跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳璽安
研究生(外文):Hsi-An Chen
論文名稱:OpenACC 平行化語言用於網格式定位程式之開發及其在地震預警之應用
論文名稱(外文):A development of grid search earthquake location program using OpenACC parallel computing toolkit andits application to earthquake early warning
指導教授:吳逸民吳逸民引用關係
口試日期:2017-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:39
中文關鍵詞:地震地震即時定位地震預警
外文關鍵詞:earthquakeearthquake real time locationEEW
相關次數:
  • 被引用被引用:2
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於地震預警系統來說,在地震發生後能快速且準確的估計震源位置和規模是相當重要的項目。在地震定位方面,使用簡化的一維速度構造模型對於地質構造較複雜之區域無法得到良好的震源位置。因此本研究之目的在於利用三維速度構造模型建立一套準確且計算過程簡單的地震定位程式。首先將台灣地區切成密集的三維空間格點,格點間距在經度、緯度和深度上皆為1公里,總格點數為6.88百萬,並假設各點皆為可能之震源位置,利用三維速度構造模型與三維空間的波線追跡法來計算理論P波走時,並建立各格點至中央氣象局地震速報觀測網 (Real-Time Data stream, RTD) 之地震測站的理論走時資料庫。當地震發生時,將接收到地震P波訊號的測站兩兩配對建立等時差 (Equal differential time, EDT) 曲面,再以逐點計算殘差 (residual) 總和,找出最小殘差值的格點即為震源位置。為了處理運算過程中產生的大量數據,本研究利用OpenACC平行化套件發揮圖形運算處理器 (GPU) 的運算優勢來減少計算過程需要花費的時間。利用TAIGER炸測資料及115個歷史地震事件對於定位程式的可靠度進行測試,誤差分析顯示本研究之定位方法能在不增加運算時間的情況下,有效提升地震定位的精度,因此能進一步改善地震預警系統之執行效率。相較於中央氣象局地震目錄之定位結果,震央平均差異為4.77公里,深度差異為5.11公里。
The rapid and reliable hypocenter and magnitude estimation are two of the most issue for earthquake early warning (EEW) system after an earthquake occurs. In earthquake location aspect, for early warning purpose, the simplified one-dimensional (1-D) velocity model cannot reflect the complex structures in certain area and result in large location uncertainties. Therefore, an accurate location program based on three-dimensional (3-D) velocity model with a simple-calculating process is developed for earthquake location. First, we divided Taiwan region into 3-D grids, 1 km interval in longitude, latitude and depth, which are assumed as possible hypocenters. Thus, the study area consists of 6,880,000 grids. P wave travel times between each grid and seismic station are stored in a pre-calculated database using the 3-D velocity model and 3-D ray tracing method. When an earthquake occurs, an equal differential time (EDT) surface is then conducted in each different triggered station pairs. By comparing the residuals between EDT surfaces and each grid, the grid with the minimum residual will be considered as the hypocenter. In order to deal with massive computation load during the comparing process, we apply an OpenACC parallel computing toolkit to GPU (Graphic Processing Unit) to reduce the processing time. Records of 115 earthquakes and 10 TAIGER explosion events are used to test our location program performance. Results show our location program can provide a reliable hypocenter location in short times and thus it could improve the efficiency of the EEW application. The average location difference between result of this study and Central Weather Bureau (CWB) earthquake catalog for epicenter and depth are 4.77 km and 5.11 km respectively.
論文口試委員審定書 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 動機和目的 2
第二章 文獻回顧 4
2.1 地震預警歷史與台灣地震預警系統發展 4
2.2 地震預警之地震定位方法 7
2.3 現行中央氣象局地震預警系統之地震定位流程 12
第三章 研究方法 13
3.1 本研究之地震定位流程 13
3.2 測站理論走時資料庫建立 14
3.3 OpenACC程式平行化 16
第四章 結果與討論 18
4.1 TAIGER人工炸測震源資料測試 18
4.1.1 地震定位結果 19
4.1.2 定位結果分析 19
4.2 歷史資料離線測試 26
4.2.1 地震定位結果 26
4.2.2 定位結果分析 26
4.3 案例討論:2016年2月6日高雄市美濃區芮氏規模 (ML) 6.6地震 32
4.4 地震定位時效討論 34
第五章 結論 35
參考文獻 36
附錄A 本研究所使用之GPU規格 39
1.Allen, R. M. and Kanamori, H. (2003), the potential for earthquake early warning in southern California. Science, 300(5620), 786-789.
