(54.236.58.220) 您好!臺灣時間:2021/03/01 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏子喬
研究生(外文):Tzu-Chiao Wei
論文名稱:具鈣鈦礦結構材料之光學特性
論文名稱(外文):Optical properties of perovskite
指導教授:林恭如
指導教授(外文):Gong-Ru Lin
口試委員:何志浩吳志毅郭浩中蕭桂森李尉彰
口試委員(外文):Jr-Hau HeChih-I WuHao-Chung KuoKuei-Sen HsiaoWei-Chang Li
口試日期:2017-05-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:134
中文關鍵詞:光致伸縮釕酸鍶鈣鈦礦非線性光學
外文關鍵詞:photostrictionSROperovskitenonlinear optical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們分析了具有鈣鈦礦結構材料之光至伸縮特性,包括過度金屬氧化物釕酸鍶(SrRuO3,簡稱SRO)與有機無機混和鈣鈦礦甲基氨基溴化鉛(Methylammonium Lead Bromide,CH3NH3PbBr3,簡稱MAPbBr3)。
具有鈣鈦礦結構之材料通常具有較強的電荷、電子自旋與晶格自由度的關聯耦合,透過對於材料之拉曼光譜量測與分析,藉由聲子頻率隨激發光源強度之變化,可觀察到材料結構在應力上的改變。在單晶釕酸鍶薄膜中,我們觀察到了1.12%的應力變化,其可歸應於材料晶體與激發光子造成的聲子非平衡現象。對於單晶鈣鈦礦甲基氨基溴化鉛,其光至伸縮係數在可見光下可高達.08 × 10-8 m2 W-1,其物理原因乃材料具強烈的平移與旋轉耦合特性與光伏效應和分子構型的平移對稱性損失。除此之外,我們亦研究單晶鈣鈦礦甲基氨基溴化鉛之非線性光學特性及其應用,包括光頻譜之整形、穩定及限幅。結果顯示具有鈣鈦礦結構之材料在相關光學領域具有許多應用之潛能。
In this thesis, we have investigated the photostrictive effect of the transition metal oxide strontium ruthenate (SrRuO3, SRO) with perovskite structure and organic-inorganic hybrid perovskite CH3NH3PbBr3 (MAPbBr3) using Raman spectroscopy.
Materials with a perovskite crystal structure usually displays unusually strong coupling of charge, spin and lattice degrees of freedom, which can give rise to the photostriction, In Raman scattering measurements, the phonon mode of the perovskite materials showed a shift with laser intensity, indicating the changes in the physical dimensions of material due to the absorption of light illumination. We observe a photon-induced strain as high as 1.12% in single domain SRO, which we attribute to a non-equilibrium of phonons that are a result of the strong interaction between the material’s crystalline lattice and electrons excited by light. For single crystal perovskite MAPbBr3, we were able to calculate the photostrictive coefficient as high as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. We attribute the significant photostriction to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Moreover, we have demonstrated several nonlinear optical applications of MAPbBr3, including optical reshaping, stabilization, and limiting behavior on intense pulsed laser signals, opening new applications for perovskites in the field of photonics.
口試委員會審定書 #
誌謝 i
Abstract ii
摘要 iii
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Photostriction of Strontium Ruthenate 7
2.1 Introduction 7
2.2 Experimental 10
2.3 Results and discussion 12
2.4 Summary 23
2.5 Reference 24
2.6 Supplementary information 40
Chapter 3 Photostriction of CH3NH3PbBr3 Perovskite Crystals 48
3.1 Introduction 48
3.2 Experimental 53
3.3 Results and discussion 56
3.4 Summary 68
3.5 Reference 69
3.6 Supplementary information 89
Chapter 4 Nonlinear Absorption Applications of CH3NH3PbBr3 Perovskit Crystals 97
4.1 Introduction 97
4.2 Experimental 99
4.3 Results and discussion 101
4.4 Summary 110
4.5 Reference 111
4.6 Supplementary information 127
Chapter 5 Conclusion 128
Curriculum Vitae 130
2.5Reference
1.Wang, H. P. et al. Photon management in nanostructured solar cells. J. Mater. Chem. C 2, 3144–3171 (2014).
2.Carrette, L., Friedrich, K. A. & Stimming, U. Fuel cells–fundamentals and applications. Fuel Cells 1, 5–39 (2001).
3.Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18, 3553–3567 (2008).
