(3.237.234.213) 您好!臺灣時間:2021/03/09 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建志
研究生(外文):Chien-Chih Chen
論文名稱:藉表面電漿子耦合以減輕發光二極體效率滑落之數值研究
論文名稱(外文):Numerical Study on Mitigating Efficiency Droop of a Light-Emitting Diode through Surface Plasmon Coupling
指導教授:江衍偉江衍偉引用關係楊志忠楊志忠引用關係
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:發光二極體效率滑落表面電漿子Purcell效應
外文關鍵詞:light-emitting diodeefficiency droopsurface plasmonPurcell effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們利用數值模擬方法探討發光二極體透過表面電漿子與量子井耦合以減輕發光效率滑落。當設計一金屬奈米結構於量子井附近,量子井發光入射到金屬奈米結構上產生表面電漿子並與量子井耦合,可以藉由Purcell效應增強量子井自發輻射率。我們修改原本描述量子井內載子濃度變率方程式的ABC模型,使其包含了Purcell效應和金屬結構的吸收,並進一步推導電流成分、載子濃度、載子生命期和注入效率等公式。
我們設計一金屬奈米結構,將特定大小的銀奈米粒子置於p型氮化鎵上方,調整p型氮化鎵的厚度以及振盪電偶極與銀粒子的水平距離,計算不同情況下的Purcell因子和金屬吸收參數。假設適當的內部量子效率極大值和相對應的量子井電流,將上述計算結果代入修改後的ABC模型,即可得有表面電漿子耦合的內部量子效率、注入效率、載子濃度和電流成分等。數值結果顯示,當有表面電漿子耦合時,可增強載子輻射復合率和載子注入效率,降低量子井內的載子濃度和Auger復合,因此藍光和綠光的發光二極體皆可透過表面電漿子耦合而增強發光效率且改善效率滑落。
In this thesis, mitigating efficiency droop of a light-emitting diode (LED) through the coupling between a quantum well (QW) and a surface plasmon (SP) resonance is numerically investigated. With a metal nanostructure near a QW, through SP coupling the radiative recombination rate in the QW can be increased due to the Purcell effect. We modify the carrier-density rate equation of the so-called “ABC” model to include the Purcell effect as well as the absorption in the metal nanostructure. Furthermore, we derive the formulas for various current components, carrier density, carrier lifetime and injection efficiency.
With a properly designed metal nanostructure, an Ag nanoparticle is placed on the top surface of a thick GaN layer with an embedded thin QW layer. By varying the vertical and horizontal separations between a radiating dipole and the Ag nanoparticle, we calculate the Purcell factor and the absorption factor under various situations. With these numerical data as well as assumed maximum internal quantum efficiency (IQE) and the corresponding QW injection current of a reference LED, we can evaluate the IQE, injection efficiency, carrier density and current components of an SP-coupled LED. Numerical results show that SP coupling can enhance the radiative recombination rate and the injection efficiency. At the same time, both the carrier density in the QW and Auger recombination rate are reduced. As a result, the emission efficiency of either blue or green LEDs can be enhanced and efficiency droop mitigated through SP coupling.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xiii
第1章 簡介 1
1.1 發光二極體效率滑落 1
1.2 表面電漿子 4
1.3 自發輻射與Purcell效應 5
1.4 研究動機 5
1.5 論文架構 6
第2章 理論模式 10
2.1 Purcell效應對內部量子效率的影響 10
2.2 載子濃度對注入效率影響 13
第3章 數值模擬方法 17
3.1 設計金屬結構 17
3.2 建立模型 17
3.3 模擬流程 18
第4章 數值模擬結果與討論 23
4.1 藍光 (λ = 460 nm),載子注入效率 = 100% 25
4.2 綠光 (λ = 525 nm),載子注入效率 = 100% 29
4.3 藍光 (λ = 460 nm),載子注入效率 < 100% 32
4.4 綠光 (λ = 525 nm),載子注入效率 < 100% 36
4.5 電偶極與金屬的水平距離 40
第5章 結論 72
參考文獻 74
附錄 77
[1]N. Holonyak Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Appl. Phys. Lett. 1, 82 (1962).
[2]H. Amano, N. Sawaki, and I. Akasaki, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986).
[3]S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 32, L8 (1993).
[4]The Nobel Prize in Physics 2014.
[5]J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser Photonics Rev. 7, 408 (2013).
[6]G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” J. Appl. Phys. 114, 071101 (2013).
[7]E. Kioupakis, Q. Yan, and C. G. Van de Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101, 231107 (2012).
[8]H. Y. Ryu, D. S. Shin, and J. I. Shim, “Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material,” Appl. Phys. Lett. 100, 131109 (2012).
[9]B. Monemar and B. E. Sernelius, “Defect related issues in the “current roll-off” in InGaN based light emitting diodes,” Appl. Phys. Lett. 91, 181103 (2007).
[10]C. K. Li and Y. R. Wu, “Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs,” IEEE Trans. Electron Devices 59, 400 (2012).
[11]D. S. Meyaard, G. B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M. H. Kim, and C. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Appl. Phys. Lett. 99, 251115 (2011).
[12]N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, “Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes,” Appl. Phys. Lett. 96, 133502 (2010).
[13]M. Grupen and K. Hess, “Simulation of Carrier Transport and Nonlinearities in Quantum-Well Laser Diodes,” IEEE J. Quantum Electron. 34(1), 120 (1998).
[14]I. E. Titkov, D. A. Sannikov, Y. M. Park, and J. K. Son, “Blue light emitting diode internal and injection efficiency,” AIP Adv. 2, 032117 (2012).
[15]L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012).
[16]H. Y. Ryu, H. S. Kim, and J. I. Shim, “Rate equation analysis of efficiency droop in InGaN light-emitting diodes,” Appl. Phys. Lett. 95, 081114 (2009).
[17]J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[18]S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
[19]E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[20]Y. Xu, J. S. Vučković, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465 (1999).
[21]H. Y. Ryu, “Modification of internal quantum efficiency and efficiency droop in GaN-based flip-chip light-emitting diodes via the Purcell effect,” Opt. Express 23, A1157 (2015).
[22]X. Meng, L. Wang, J. Yu, Z. Hao, and Y. Luo, “A differential carrier lifetime analysis on GaN-based LED’s quantum efficiency,” in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh3A.215.
[23]H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron. 54, 1119 (2010).
[24]Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kinag, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22, A155 (2014).
[25]J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
[26]E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
[27]Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