跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣小羽
研究生(外文):Xiao-Yu Jiang
論文名稱:台灣地區孕震深度及b值的研究
論文名稱(外文):A study of the seismogenic thickness and b values in Taiwan
指導教授:吳逸民吳逸民引用關係
指導教授(外文):Yih-Min Wu
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:40
中文關鍵詞:孕震深度D95脆塑性轉變帶b值
外文關鍵詞:seismogenic thicknessD95brittle-ductile transitionb value
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣位於板塊邊界,地震活動相當頻繁,為了能夠減輕大地震所帶來的危害,研究其發震構造就顯得尤為重要,其中孕震深度在很大程度上控制著地震的大小,對於地震學研究有著重大的意義。岩層在累積受力超過其彈性限度後釋放其累積應力能量導致岩層快速破裂錯動進而引起地震。由於岩性、溫度、壓力等多因素的影響,在某一深度後,岩石會由脆性向塑性發生轉變,變得難以累積應力能量,地震次數就會減少,這一深度即可作為孕震深度。本研究使用臺灣地區1990年至2015年重新定位後的地震目錄資料,用D95的方法描繪出了台灣地區孕震深度在空間上的變化。由於臺灣地質構造的特殊性,本研究對孕震深度的探討分為淺部與深部,淺部的孕震深度表現在岩石脆-塑性轉變帶,深部的孕震深度則可表現出隱沒板塊的板塊介面。本研究在對淺部孕震深度的研究中引入了b值,b值大小不僅僅能反映大小地震之間的比例關係,也在一定程度上受地溫和應力形式等條件的影響,本研究分區域繪製了b值隨深度的變化圖,發現b值在岩石從脆性向塑性轉變的深度會有明顯的低值,其變化可以反映出臺灣造山帶的地殼流變性。
論文口試委員審定書........................I
中文摘要.................................II
Abstract................................III
目錄.....................................IV
圖目錄...................................VI
表目錄...................................VII
第一章 緒論..............................1
1.1 研究背景與動機....................1
1.2 研究目的.........................3
第二章 文獻回顧...........................4
2.1 臺灣地區構造......................4
2.2 地震的成因........................7
2.2.1 斷層與淺部地震的生成.........7
2.2.2 隱沒板塊與深震的生成.........7
2.3 孕震深度..........................8
2.4 b值...............................9
第三章 研究資料與研究方法...................10
3.1 研究資料來源與選取.................10
3.1.1 資料來源....................10
3.1.2 淺部地震資料的選取...........10
3.1.3 深部地震資料選取.............13
3.1.4 計算b值所用的地震資料.........13
3.2 D95方法介紹........................14
3.3 b值回歸方法........................14
第四章 研究成果與分析討論...................16
4.1 淺部D95深度成果....................16
4.2 深部D95深度成果....................17
4.3 規模6以上的地震震源深度與孕震深度的關係..19
4.4 構造剖面...........................23
4.4.1 東北部隱沒剖面...............23
4.4.2 南部隱沒剖面.................24
4.4.3 中部山脈淺部孕震構造..........26
4.4.4 西部地區淺部孕震構造..........27
4.4.5 東部海域淺部孕震構造..........28
4.5 b值隨深度的變化....................29
4.5.1 不同區域b值隨深度變化.........29
4.5.2 全臺灣b值在不同深度範圍的變化..32
第五章 結論................................35
參考文獻...................................36
附錄A 震源深度隨時間的分佈示意圖.............39
Amitrano, D., 2003. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research, 108(BI), 2044.
Angelier, J., 1986. Preface for special issue on Geodynamics of the Eurasia Philippine Sea plate boundary, Tectonophysics, 125, IX-X.
Chen, W. P., P. Molnar, 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research, 88, 4183-4214.
DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions. Geophys. J. Int. 181, 1-80.
Gerstenberger, M., S. Wiemer, and D. Giardini., 2001. A systematic test of the hypothesis that the b value varies with depth in California, Geophys Research Letters, 28, 57-60.
Hanks, T. C., Kanamori, H., 1979. A moment magnitude scale. J. Geophys. Res. 84, 2348-2350.
Hsu, S.-K., Yeh, Y.-C., Lo, C.-L., Lin, A.T., Doo, W.-B., 2008. Link between crustal magnetization and earthquakes in Taiwan. Terr. Atmos. Oceanic Sci. 19, 445-450.
Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K. and Chang, C. P., 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325, 1-21.