4.Poosanaas, P., Tonooka, K. & Uchino, K. Photostrictive actuators. Mechatronics 10, 467–487 (2000).
5.Sun, D. C. & Tong, L. Y. Modeling of wireless remote shape control for beams using nonlinear photostrictive actuators. Int. J. Solids. Struct. 44, 672–684 (2007).
6.Lafont, T. et al. Magnetostrictive–piezoelectric composite structures for energy harvesting. J. Micromech. Microeng. 22, 094009 (2012).
7.Datskos, P. G. et al. Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices. J. Vac. Sci. Technol. B 19, 1173–1179 (2001).
8.Daranciang, D. et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108, 087601 (2012).
9.Takagi, K. et al. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying. J. Am. Ceram. Soc. 87, 1477–1482 (2004).
10.Kundys, B. et al. Wavelength dependence of photoinduced deformation in BiFeO3. Phys. Rev. B 85, 092301 (2012).
11.Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. A. New opto-mechanical effect in solids. Phys. Rev. Lett. 87, 015501 (2001).
12.Yu, Y., Nakano, M. & Ikeda, T. Photomechanics: Directed bending of a polymer film by light. Nature 425, 145–145 (2003).
13.Buschert, J. R. & Colella, R. Photostriction effect in silicon observed by time-resolved x-ray diffraction. Solid State Commun. 80, 419–422 (1991).
14.Figielski, T. Photostriction effect in germanium. Phys. Status Solidi 1, 306–316 (1961).
15.Gauster, W. B. & Habing, D. H. Electronic volume effect in silicon. Phys. Rev. Lett. 18, 1058–1061 (1967).
16.Peng, C. Y. et al. Comprehensive study of the Raman shifts of strained silicon and germanium. J. Appl. Phys. 105, 083537 (2009).
17.Kundys, B. Photostrictive materials. Appl. Phys. Rev. 2, 011301 (2015).
18.Tatsuzak. I, Itoh, K., Ueda, S. & Shindo, Y. Strain along c Axis of SbSI caused by illumination in dc electric field. Phys. Rev. Lett. 17, 198–200 (1966).
19.Ogasawara, T. et al. General features of photoinduced spin dynamics in ferromagnetic and ferrimagnetic compounds. Phys. Rev. Lett. 94, 087202 (2005).
20.Shih, H. Y. et al. Size-dependent photoelastic effect in ZnO nanorods. Appl. Phys. Lett. 94, 021908 (2009).
21.Kundys, B., Viret, M., Colson, D. & Kundys, D. O. Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9, 803–805 (2010).
22.Lee, S., Apgar, B. A. & Martin, L. W. Strong visible-light absorption and hot-carrier injection in TiO2/SrRuO3 heterostructures. Adv. Energy Mater. 3, 1084–1090 (2013).
23.Klein, L. et al. Perpendicular magnetic anisotropy and strong magneto‐optic properties of SrRuO3 epitaxial films. Appl. Phys. Lett. 66, 2427–2429 (1995).
24.Singh, A., Khan, Z. R., Vilarinho, P. M., Gupta, V. & Katiyar, R. S. Influence of thickness on optical and structural properties of BiFeO3 thin films: PLD grown. Mater. Res. Bull. 49, 531–536 (2014).
25.Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).
26.Cava, R. J. et al. Superconductivity near 30 K without copper: The Ba0.6K0.4BiO3 perovskite. Nature 332, 814–816 (1988).
27.Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).
28.Guo, Y. P., Kakimoto, K. & Ohsato, H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004).
29.Park, K. I. et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939–4943 (2010).
30.Haertling, G. H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).
31.Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136-138 (1992).
32.Shimizu, Y., Fukuyama, Y., Narikiyo, T., Arai, H. & Seiyama, T. Perovskite-type oxides having semiconductivity as oxygen sensors. Chem. Lett. 14, 377–380 (1985).
33.Okuda, T., Nakanishi, K., Miyasaka, S. & Tokura, Y. Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3(0 ≤ x ≤ 0.1). Phys. Rev. B 63, 113104 (2001).
34.Bocher, L. et al. CaMn1−xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077–8085 (2008).
35.He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).
36.Vailionis, A. et al. Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations. Phys. Rev. B 83, 064101 (2011).
37.Lu, W. L. et al. Strain engineering of octahedral rotations and physical properties of SrRuO3 films. Sci. Rep. 5, 10245 (2015).
