(3.237.97.64) 您好!臺灣時間:2021/03/05 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳姵瑾
研究生(外文):Pei-Chin Wu
論文名稱:以持久性散射體雷達干涉分析抽取地下水引起之地表變形──以臺北盆地捷運工程為例
論文名稱(外文):Surface Deformation Induced by Ground Water Pumping by PS-InSAR: Case Study on Construction of MRT in Taipei Basin
指導教授:胡植慶胡植慶引用關係
指導教授(外文):Jyr-Ching Hu
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:持久性散射體雷達干涉地下水地表變形
外文關鍵詞:PS-InSARGroundwaterSurface deformation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著臺北盆地的人口密度提高,導致民生用水的需求增加,在臺北盆地有約2,200口抽水井。由於過去過度抽取地下水,盆地的地表沉降曾高達5公分/年。在1970年,臺灣政府開始控制地下水用量,而翡翠水庫在1987年完工,也成功減緩了臺北盆地限制抽水後供水不足的問題。
雖然政府開始限制地下水抽取,但臺北盆地的地下水位仍然波動變化,肇因於工程大型深開挖或其他工程用途的抽水。近年盆地內發展的各種基礎設施和密集的交通網絡,需短時間內集中抽水來避免地下水的上浮力影響工程安全。因此,臺北盆地的地下水在工程抽水的時間段內都有明顯的下降現象。本研究的目的是利用持久性散射體雷達干涉分析在短時間內大量抽水是否影響盆地的表面變形。
在本研究中,利用持久性散射體雷達干涉技術分析2011年5月18日至2015年4月2日間共計37幅X波段雷達圖像的相位差。並利用水利署30口地下水觀測井的水位紀錄與雷達影像計算出的視衛星方向地表變形,對比結果發現影響臺北盆地表面變形的主要因素是水位高程變化。此外,以桃園捷運臺北站的共構大樓開挖工程為例,根據雷達圖像所計算出的地表變形時間序和施工區域監測的地下水位井分析,開挖工程前大量的抽水量將引起地面變形。
由於景美及五股地層主要由高孔隙率的沉積物組成,抽水會使得孔隙水壓降低,並造成上層覆蓋的黏土層孔隙水壓力隨著時間消散造成地表變形。本研究發現抽水的影響範圍大於工區面積的五倍,但其中地表變形與地下水位並沒有計算到時間延遲效應,推測短期間內大量抽水所造成的土壤壓密尚未完成,目前所觀察到的地表變形量,來自於地層材料的彈性變形。因此透過彈性變化量以及現地土壤參數來計算,發現所計算的地表變形量大於現地地表變形,可能源自於現地工程工法降低部分地下水對於鄰近地區地表變形的影響。
With high population density, there were 2,200 wells in the Taipei basin used for pumping. The overuse of ground water lead to the land subsidence rate up to ~5 cm/yr. In 1970, the government in Taiwan started to control the extraction of groundwater in Taipei city. Followed by the completion of Feitsui Reservoir in 1987, the problem of insufficient water supply in the Taipei basin was solved.
Although the government had already begun to limit groundwater pumping since 1968, the groundwater in the Taipei Basin was still undulating. This is caused by pumping for large deep excavation site or other engineering use. Taipei, capital of Taiwan, is filled with a variety of infrastructure and intensive transport networks. Before these structures are built, intensive pumping is needed to remove the underground water and cancel the floating force of water. Therefore, the groundwater level changes in the Taipei Basin indicates that there were significant drops in water level in many time intervals. Whether intensive pumping within a short period will affect the surface deformation is the objective of this study.
In this study, persistent scatterer interferometry technique is used for processing 37 high resolution X-band radar images to characterize deformation map in the period between May 2011 to April 2015. From the ground table records of 30 wells in the Taipei basin, the results indicated that the main factor to the surface deformation of the Taipei basin is the elevation change of water table. Moreover, in the case of the Taipei metro construction, according to the analytical results of radar image and the monitoring well of the construction, the high water pumping before the underground construction project will inflict surface deformation.
It is noticeable that, the Jingmei and the Wuku formation are composed of sediments with high porosity. The pore water pressure would disappear during water pumping, which dissipates the pore water pressure of the clay layer above. Thus, the actual land subsidence caused by water pumping would be five times than the underground construction areas. In conclusion, the values calculated by the elasticity theory is greater than that of the monitoring values, because the soil compaction is not yet completed.
