|
[ 1 ] M. Sze, “ Physics of semiconductor devices ”, 3rd Ed, Wiley, p. 328, 2007. [ 2 ] M. MayBerry, “ Enabling_Breakthroughs_Technology ”, p. 15, 2011. [ 3 ] A. Toriumi, C. H. Lee, S. K. Wang, T. Tabata, M. Yoshida, D. D. Zhao, T. Nishimura, K. Kita, and K. Nagashio, “ Material Potential and Scalability Challenges of Germanium CMOS “, Tech. Dig. - Int. Electron Devices Meet. 646, 2011. [ 4 ] G. Wilk, R. Wallace, et al., “ High – k gate dielectric : Current status and materials properties considerations “, J. Appl. Phys., 89, p. 5243, 2001. [ 5 ] Q. Xie, D. Deduytsche, M. Schaekers, M. Caymax, A. Delabie, X.-P. Quc, and C. Detavernier, “Effective electrical passivation of Ge(100) for HfO2 gate dielectric layers using O2 plasma”, Electrochem. Solid-State Lett, 14, 5, pp. G20–G22, 2011. [ 6 ] Eunice S. M. Goh, T. P. Chen, C. Q. Sun, and Y. C. Liu., “Thickness effect on the band gap and optical properties of germanium thin films“, J. Appl. Phys. 107, 024305, 2010. [ 7 ] R. Pillarisetty, “Academic and industry research progress in germanium nanodevices”, Nature , 479, pp. 324–328, 2011. [ 8 ] Sun J B, Yang Z W, Geng Y, Lu H L, Wu W R, Ye X D, Zhang W, Shi Y and Zhao Y., “Equivalent oxide thickness scaling of Al2O3/Ge metal oxide semiconductor capacitors with ozone post oxidation “, Chin. Phys. B 22, 067701, 2013. [ 9 ] A. Dimoulas, G. Vellianitis, G. Mavrou, E. K. Evangelou, and A. Sotiropoulos, “Intrinsic carrier effects in HfO2–Ge metal–insulator–semiconductor capacitors“ , Appl. Phys. Lett. 86, 223507, 2005. [ 10 ] I. Z. Mitrovic, M. Althobaiti, A. D. Weerakkody, V. R. Dhanak, W. M. Linhart, T. D. Veal, N. Sedghi, S. Hall, P. R. Chalker, D. Tsoutsou, and A. Dimoulas, “ Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature “, J. Appl. Phys. 115, 114102, 2014. [ 11 ] C. Chaneliere, S. Foue, J.L. Autran, R.A.B. Devine, N.P. Sandler, “ Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor “, J. Appl. Phys. 83, 4823, 1998. [ 12 ] J. Robertson, “ Interface and defects of high-k oxides on silicon ”, Solid-State Electronics, 49, 3, 283, 2005. [ 13 ] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “ Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces ”, Appl. Phys. Lett. 76, 2244, 2000. [ 14 ] T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, and H. Watanabe, “ Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2 /Ge metal-oxide-semiconductor devices ”, Appl. Phys. Lett. 94, 202112, 2009. [ 15 ] T. Nishimura, C. H. Lee, S. K. Wang, T. Tabata, K. Kita, K. Nagashio, and A. Toriumi, “ Desorption kinetics of GeO from GeO2 /Ge structure ”, Symp. VLSI Technol., Dig. Tech. Pap. 209, 2010. [ 16 ] T. Nishimura, C. H. Lee, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, “ High-Electron-Mobility Ge n-Channel Metal–Oxide–Semiconductor Field-Effect Transistors with High-Pressure Oxidized Y2O3 ” , Appl. Phys. Express 4, 064201, 2011. [ 17 ] C. Lu, C. H. Lee, W. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi, “ Enhancement of thermal stability and water resistance in yttrium-doped GeO2/Ge gate stack ”, Appl. Phys. Lett. 104, 092909, 2014. [ 18 ] S. J. Park, L. Bolotov, N. Uchida, and T. Tada, “ Distribution of free carriers near heavily-doped epitaxial surfaces of n-type Ge(100) upon HF and HCl treatments ”, AIP ADVANCES 5, 107219, 2015. [ 19 ] J. Hu and H.