38.Zhou, W. P. et al. Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. Sci. Rep. 4, 6991 (2014).
39.Liu, H. J. et al. Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952–6959 (2012).
40.Chen, C. L. et al. Epitaxial SrRuO3 thin films on (001) SrTiO3. Appl. Phys. Lett. 71, 1047–1049 (1997).
41.Singh, D. J. Electronic and magnetic properties of the 4d itinerant ferromagnet SrRuO3. J. Appl. Phys. 79, 4818–4820 (1996).
42.Sui, Z. & Herman, I. P. Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures. Phys. Rev. B 48, 17938–17953 (1993).
43.Kennedy, B. J., Hunter, B. A. & Hester, J. R. Synchrotron x-ray diffraction reexamination of the sequence of high-temperature phases in SrRuO3 Phys. Rev. B 65, 224103 (2002).
44.Iliev, M. N. et al. Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition. Phys. Rev. B 59, 364–368 (1999).
45.Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 34, 478–496 (2003).
46.Herranz, G. et al. Domain structure of epitaxial SrRuO3 thin films. Phys. Rev. B 71, 174411 (2005).
47.Sorianello, V., Colace, L., Nardone, M. & Assanto, G. Thermally evaporated single-crystal germanium on silicon. Thin Solid Films 519, 8037–8040 (2011).
48.Schadler, L. S., Giannaris, S. C. & Ajayan, P. M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842–3844 (1998).
49.Deluca, M. & Pezzotti, G. First-order transverse phonon deformation potentials of tetragonal perovskites. J. Phys. Chem. A 112, 11165–11171 (2008).
50.Kiyama, T., Yoshimura, K., Kosuge, K., Ikeda, Y. & Bando, Y. Invar effect of SrRuO3: Itinerant electron magnetism of Ru 4d electrons. Phys. Rev. B 54, R756–R759 (1996).
51.Kirillov, D. et al. Phonon anomalies at the magnetic phase transition in SrRuO3. Phys. Rev. B 51, 12825–12828 (1995).
52.Liao, M. H., Kuo, P. S., Jan, S. R., Chang, S. T. & Liu, C. W. Strained Pt Schottky diodes on n-type Si and Ge. Appl. Phys. Lett. 88, 143509 (2006).
53.Antonakos, A., Palles, D., Liarokapis, E., Filippi, M. & Prellier, W. Evaluation of the strains in charge-ordered Pr1−xCaxMnO3 thin films using Raman spectroscopy. J. Appl. Phys. 104, 063508 (2008).
54.Yang, D. S., Gedik, N. & Zewail, A. H. Ultrafast electron crystallography. 1. Nonequilibrium dynamics of nanometer-scale structures. J. Phys. Chem. C 111, 4889–4919 (2007).
55.Schmising, C. V. et al. Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404 (2008).
56.Schick, D. et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys. Rev. Lett. 112, 097602 (2014).
57.Kundys, B. et al. Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3. Appl. Phys. Lett. 100, 262411 (2012).
58.Jin, Z. M. et al. Strain modulated transient photostriction in La and Nb codoped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 101, 242902 (2012).
59.Sánchez-Ferrer, A., Merekalov, A. & Finkelmann, H. Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers. Macromol. Rapid Commun. 32, 671–678 (2011).
60.Vanderve, G. & Prins, W. Photomechanical energy conversion in a polymer membrane. Nature 230, 70–72 (1971).

3.5Reference
1.Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).
2.Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).
3.Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
4.Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643–647 (2012).
5.Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).
6.Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).
7.Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).
8.Gil-Escrig, L. N. et al. Efficient photovoltaic and electroluminescent perovskite devices. Chem. Commun. Chem. Commun 51, 569–571 (2015).
9.Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 1–6 (2014).
10.Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).
11.Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).
12.Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 48). Prog. Photovoltaics Res. Appl. 24, 905–913 (2016).
13.Im, J. H., Jang, I. H., Pellet, N., Grätzel, M. & Park, N. G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014).
14.Kundys, B. Photostrictive materials. Applied Physics Reviews 2, 011301 (2015).
15.Figielski, T. Photostriction Effect in Germanium. Phys. status solidi 1, 306–316 (1961).
16.Buschert, J. R. & Colella, R. Photostriction effect in silicon observed by time-resolved x-ray diffraction. Solid State Commun. 80, 419–422 (1991).
