(3.231.29.122) 您好!臺灣時間:2021/02/26 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳尚軒
研究生(外文):Shang-Hsuan Wu
論文名稱:以拉曼量測分析氮化鎵材料品質之方法
論文名稱(外文):Analysis of Strain and Defect in GaN on Commercial Patterned-Sapphire Substrates with Raman Spectrometer
指導教授:管傑雄管傑雄引用關係
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:氮化鎵複合型圖案化藍寶石基板拉曼量測XRD
外文關鍵詞:GaNPatterned Sapphire Substrateµ-RamanXRD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在圖案化藍寶石基板(Patterned Sapphire Substrates, PSSs)上利用MOVCD 成長氮化鎵薄膜可以有效減少穿隧差排密度(Threading Dislocation Density)及讓磊晶品質變好,以達到降低缺陷密度(defect density)的用意。以往都是利用X 光繞射分析儀(X-Ray Diffractometer , XRD)來量測晶格常數(Lattice constant)並探討其應力跟應變之關係,以及使用Etching pit density(EPD)來觀測差排密度(dislocation density),拉曼量測會因為聲子振動模式的不同而能量到不同模態的拉曼位移(Raman shift),由此便可得知其應力變化,所以我們假設能以拉曼量測來取代XRD 以及EPD 所能做到的功能,並用實驗來進行驗證,這是以往沒有嘗試過的領域。在此實驗使用單一週期業界量產型圖案化藍寶石基板,以同樣參數成長不同厚度之氮化鎵,我們發現隨著改厚度不同,而受到不同的應力,且此應力會影響到後續製成電子元件之使用效率。最後論文會探討比較 XRD 與EPD 及拉曼之間應力與缺陷密度並以穿透式電子顯微鏡(Transmission Electron Microscope ,TEM)來驗證,發現拉曼會比XRD 來的更精準,且能與EPD 之結果有所相符,表示以後使用拉曼即可做到上述實驗中所能做到的事情,進而提高電子元件之使用效率及降低成本。
Using Metal-Organic Chemical Vapor Deposition to grow gallium nitride thin film on a patterned sapphire substrate can reduce the threading dislocation density and increase the crystal quality, and reduce the defect density (defect density).Most of literature were metioned that using XRD to measure lattice constant to compare the relationship between stress and strain,and using EPD to get dislocation density.Because of the difference of vibration mode of phonon,we can measure different Raman shift. We can analyze the difference of stress from Raman shift.Therefore we supposed that we can use μ-Raman to replace XRD and EPD.So we do experiment to prove it.We use same recipe to grow GaN with different thickness on commercial patterned sapphire substrate which have single period microstructure; however , we have different thickness GaN on the sapphire substrate, but we found that with the change of the thickness of the GaN, gallium nitride crystal growth will present two very different faces,and are subject to different stress, which can affect the efficiency of the use made of the subsequent electronic components.In the final stage, this paper will discuss the stress and defect density with different methods and use Transmission electron microscope to observe the phenomenon of dislocation . We find out that the measurement by Raman is more accurate than XRD.Using Raman will be a trand in the future . Thus improving efficiency of electronic devices which was grown on the gallium nitride thin film.
目錄
口試委員會審定書 ........................................................................................................... 1
致謝...................................................................................................................................2
中文摘要...........................................................................................................................3
ABSTRACT ...................................................................................................................... 4
目錄 ................................................................................................................................... 5
圖目錄...............................................................................................................................8
表目錄 ............................................................................................................................. 11
一、 緒論 ............................................................................................................ 12
1.1 前言 ............................................................................................................ 12
1.2 動機 .......................................................................................................... 13
1.3 論文架構 .................................................................................................. 14
二、 理論基礎與材料分析 ................................................................................ 15
2.1 藍寶石基板簡介 ........................................................................................ 15
2.2 氮化鎵類磊晶層簡介 ................................................................................ 18
2.2.1 氮化鎵晶體結構 .......................................................................................... 18
2.2.2 應力對氮化鎵的影響..................................................................................19
2.2.3 拉曼光譜(Raman Spectrum)的量測原理 .................................................... 22
2.2.4 拉曼光譜選擇律(Selection Rule) ................................................................ 23
2.2.5 氮化鎵之極化效應 ...................................................................................... 24
三、 實驗儀器與樣品製備................................................................................ 26
3.1 實驗儀器簡介............................................................................................ 26
3.1.1 聚焦離子束顯微鏡(Focused Ion Beam, FIB) ............................................. 26
3.1.1.1 雙槍系統(Dual Beam System) .............................................................. 28
3.1.2 有積金屬化學氣相沉積(MOCVD)............................................................. 28
3.1.3 微拉曼光譜量測系統(μ-Raman)................................................................. 30
3.1.4 X-Ray 繞射儀(X-Ray Diffractometer , XRD) .............................................33
3.1.5 穿透式電子顯微鏡(Transmission Electron Microscope ) ...........................38
3.1.6 Etching pit density(EPD) ..............................................................................39
3.2 樣品製備 .................................................................................................... 41
四、 實驗結果與分析........................................................................................ 43
4.1 量測分析(第一部份): 差排密度變化...................................................... 43
4.1.1 XRD 量測與EPD 量測分析與比較........................................................... 43
4.1.2 拉曼量測與EPD 量測分析與比較.............................................................46
4.1.3 討論與小結..................................................................................................49
4.2 量測分析(第二部分):應力及形變.........................................................49
4.2.1 XRD 量測晶格常數...................................................................................49
4.2.2 Raman 量測應力及形變............................................................................51
4.2.3 討論與小結..................................................................................................54
4.3 更完整的分析..........................................................................................54
4.4 TEM 量測進行驗證................................................................................55
4.5 討論和成果..............................................................................................57
五、 結論............................................................................................................58
參考資料.........................................................................................................................59
Book
[1] S. J. Pearton, GaN and Related MaterialⅡ, CRC Press, 1997.
