepared tranmission electron microscopy cross sections for high resolution electron microscopy,” J. Vac. Sci. Technol. A, vol. 19, pp. 982-985, 2001.
[3.2]C. Kranz, G. Friedbacher and B. Mizaikoff, “Integrating an ultramicroelectrode in an AFM cantilecev: combined technology for enhanced information,” Anal. Chem., vol. 73, pp. 2491-2500, 2001.
[3.3]D. M. Longo, W. E. Benson, T. Chraska and R. Hull, “Deep submicron microcontact printing on planar and curved substrates utilizing focused ion beam fabricated printheads,” Appl. Phys. Lett., vol. 78, pp. 981-983, 2001.
[3.4]H. McKay, P. Rudzinski, A. Dehne and J. M. Millunchick, “Focused ion beam modification of surfaces for directed self-assembly of InAs/GaAs(001) quantum dots,” Nanotechnology, vol. 18, pp. 455303, 2007.
[3.5]Y. Bamba, E. Miyauchi, H. Arimoto, K. Kuramoto, A. Takamori, and H. Hashimoto, “Focused Si Ion Implantation in GaAs,” Jpn. J. Appl. Phys. Part 2, vol. 22, pp. L650-L652, 1983.
[3.6]R. Menzel, K. Gärtner, W. Wesch, and H. Hobert “Damage production in semiconductor materials by a focused Ga+ ion beam,” J. Appl. Phys., vol. 88, pp. 5658-5661, 2000.
[3.7]L. I. Balcells, L. I. Abad, H. Rojas and B. Martínez, “Material damage induced by nanofabrication processes in manganite thin films,” Nanotechnology, vol. 19, pp. 135307, 2008.
[3.8]蔡松澔, “聚焦離子束系統輔助砷化銦奈米線歐姆接觸與金氧半 場效應電晶體製作,” 國立台灣大學電機資訊院子工程學研究所 碩士論文, Ch. 4, pp. 26-37, 2015.
[3.9]J. Liu, “Photonic Devices,” Cambridge University Press, 2005.
[3.10]P. YU and M. Cardona, “Fundamentals of Semiconductors: Physics and Materials Properties,” Springer, 2010.
[3.11]R. Cuscό , J. Ibáñez, and L. Artùs, “Raman-scattering study of photoexcited plasma in semiconducting and semi-insulating InP,” Phys. Rev. B, vol. 57, pp. 12197-12206, 1998.
[3.12]Y. B. Li, I. T. Ferguson, R. A. Stradling and R. Zallen, “Raman scattering by plasmon-phonon modes in highly doped n-lnAs grown by molecular beam epitaxy,” Semicond. Sci. Technol., vol. 7, pp. 1149-1154, 1992.
[3.13]T. A. Tanzer, P. W. Bohn, I. V. Roshchin, L. H. Greene, and J. F. Klem, “Near-surface electronic structure on InAs(100) modified with self-assembled monolayers of alkanethiols,” Appl. Phys. Lett., vol. 75, pp. 2794-2796, 1984.
[3.14]R. Caries, N. Saint-Cricq, J. B. Renucci, M. A. Renucci, and A. Zwick, “Second-order Raman scattering in InAs,” Phys. Rev. B, vol. 22, pp. 4804-4814, 1999.
[3.15]C. S. Rama Rao, S. Sundaram, R. L. Schmidt, and J. Comas, “Study of ionimplantation damage in GaAs: Be and InP: Be using Raman scattering,” J. Appl. Phys., vol. 54, pp. 1808-1815, 1983.
[3.16]K. K. Tiong, P. M. Amirtharaj, F. H. Pollak, and D. E. Aspnes, “Effect of As+ ion implantation on the Raman spectra of GaAs: “Spatial correlation” interpretation,” Appl. Phys. Lett., vol. 44, pp. 122-124, 1984.
[3.17]J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, "software: SRIM-2008," ed, 2008.
[3.18]D. E. Aspnes, and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV,” Phys. Rev. B, vol. 27, pp. 985-1009, 1983.
[3.19]S. Adachi, “Optical constants of crystalline and amorphous semiconductors: numeric dat and graphical information,” Springer Science + Business Media, 1999.
[3.20]S. G. Kim, H. Asahi, M. Seta, S. Emura, H. Watanabe, S. Gonda and H. Tanoue, “Raman scattering study on the effects of Ga ion implantation and subsequent thermal annealing for AlSb grown by molecular beam epitaxy,” J. Appl. Phys., vol. 74, pp. 2300-2305, 1993.
[3.21]S. J. Yu, S. Asahi, S. Emura, H. Sumida, S. Gonda and H. Tanoue, “Study of Ga ion implantation damage and annealing effect in Sndoped InP using Raman scattering,” J. Appl. Phys., vol. 66, pp. 856-860, 1989.
[3.22]M. Tamura, “Damage Formation and Annealing of Ion Implantation in Si,” Amsterdam: North-Holland, 1991.
[3.23]F. Laruelle, P. Hu and R. Simes, “Implantation enhanced interdiffusion in GaAs/GaAlAs quantum structures,” J. Vac. Sci. Technol, B, vol. 7, pp. 2034-2038, 1989.
[3.24]J. W. Mayer, L. Eriksson and J. A. Davies, “Ion Implantation in Semiconductors,” San Diego, CA: Academic Press, 1970.
[3.25]L. A. Giannuzzi and F. A. Stevie, “Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice,” New York, NY: Springer Science + Business Media, 1990.
[3.26]K. A. Grossklaus and J. M. Millunchick, “Mechanisms of nanodot formation under focused ion beam irradiation in compound semiconductors,” J. Appl. Phys., vol. 109, pp. 014319, 2011.
[3.27]V. Swaminathan and A. T. Macrander,”Materials Aspects of GaAs and InP Based Structures,” Englewood Cliffs, NJ: Prentice-Hall, 1991.
[3.28]C. Kittel, “Introduction to Solid State Physics– 8th ed,” Hoboken, NJ: John Wiley & Sons, 2005.
[3.29]F. L. Vook and H. J. Stein, “Relation of neutron to ion damage annealing in Si and Ge,” Radia. Eff., vol. 2, 23-30, 1969.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