17.Chen, T. T., Cheng, C. L., Fu, S.P. & Chen, Y. F. Photoelastic effect in ZnO nanorods. Nanotechnology 18, 225705 (2007).
18.Takagi, K. et al. Ferroelectric and Photostrictive Properties of Fine-Grained PLZT Ceramics Derived from Mechanical Alloying. J. Am. Ceram. Soc. 87, 1477–1482 (2004).
19.Van der Veen, G. & Prins, W. Photomechanical energy conversion in a polymer membrane. Nature 230, 70–72 (1971).
20.Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. A new opto-mechanical effect in solids. Phys. Rev. Lett. 87, 15501 (2001).
21.Łagowski, J. & Gatos, H. C. Photomechanical vibration of thin crystals of polar semiconductors. Surf. Sci. 45, 353–370 (1974).
22.Lagowski, J. & Gatos, H. C. Photomechanical effect in noncentrosymmetric semiconductors-CdS. Appl. Phys. Lett. 20, 14–16 (1972).
23.Schick, D. et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Phys. Rev. Lett. 112, 097602 (2014).
24.Kundys, B., Viret, M., Meny, C., Colson, D. & Doudin, B. Wavelength dependence of photoinduced deformation in BiFeO3. Phys. Rev. B 85, 92301 (2012).
25.Zhou, Y. et al. Giant photostriction in organic–inorganic lead halide perovskites. Nat. Commun. 7, 11193 (2016).
26.Misra, R. K. et al. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6, 326–330 (2015).
27.Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).
28.Zheng, X. et al. The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells. ACS Energy Lett. 1, 424–430 (2016).
29.Benavides-Garcia, M. & Balasubramanian, K. Bond energies, ionization potentials, and the singlet–triplet energy separations of SnCl2, SnBr2, SnI2, PbCl2, PbBr2, PbI2, and their positive ions. J. Chem. Phys. 100, 2821 (1994).
30.Li, B., Li, Y., Zheng, C., Gao, D. & Huang, W. Advancements in stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv. 6, 38079–38091 (2016).
31.Mali, S. S., Shim, C. S. & Hong, C. K. Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots. NPG Asia Mater. 7, e208 (2015).
32.Park, J.S. et al. Electronic Structure and Optical Properties of α-CH3NH3PbBr3 Perovskite Single Crystal. J. Phys. Chem. Lett. 6, 4304–4308 (2015).
33.Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1-xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).
34.Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).
35.Walters, G. et al. Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano 9, 9340–9346 (2015).
36.Park, N. G., Grätzel, M. & Miyasaka, T. Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures. (Springer International Publishing, 2016).
37.Poosanaas, P., Dogan, A., Thakoor, S. & Uchino, K. Influence of sample thickness on the performance of photostrictive ceramics. J. Appl. Phys. 84, 1508–1512 (1998).
38.DeWolf, I. Micro-Raman Spectroscopy to Study Local Mechanical Stress in Silicon Integrated Circuits. Semicond. Sci. Technol. 11, 139–154 (1996).
39.Kisielowski, C. et al. Strain-related phenomena in GaN thin films. Phys. Rev. B 54, 17745–17753 (1996).
40.Shih, H. Y. et al. Size-dependent photoelastic effect in ZnO nanorods. Appl. Phys. Lett. 94, 021908 (2009).
41.Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B - Condens. Matter Mater. Phys. 79, (2009).
42.Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–22 (2015).
43.Aharon, S., Cohen, B. El & Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 118, 17160–17165 (2014).
44.Ahmad, S., Baumberg, J. J. & Vijaya Prakash, G. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides. J. Appl. Phys. 114, 233511 (2013).
45.Lee, J. H., Lee, J.H., Kong, E.H. & Jang, H. M. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 6, 21687 (2016).
46.Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051. (2016).
47.Sendner, M. et al. Optical Phonons in Methylammonium Lead Halide Perovskites and Implications for Charge Transport. Mater. Horizons 3, 1–8 (2016).
48.Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).
49.Kumawat, N. K. et al. Band Gap Tuning of CH3NH3Pb(Br1-xClx)3 Hybrid Perovskite for Blue Electroluminescence. ACS Appl. Mater. Interfaces 7, 13119–13124 (2015).
50.Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015).
51.Chen, Q. et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).
52.Sorianello, V., Colace, L., Nardone, M. & Assanto, G. Thermally evaporated single-crystal Germanium on Silicon. Thin Solid Films 519, 8037–8040 (2011).