-S. P. Wong, “Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs”, J. Appl. Phys. 111, 044105, 2012. [ 20 ] R.L. Chu, Y.C. Liu, W.C. Lee, T.D. Lin, M.L. Huang, T.W. Pi, J. Kwo, M. Hong, “Greatly improved interfacial passivation of in-situ high j dielectric deposition on freshly grown molecule beam epitaxy Ge epitaxial layer on Ge(100)”, Appl. Phys. Lett. 104, 202102, 2014. [ 21 ] C.Y. Chang, C. Yokoyama, M. Takenaka, S. Takagi, “Impact of La2O3/InGaAs MOS Interfaces on the Performance of InGaAs MOSFETs”, IEEE Electron Device Lett. 64, 6, 2017. [ 22 ] Y. Zheng, S. Hong, G. Psofogiannakis, G. B. Rayner, Jr., S. Datta, A. C. T. van Duin, R. Engel-Herbert, “Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition”, ACS applied materials & interfaces, 9, 15848, 2017. [ 23 ] C. Chou, H. Chang, C. Hsu, W. Yeh, C. Chien, “Low-Leakage Tetragonal ZrO2 (EOT < 1 nm) With In Situ Plasma Interfacial Passivation on Germanium”, IEEE Electron Device Lett. 37, 138, 2016. [ 24 ] W. J. Carter, G. K. Schweitzer and T. Carlson, “Experimental evaluation of a simple model for quantitative analysis in X-ray photoelectron spectroscopy”, J. Electron Spectrosc., 5, 827, 1974. [ 25 ] N. Fairley, “CasaXPS manual 2. 3. 15: Introduction to XPS and AES”, Casa Software Ltd., 2009. [ 26 ] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of x-ray photoelectron spectroscopy”, Perkin-Elmer Corporation Physical Electronics Division, 1992. [ 27 ] Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A distributed model for border traps in Al2O3–InGaAs MOS devices”, IEEE Electron Device Lett., 32, 4, 485, 2011. [ 28 ] N. Taoka, K. Ikeda, Y. Yamashita, N. Sugiyama, and S.-I. Takagi, “Effects of ambient conditions in thermal treatment for Ge (100) surfaces on Ge- MIS interface properties”, Semicond. Sci. Technol., 22, S114– S117, 2007. [ 29 ] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, and K. Saraswat, “On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates”, IEEE Trans. Electron Devices, 55, 547, 2008. [ 30 ] W. Shockley and W. T. Read, Jr., "Statistics of recombinations of holes and electrons," Phys. Rev., 87, 835, 1952. [ 31 ] K. Tanaka, R. Zhang, M. Takenaka, and S. Takagi, "Quantitative evaluation of slow traps near Ge MOS interfaces by using time response of MOS capacitance", Jpn. J. Appl. Phys. 54, 04DA02, 2015. [ 32 ] E. H. Nicollian and A. Goetzberger, “The Si‐SiO2 Interface—Electrical Properties as Determined by the Metal‐Insulator‐Silicon Conductance Technique”, Bell Syst. Tech. J., 46, 1055, 1967. [ 33 ] C. Svensson and I. Lundstrõm, “Trap-assisted charge injection in MNOS structures”, J. Appl. Phys. 44, 4657, 1973. [ 34 ] C. H. Lee, C. Lu, T. Tabata, W. F. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi, “Oxygen Potential Engineering of Interfacial Layer for Deep Sub-nm EOT High-k Gate Stacks on Ge”, IEDM Tech. Dig., p. 40, 2013. [ 35 ] C. Lu, C. H. Lee, W. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi, “ Structural and thermodynamic consideration of metal oxide doped GeO2 for gate stack formation on germanium ”, J. Appl. Phys. 116, 174103, 2014.
|