Huang, H. H., Y. M. Wu, X. Song, C.-H. Chang, S. J. Lee, T. M. Chang, and H. H. Hsieh. 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny, Earth Planet. Sci. Lett., 392, 177-191.
Jackson, J. 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today, 12(9), 1-8.
Kanamori, H., Anderson, D. L., 1975. Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am. 65, 1073-1095.
Kuo-Chen, H., F. T. Wu, and S. W. Roecker, 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res., 117, B06306.
Lee, C. S., Shor, G. G., Bibee, L. D., Lu, R. S. and Hilde, T. W.C., 1980. Okinawa Trough: Origin of a back-arc basin. Marine Geology, 35, 219-241.
Roering, J. J., M. L. Cooke, and D. D. Pollard, 1997. Why blind thrust faults do not propagate to the Earth’s surface: Numerical modeling of coseismic deformation associated with thrust-related anticlines. J. Geophys. Res., 102, 11901-11912
Schorlemmer, D., S. Wiemer, and M. Wyss, 2005. Variations in earthquake-size distribution across different stress regimes. Nature, 437, 539-542.
Scholz, C. H., 2015. On the stress dependence of the earthquake b value, Geophys. Res. Lett., 42, 1399–1402.
Shyu, J. B. H., Sieh, K., Chen, Y. G. and Liu, C. S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110, 1-33.
Ma, K. F., T. R.A. Song, 2004. Thermo-mechanical structure beneath young orogenic belt of Taiwan. Tectonophysics. 388, 21-31.
Maggi, A., J. A. Jackson, D. McKenzie, and K. Priestley, 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 6, 495-498.
Magistrale, H., 2002. Relative contributions of crustal temperature and Composition to controlling the depth of earthquakes in sourthern California. Geophysical Research Letters, 29(10), 1447.
Tsai, Y. B., 1986. Seismotectonic of Taiwan. Tectonophysics, 125, 17-37.
Wang, C. Y., and T. C. Shin, 1998. Illustrating 100years of Taiwan seismicity. TAO, 9(4), 589-614.
Wang, J. H., 1998. Studies of earthquake seismology in Taiwan during the 1897-1996 period. J. Geol. Soc. China. 41, 291-336.
Wu, W. N., Yen, Y. T., Hsu, Y. J., Wu, Y. M., Lin, J. Y., Hsu, S.-K., 2017. Spatial variation of seismogenic depths of crustal earthquakes in the Taiwan region: Implications for seismic hazard assessment. Tectonophysics. 708, 81-95.
Wu, Y. M., and C. C. Chen. 2007. Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, Mw7.6 earthquake. Tectonophysics, 429, 125–132.
Wu, Y. M., C.C. Chen, L. Zhao, and C.H. Chang. 2008. Seismicity characteristics before the 2003 Chengkung, Taiwan Mw6.8 earthquake. Tectonophysics, 457, 177–182.
Wu, Y. M., C. H. Chang, L. Zhao, T. L. Teng, and Nakamura, M. 2008. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bull. Seism. Soc. Am., 98, 1471-1481.
Wu, Y. M., C. H. Chang, N. C. Hsiao, and F. T. Wu. 2003. Relocation of the 1998 Rueyli, Taiwan, earthquake sequence using three-dimensions velocity structure with stations corrections. TAO, 14, 421-430.
Wu, Y. M. and L. Y. Chiao. 2006. Seismic quiescence before the 1999 Chi-Chi, Taiwan Mw7.6 earthquake, Bull. Seism. Soc. Am. 96, 321-327.
Wu, Y. M., L. Zhao, C. H. Chang, and Y. J. Hsu, 2008. Focal mechanism determination in Taiwan by genetic algorithm. Bull. Seism. Soc. Am. 98, 651–661. 
Wu, Y.-M., Zhao, L., Chang, C.-H., Hsiao, N.-C., Chen, Y.-G., Hsu, S.-K., 2009b. Relocation of the 2006 Pingtung Earthquake sequence and seismotectonics in Southern Taiwan. Tectonophysics 479, 19-27.
Yu, S.-B., Chen, H.-Y., Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
陳培善、白彤霞、李保昆,b值和地震復發週期,地球物理學報,46(4): 510-519, 2003。
蔣海昆、張流、周永勝,不同深度溫壓條件下花崗岩變形破壞過程中的AE序列特征,地震學報,22(4): 395-403, 2000。
曾泰琳、陳伯飛、龔慧貞,隱沒板塊與深震的生成,科學月刊,562: 764-769, 2016。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top