53.Mizoguchi, K. & Nakashima, S. Determination of crystallographic orientations in silicon films by Raman‐microprobe polarization measurements. J. Appl. Phys. 65, 2583–2590 (1989).
54.Ahlawat, A., Mishra, D. K., Sathe, V. G., Kumar, R. & Sharma, T. K. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition. J. Phys. Condens. Matter 25, 25902 (2012).
55.Onoda-yamamuro, N., Matsuo, T. & Suga, H. DIELECTRIC STUDY OF CH3NH3PbX3 ( X = Cl , Br , I ). J. Phys. Chem. Solids 53, 935–939 (1992).
56.Wang, Y. et al. Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).
57.Song, Q. et al. The In-Plane Anisotropy of WTe2 Investigated by Angle-Dependent and Polarized Raman Spectroscopy. Sci. Rep. 6, 29254 (2016).
58.Lee, J. H., Bristowe, N. C., Bristowe, P. D. & Cheetham, A. K. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. Chem. Commun. 51, 6434–7 (2015).
59.Peng, C. Y. et al. Comprehensive study of the Raman shifts of strained silicon and germanium. J. Appl. Phys. 105, 083537 (2009).
60.Peng, C. Y. et al. Effects of Applied Mechanical Uniaxial and Biaxial Tensile Strain on the Flatband Voltage of (001), (110), and (111) Metal-Oxide-Silicon Capacitors. IEEE Transactions on Electron Devices 56, 1736–1745 (2009).
61.Deluca, M. & Pezzotti, G. First-order transverse phonon deformation potentials of tetragonal perovskites. J. Phys. Chem. A 112, 11165–11171 (2008).
62.Kundys, B., Viret, M., Colson, D. & Kundys, D. O. Light-induced size changes in BiFeO3 crystals. Nat. Mater. 9, 803–805 (2010).
63.Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).
64.Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx. J. Phys. Chem. Lett. 5, 1300–1306 (2014).
65.Jaffe, A. et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201–209 (2016).
66.Wang, Y. et al. Density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. C 119, 1136–1145 (2015).
67.Lee, G. H., Yamamoto, Y., Kourogi, M. & Ohtsu, M. Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films. Thin Solid Films 386, 117–120 (2001).
68.Cheng, Z. & Lin, J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646–2662 (2010).
69.Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. II. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).
70.Korshunova, K., Winterfeld, L., Beenken, W. J. D. & Runge, E. Thermodynamic stability of mixed Pb:Sn methyl-ammonium halide perovskites. Phys. Status Solidi Basic Res. 253, 1907–1915 (2016).
71.Egger, D. A. & Kronik, L. Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. J. Phys. Chem. Lett. 5, 2728–2733 (2014).
72.Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M. & De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013).
73.Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
74.Coll, M. et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).
75.Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).
76.Knop, O., Wasylishen, R. E., White, M. A., Cameron, T. S. & Oort, M. J. M. Van. Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68, 412–422 (1990).
77.Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985).
78.Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987).
79.Létoublon, A. et al. Elastic Constants, Optical Phonons, and Molecular Relaxations in the High Temperature Plastic Phase of the CH3NH3PbBr3 Hybrid Perovskite. J. Phys. Chem. Lett. 7, 3776–3784 (2016).
80.Lynden-Bell, R. M. & Michel, K. H. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals. Rev. Mod. Phys. 66, 721–762 (1994).
81.Even, J., Carignano, M. & Katan, C. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites. Nanoscale 8, 6222–6236 (2016).
82.Daranciang, D. et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108, (2012).
83.Neukirch, A. J. et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16, 3809–3816 (2016).
84.Liu, S. et al. Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

4.5Reference
1.Cotter, D. Nonlinear Optics for High-Speed Digital Information Processing. Science 286, 1523–1528 (1999).
2.Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat Phot. 4, 535–544 (2010).
3.Ganeev, R. A. Nonlinear Optical Properties of Materials. (Springer Netherlands, 2013).
4.Suresh, S., Ramanand, A., Jayaraman, D. & Mani, P. Review on theoretical aspect of nonlinear optics. Reviews on Advanced Materials Science 30, 175–183 (2012).
5.G. D. Boyd, Robert C. Miller, K. Nassau, W. L. Bond, and A. S. LiNbO3: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL. Appl. Phys. Lett. 5, 234–236 (1964).