[2] H. Morkoç, Nitride Semiconductors and Devices, Springer, 1999.

Conference Paper
[3] V. C. Su, P. H. Chen, M. L. Lee, Y. H. You, C. J. Hsieh, C. H. Kuan, Y. C. Chen, H. C. Lin, H. B. Yang, R. M. Lin, Q. Y. Lee, and F. C. Chu, “Investigation of nanosized
hole/post patterned sapphire substrates-induced strain-related quantumconfined stark effect of InGaN-based light-emitting diodes,” in CLEO: 2013, OSA Technical Digest (online), paper JW2A.84.
[4] P. H. Chen, V. C. Su, Y. H. You, M. L. Lee, C. J. Hsieh, C. H. Kuan, H. M. Chen, H. B. Yang, H. C. Lin, R. M. Lin, F. C. Chu, and G. Y. Su, “The analysis of nanopatterned
sapphire substrates-induced compressive strain to enhance quantumconfined stark effect of InGaN-based light-emitting diodes,” in CLEO: 2013, OSA Technical Digest (online), paper CM4F.8.
[5] M. L. Lee, Y. H. You, R. M. Lin, C. J. Hsieh, V. C. Su, P. H. Chen, and C. H. Kuan, “Utilizing two dimensional photonic crystals to study the relation between the air duty cycle and the light extraction efficiency of InGaN-based Light-Emitting Diodes,” in IEEE Nanotechnology Conference, pp. 254-257, 2013.

Journal Articles
[6] S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797–L799, Jul. 1995.
[7] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction
peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, 1996.
[8] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149-154, 1967.
[9] Y. H. You, V. C. Su, T. E. Ho, B. W. Lin, M. L. Lee, A. Das, W. C. Hsu, C. H. Kuan, and R. M. Lin, “Influence of patterned sapphire substrates with different symmetry on the light output power of InGaN-based LEDs” Nanoscale Res. Lett., vol. 9, no.1, pp. 1-8, 2014.
[10] V. C. Su, P. H. Chen, R. M. Lin, M. L. Lee, Y. H. You, C. I. Ho, Y. C. Chen, W. F. Chen, and C. H. Kuan, “Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates,” Optics Express, vol. 21, pp.30065-30073, 2013.
[11] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, C.C. Kao, "Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates," Photo. Tech. Lett., IEEE , vol. 20, no. 13, pp. 1193-1195, Jul. 2008.
[12] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G. Wang, “Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching,” Solid-State Electronics, vol. 52, no. 6, pp. 962-967, Jun. 2008.
[13] R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, D. S. Wuu, ”Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates,” Journal of crystal growth, vol. 298, pp. 219-222, Jan. 2007.
[14] H. Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho, K. H. Park, ”Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate,” Journal of Crystal Growth, vol. 311, pp. 4167–4170, Aug. 2009.
[15] Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, ”GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” Journal of Crystal Growth, vol. 272, pp.327–332, Dec. 2004.
[16] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, R. C. Gonzalez, R. E. Woods, “Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-currentindependent electroluminescence emission peak,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5143, Dec. 2004.
[17] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,”
J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[18] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann,“Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334-344, Jan. 2000.
[19] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and H. Yang, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire,” Appl. Phys. Lett., vol. 83, no. 4, pp. 677-679, 2003.
[20] C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I. Hung, Y. H. Wang, and M. Houng, “Enhancement of the light output performance for GaN-based lightemitting diodes by bottom pillar structure,” Appl. Phys. Lett., vol. 91, pp. 121109,
Sep. 2007.
[21] L. Lu, Z. Y. Gao, B. Shen, F. J. Xu, S. Huang, Z. L. Miao, Y. Hao, Z. J. Yang,G. Y.Zhang, X. P. Zhang, J. Xu, and D. P. Yu, “Microstructure and origin of dislocation etch pits in GaN epilayers grownby metal organic chemical vapor deposition,” Journal of Applied Physics 104, 123525 (2008)
[22] K. Hiramatsu K. Nishiyama, A. Motogaito , H. Miyake Y. Iyechika , and T. Maeda “ Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides:Effects of Reactor Pressure in MOVPE Growth,” phys. stat. sol. (a) 176, 535 (1999)
[23] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” J. Appl. Phys., vol. 103, no. 1, pp.014314, Jan. 2008.
[24] X. H. Zheng, H. Chen, Z. B. Yan, Y. J. Han, H. B. Yu, D. S. Li, Q. Huang, and J.M. Zhou, J. Cryst. Growth 255, 63 (2003).
[25] P. Gay, P. B. Hirsch, and A. Kelly, Acta Metall. 1, 315 (1953).
[26] E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, J. Phys. D :Appl.Phys. 41, 155317 (2008).
[27] Determination of twist angle of in-plane mosaicspread of GaN films by high-resolution X-ray diffractionJournal of Crystal Growth 255 (2003) 63–67
[28] Phonon dispersion and Raman scattering in hexagonal GaN and AlN PHYSICAL REVIEW B15 NOVEMBER 1998-I
[29] Fundamentals of X-ray Diffraction Characterisation of Strain in GaN Based Compounds Japanese Journal of Applied Physics 52 (2013) 08JB2908JB29-1 # 2013 The Japan Society of Applied PhysicsREGULAR
[30] Ref]X-ray diffraction of III-nitridesReports on Progress in Physics, Volume 72, Number 3
[31] Standard Indexed Diffraction Patterns for hcp Crystals- Practical Electron Microscopy and Database
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