2.Cooper, J. D. (1868), Earthquake Indicator. San Francisco Bull., November 3, 1868.
3.Chen, D. Y., Wu, Y. M., and Chin, T. L. (2015), Incorporating low-cost seismometers into the Central Weather Bureau seismic network for Earthquake Early Warning in Taiwan. Terr. Atmos. Ocean. Sci., 26, 503-513, doi: 10.3319/TAO.2015.04.17.01(T).
4.Chen, D. Y. (2015), Development and Study of Earthworm Platform for Earthquake Early Warning in Taiwan, Doctoral Dissertation, Development of Geosciences, College of Science, National Taiwan University, Taipei, Taiwan. 124 p.
5.Espinosa-Aranda, J. E., Jimenez, A., Ibarrola, G., Alcantar, F., Aguilar, A., Inostroza, M., and Maldonado, S. (1995), Mexico City seismic alert system. Seis. Res. Lett., 66(6), 42-53.
6.Geiger, L. (1992), Probability method for the determination of earthquake epicenters from the arrival time only, Bull. St. Louis Univ., 8, 60-71.
7.Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., and Hsieh, H. H. (2014), Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny, Earth Planet. Sci. Lett., 392, 177-191.
8.Koketsu, K., and Sekine, S. (1998), Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities, Geophys. J. Int., 132, 339-346.
9.Kanamori, H. (2005), Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci., 33, pp. 195-214.
10.Lee W.H.K., and Lahr J.C. (1975), HYPO71 (revised): a computer program for determining hypocenter, magnitude, and first pattern of local earthquakes, US Geological Survey Open-File Report 75–311, pp. 1–116.
11.Lin T. L. and Wu, Y. M. (2010), Magnitude determination using strong ground-motion attenuation in earthquake early warning, Geophys. Res. Lett., 37, L07304, doi:10.1029/2010GL042502.
12.Milne, J. (1886), Earthquake and other earth movements, Appelton, New York.
13.Nakamura, Y. (1988), On the urgent earthquake detection and alarm system (UREDAS). Proc. Of the 9th World Conference on Earthquake Engineering, 673-378.
14.Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophys. J. Int., 122, 108-124.
15.Satriano, S., Lomax, A., and Zollo, A. (2008), Real-Time Evolutionary Earthquake Location for Seismic Early Warning, Bull. Seism. Soc. Am.,98(3), 1482-1494.
16.Um, J., and Thunber, C. (1987), A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Amer., 77, 3, 972-986.
17.Wu, Y. M., Shin, T. C., and Tsai, Y. B. (1998), Quick and reliable determination of magnitude for seismic early warning, Bull. Seism. Soc. Am., 88(5), 1254-1259.
18.Wu, Y. M., Chung, J. K., Shin, T. C., Hsiao, N. C., Tsai, Y. B., Lee, W. H., and Teng, T. L. (1999), Development of an integrated earthquake early warning system in Taiwan-Case for the Hualien area earthquakes. Terr. Atmos. Ocean. Sci., 10(4), 719-736.
19.Wu, Y. M., and Teng, T. L. (2002), A virtual subnetwork approach to earthquake early warnig. Bull. Seism. Soc. Am., 92(5), 2008-2018.
20.Wu, Y. M., Chang, C. H., Hsiao, N. C., and Wu, F. T. (2003), Relationship of the 1998 Rueyli, Taiwan, earthquake sequence using three-dimensions velocity structure with stations corrections, Terr. Atmos. Ocean. Sci., 14, 4, 421-430.
21.Wu, Y. M., and Kanamori, H. (2005), Rapid Assessment of Damaging Potential of Earthquakes in Taiwan from the Beginning of P Waves, Bull. Seism. Soc. Am., 95, 1181-1185.
22.Wu, Y. M., Shyu, J. B. H., Chang, C. H., Zhao, L., Nakamura, M. and S. K. Hsu (2009), Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys. J. Int. 178, 1042-1054.
23.Wu, Y. M., Chang, C. H., Kuo-Chen, H., Huang, H. H. and Wang, C. Y. (2013), On the use of explosion records for examining earthquake location uncertainty in Taiwan, accepted by Terr. Atmos. Ocean. Sci. 24, 685-694, doi: 10.3319/TAO.2013.01.31.01(T).
24.Zhou, H. W. (1994), Rapid three-dimensional hypocentral determination using a master station method, J. geophys. Res., 99(15), 439–15, 455.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top