6.Nakamura, M. et al. Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3. Japanese J. Appl. Physics, Part 2 Lett. 41, 1A (2002).
7.Gu, B. et al. Giant optical nonlinearity of a Bi2Nd2Ti3O12 ferroelectric thin film. Appl. Phys. Lett. 85, 3687–3689 (2004).
8.Shin, H., Chang, H. J., Boyd, R. W., Choi, M. R. & Jo, W. Large nonlinear optical response of polycrystalline Bi3.25La0.75Ti3O12 ferroelectric thin films on quartz substrates. Opt. Lett. 32, 2453–2455 (2007).
9.Shaikh, P. A. et al. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. J. Mater. Chem. C 4, 8304–8312 (2016).
10.Liu, S. et al. Ferroelectric Domain Wall Induced Band Gap Reduction and Charge Separation in Organometal Halide Perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).
11.Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).
12.Swainson, I. P. et al. From soft harmonic phonons to fast relaxational dynamics in CH3NH3PbBr3. Phys. Rev. B 92, 100303 (2015).
13.Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).
14.Gao, Y. et al. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers. Sci. Rep. 7, 45391 (2017).
15.Johnson, J. C., Li, Z., Ndione, P. F. & Zhu, K. Third-order nonlinear optical properties of methylammonium lead halide perovskite films. J. Mater. Chem. C 4, 4847–4852 (2016).
16.Walters, G. et al. Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano 9, 9340–9346 (2015).
17.Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643–647 (2012).
18.Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).
19.Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).
20.Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).
21.Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 1–6 (2014).
22.Gil-Escrig, L. N. et al. Efficient photovoltaic and electroluminescent perovskite devices. Chem. Commun. Chem. Commun 51, 569–571 (2015).
23.Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).
24.Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).
25.Lv, F. et al. Nonvolatile Bipolar Resistive Switching Behavior in the Perovskite-like (CH3NH3)2FeCl4. ACS Appl. Mater. Interfaces 8, 18985–18990 (2016).
26.Wei, T.C. et al. Photostriction of strontium ruthenate. Nat. Commun. 8, 15018 (2017).
27.Zhou, Y. et al. Giant photostriction in organic–inorganic lead halide perovskites. Nat. Commun. 7, 11193 (2016).
28.Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–22 (2015).
29.Cai, B., Xing, Y., Yang, Z., Zhang, W. H. & Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480 (2013).
30.Liu, Y. et al. Two-Inch-Sized Perovskite CH3NH3PbX3(X = Cl, Br, I) Crystals: Growth and Characterization. Adv. Mater. 27, 5176–5183 (2015).
31.Watanabe, Y. et al. Defect structures in LiNbO3. J. Phys. Condens. Matter 7, 3627–3635 (1995).
32.Eimerl, D., Davis, L., Velsko, S., Graham, E. K. & Zalkin, A. Optical, mechanical, and thermal properties of barium borate. J. Appl. Phys. 62, 1968–1983 (1987).
33.Juarez-Perez, E. J., Hawash, Z., R. Raga, S., Ono, L. K. & Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry - mass spectrometry analysis. Energy Environ. Sci. 9, 3406-3410 (2016).
34.Taheri, B. et al. Intensity scan and two photon absorption and nonlinear refraction of C 60 in toluene. Appl. Phys. Lett. 68, 1317 (1995).
35.Zheng, X. et al. The Controlling Mechanism for Potential Loss in CH3NH3PbBr3 Hybrid Solar Cells. ACS Energy Lett. 1, 424–430 (2016).
36.Chen, H. et al. An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. J. Mater. Chem. A 4, 12897–12912 (2016).
37.Boyd, R. W. Nonlinear Optics. Acad. Press 613 (2008).
38.Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. Curr. Protoc. Cell Biol. Chapter 4, Unit 4.11.1-24 (2013).
39.Fang, X. et al. Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature. Appl. Phys. Lett. 108, (2016).
40.Ibrahim Dar, M. et al. Understanding the Impact of Bromide on the Photovoltaic Performance of CH3NH3PbI3 Solar Cells. Adv. Mater. 27, 7221–7228 (2015).
41.Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat Nano 10, 407–411 (2015).
42.Deckoff-Jones, S. et al. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals. Sci. Rep. 6, 7 (2016).
43.Chen, T. et al. Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite. Phys. Chem. Chem. Phys. 17, 31278-31286 (2015).
