|
[1]S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009). [2]M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009). [3]H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: beyond point-to-point communication,” IEEE Commun. Mag. 52(7), 98–105 (2014). [4]T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). [5]H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), (2011). [6]S. Rajbhandari, J. J. D. Mckendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Hass, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), (2017). [7]C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015). [8]C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015). [9]J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, Jr., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014). [10]N. Abu-Ageel and D. Aslam, “Laser-driven visible solid-state light source for etendue-limited applications,” J. Disp. Technol. 10(8), 700–703 (2014). [11]J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson “Visible light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave. Technol. 30(1), 61–67 (2012). [12]R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photon. Technol. Lett. 28(19), 2023–2026 (2016). [13]A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-speed nonpolar InGaN/GaN LEDs for visible-light communication,” IEEE Photon. Technol. Lett. 29(4), 381–384 (2017). [14]J. W. Shi, K. L. Chi, J. M. Wun, J. E. Bowers, Y. H. Shih, and J. K. Sheu, “III-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication,” IEEE Electron Device Lett. 37(7), 894–897 (2016). [15]Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107(1), 013103 (2010). [16]M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett. 84, 151–153 (2004). [17]M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84, 1952 (2004). [18]G. Walter, N. Holonyak, Jr., M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85, 4768 (2004). [19]G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “4.3 GHz optical bandwidth light emitting transistor,” Appl. Phys. Lett. 94, 241101 (2009). [20]M. Feng, N. Holonyak, Jr., B. Chu-Kung, G. Walter, and R. Chan, “Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84, 4792 (2004). [21]F. Dixon, R. Chan, G. Walter, N. Holonyak, Jr., M. Feng, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, “Visible spectrum light-emitting transistors,” Appl. Phys. Lett. 88, 012108 (2006). [22]B. F. Chu-Kung, M. Feng, G. Walter, N. Holonyak, Jr., T. Chung, J.-H. Ryou, J. Limb, D. Yoo, S.-C. Shen, R. D. Dupuis, D. Keogh, and P. M. Asbeck, “Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors,” Appl. Phys. Lett. 89, 082108 (2006). [23]B. F. Chu-Kung, C. H. Wu, G. Walter, M. Feng, N. Holonyak, T. Chung, J. H. Ryou, and R. D. Dupuis, “Modulation of high current gain (Beta>49) light-emitting InGaN/GaN heterojunction bipolar transistors (HBTs),” Appl. Phys. Lett. 91, 232114 (2007). [24]ATLAS user’s Manual, Silvaco, (2015). [25]A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008). [26]J. J. D. McKendry, R. P. Green, A. E. Kelly, G. Zheng, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010). [27]C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013). [28]C. L. Liao, C. L. Ho, Y. F. Chang, C. H. Wu, and M. C. Wu, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Device Lett. 35(5), 563–565 (2014). [29]Y. F. Yin, W. Y. Lan, Y. H. Hsu, Y. F. Hsu, C. H. Wu, and J. J. Huang, “High-speed modulation from the fast mode extraction of a photonic crystal light-emitting diode,” J. Appl. Phys. 119, 013103 (2016). [30]Z. Quan, D. V. Dinh, S. Presa, B. Roycroft, A. Foley, M. Akhter, D. O’Mahony, P. P. Maaskant, M. Caliebe, F. Scholz, P. J. Parbrook, and B. Corbett, “High Bandwidth Freestanding Semipolar (11–22) InGaN/GaN Light-Emitting Diodes,” IEEE Photon. J. 8(5), 1–8 (2016). [31]C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y. Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High modulation bandwidth of a light-emitting diode with surface plasmon coupling,” IEEE Trans. Electron Devices 63(10), 3989-3995 (2016). [32]Y. F. Yin, W. Y. Lan, T. C. Lin, C. Wang, M. Feng, and J. J. Huang, “High-Speed Visible Light Communication Using GaN-Based Light-emitting Diodes With Photonic Crystals,” J. Lightwave. Technol. 35(2), 258-264 (2017). [33]P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance” Appl. Phys. Express 6(2), 022102 (2013). [34]H. Statz and G. deMars, Quantum Electronics (Columbia University Press, New York, N. Y., 1960), p. 650. [35]C. H. Wu, F. Tan, M. K. Wu, M. Feng, and N. Holonyak, Jr., “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” J. Appl. Phys. 109, 053112 (2011). [36]C. Y. Wang, M. Liu, M. Feng, and N. Holonyak, Jr., “Microwave extraction method of radiative recombination and photon lifetimes up to 85 °C on 50 Gb/s oxide-vertical cavity surface emitting laser,” J. Appl. Phys. 120, 223103 (2016). [37]Y. Ou, J. S. Gustavsson, P. Westbergh, A. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photonics Technol. Lett. 21(24), 1840–1842 (2009). [38]R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31(3), 289-294 (1983). [39]R. S. Tucker and D. J. Pope, “Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser,” IEEE J. Quantum Electron. 19(7), 1179–1183 (1983). [40]R. S. Tucker and I. P. Kaminow, “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technol. 2(4), 385–393 (1984). [41]J. Katz, S. Margalit, C. Harder, D. Wilt, and A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. 17(1), 4–7 (1981). [42]C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron. 18(3), 333–337 (1982). [43]J. J. Huang, M. Hattendorf, M. Feng, D. Lambert, B. Shelton, M. Wong, U. Chowdhury, T. Zhu, H. Kwon, and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22(4), 157–159 (2001). [44]M. Feng, S. C. Shen, D. Caruth, and J. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92(2), 354–375 (2004). [45]S. C. Shen, R. D. Dupuis, Y. C. Lee, H. J. Kim, Y. Zhang, Z. Lochner, P. D. Yoder, and J. H. Ryou, “GaN/InGaN Heterojunction Bipolar Transistors With fT > 5 GHz,” IEEE Electron Device Lett. 32(8), 1065–1067 (2011). [46]R. D. Dupuis, J. Kim, Y. C. Lee, Z. Lochner, T. Kao, M. H. Ji, T. T. Kao, J. H. Ryou, T. Detchphrom, and S. C. Shen, “III-N High-Power Bipolar Transistors,” ECS Trans. 58(4), 261–267 (2013). [47]Hao-Hsiang Yang, Wen-Chung Tu, Hsiao-Lun Wang, and Chao-Hsin Wu, “Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures,” Appl. Phys. Lett. 105, 181119 (2014).
|