44.Lee, J. H., Lee, J. H., Kong, E. H. & Jang, H. M. The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3. Sci. Rep. 6, 21687 (2016).
45.Sorianello, V., Colace, L., Nardone, M. & Assanto, G. Thermally evaporated single-crystal Germanium on Silicon. Thin Solid Films 519, 8037–8040 (2011).
46.Juodawlkis, P. W., Plant, J. J., Donnelly, J. P., Motamedi, A. & Ippen, E. P. Continuous-wave two-photon absorption in a Watt-class semiconductor optical amplifier. Opt. Express 16, 12387 (2008).
47.Duchesne, D. et al. Second harmonic generation in AlGaAs photonic wires using low power continuous wave light. Opt. Express 19, 12408–12417 (2011).
48.Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).
49.Zhang, Y. D. et al. The nonlinear absorption and optical limiting in phenoxy-phthalocyanines liquid in nano- and femto-second regime: Experimental studies. Opt. Laser Technol. 58, 207–214 (2014).
50.Guang S. He, Qingdong Zheng, Ken-Tye Yong, Aleksandr I. Ryasnyanskiy, and P. N. P. Two-photon absorption based optical limiting and stabilization by using a CdTe quantum dot solution excited at optical communication wavelength of ∼1300nm. Appl. Phys. Lett. 90, 181108 (2007).
51.Allakhverdiev, K. R. Two-photon absorption in layered TlGaSe2, TlInS2, TlGaS2 and GaSe crystals. Solid State Commun. 111, 253–257 (1999).
52.Beyer, O. et al. Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 71, 056603 (2005).
53.Carson, A. & Anderson, M. E. Two-photon absorption and blue-light-induced red absorption in LiTaO3 waveguides. JOSA B 23, 1129–1136 (2006).
54.Maslov, V. A., Mikhailov, V. A., Shaunin, O. P. & Shcherbakov, I. A. Nonlinear absorption in KTP crystals. Quantum Electron. 27, 356–359 (1997).
55.Wang, D. et al. Characteristics of nonlinear optical absorption and refraction for KDP and DKDP crystals. Opt. Mater. Express 7, 533–541 (2017).
56.Yamada, H. et al. Nonlinear-optic silicon-nanowire waveguides. Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 6541–6545 (2005).
57.Lin, Q. et al. Dispersion of silicon nonlinearities in the near infrared region. Appl. Phys. Lett. 91, (2007).
58.Tong, X. C. Advanced Materials for Integrated Optical Waveguides. (Springer International Publishing, 2013).
59.He, G. S., Tan, L. S., Zheng, Q. & Prasad, P. N. Multiphoton Absorbing Materials:  Molecular Designs, Characterizations, and Applications. Chem. Rev. 108, 1245–1330 (2008).
60.Tutt, L. W. & Boggess, T. F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. quantum Electron. 17, 299–338 (1993).
61.He, G. S., Gvishi, R., Prasad, P. N. & Reinhardt, B. A. Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials. Opt. Commun. 117, 133–136 (1995).
62.He, G. S., Lin, T. C., Prasad, P. N., Cho, C. C. & Yu, L. J. Optical power limiting and stabilization using a two-photon absorbing neat liquid crystal in isotropic phase. Appl. Phys. Lett. 82, 4717–4719 (2003).
63.He, G. S. et al. Nonlinear optical properties of a new chromophore. J. Opt. Soc. Am. B 14, 1079–1087 (1997).
64.Tull, J. X., Dugan, M. A. & Warren, W. S. High-resolution, ultrafast laser pulse shaping and its applications. Adv. Magn. Opt. Reson. 20, 1–II (1997).
65.He, G. S. et al. Two-Photon Excitation and Optical Spatial-Profile Reshaping via a Nonlinear Absorbing Medium. J. Phys. Chem. A 104, 4805–4810 (2000).
66.He, G. S., Yuan, L., Bhawalkar, J. D. & Prasad, P. N. Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system. Appl. Opt. 36, 3387–3392 (1997).
67.Perry, J. W. et al. Organic Optical Limiter with a Strong Nonlinear Absorptive Response. Science 273, 1533–1536 (1996).
68.Xu, Y. et al. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).
69.Heisterkamp, A. et al. Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl. Phys. B Lasers Opt. 74, 419–425 (2002).
70.Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–22 (2015).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