VERIFIVATION LETTER FROM THE ORAL EXAMINATION COMMITTEE #
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Motivation and Purpose 1
1.2 Structure of Research 5
Chapter 2 Geological background in Northern Taiwan 6
2.1 Geotectonic system 6
2.2 Regional surface deformation 9
2.3 Geological structure around the Taipei Basin 13
2.4 Evolutionary history of the Taipei Basin 15
2.5 Formation of the Taipei Basin 17
2.6 Hydrogeology of the Taipei Basin 20
2.6.1 River and groundwater system 20
2.6.2 River and groundwater system 22
2.7 Water pumping in the aquifers and aquitard system 25
2.7.1 Aquifers and aquitard system 25
2.7.2 Multi-layered aquifer system 27
Chapter 3 Synthetic Aperture Radar Interferometry 29
3.1 Radio Detection and Ranging (RADAR) 29
3.2 Side-Looking Airborne Radar (SLAR) 30
3.3 Synthetic Aperture Radar (SAR) 31
3.4 Interferometric Synthetic Aperture Radar 34
3.5 Differential Interferometry Synthetic Aperture Radar 37
3.6 Persistent Scatterer InSAR (PS-InSAR) 39
3.7 COSMO-SkyMed satellite 44
Chapter 4 Analyses and Results 47
4.1 Radar image data 47
4.2 Correlation by reference GPS station 49
4.3 Deformation pattern in the Taipei Basin 50
4.3.1 Comparison of leveling survey data 50
4.3.2 Comparison of vertical control points 56
Chapter 5 Discussion 57
5.1 Correlation coefficient and cross-correlation 57
5.1.1 Correlation coefficient 59
5.1.2 Cross-correlation 60
5.2 Comparison with ground water 61
5.2.1 Beitou groundwater observation well 63
5.2.2 Luzhou groundwater observation well 64
5.2.3 Wuku groundwater observation well 65
5.2.4 Hsinchuang groundwater observation well 66
5.2.5 Juang-Jing groundwater observation well 66
5.2.6 NTU groundwater observation well 67
5.3 Construction of MRT in Taipei basin 73
5.3.1 C1/D1 construction site of Taoyuan International Airport MRT 74
5.3.2 Dewatering 75
5.3.3 Case analysis 76
Chapter 6 Conclusion 82
REFERENCE 84
Amelung, F. S., Jónsson, H., Zebker, H. and Segall, P., 2000. Widespread uplift and "trapdoor" faulting on Galapagos volcanoes observed with radar interferometry. Nature, 407(6807), pp. 993-996, doi:10.1038/35039604.
Angelier, J., Lee, J. C., Chu, H. T., Hu, J. C., Lu, C. Y., Chan, Y. C., Lin, T. J., Font, Y., Deffontaines, B., Tsai, Y. B., 2001. Le séisme de Chichi (1999) et sa place dans l''orogène de Taiwan. Comptes Rendus de l''Académie des Sciences-Series IIA-Earth and Planetary Science, 333(1), pp. 5-21.
Avery, T. E. and Berlin, G. L., 1985. Introduction of Aerial Photographs.
Belousov, A., Belousova, M., Chen, C. H. and Zellme, G. F., 2010. Deposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic Group, Northern Taiwan: Hazard-related issues. Journal of Volcanology and Geothermal Research, 191(3), pp. 205-221.
Chen, C. T., Hu, J. C., Lu, C. Y., Lee, J. C., and Chan, Y. C., 2007. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol, Issue., 95, pp. 30-47, doi: 10.1016/j.enggeo.2007.09.001.
Chiang, C. J., Chang, M. H., Lin, T. C., Huang, C. C., Su, T. W. and Chen, J. E., 2012. A Primary Study on the Hydrogeology of the Taipei Basin.
Chia, Y. P., Chang, M. H., Liu, W. I. and Lai, T. C., 1999. Hydrogeologic Characterization Of Taipei Basin. Special Publication of the Central Geological Survey, 11, pp. 393-406. (in Chinese)
Ferretti, A., Prati, C. and Rocca , F., 2000. Nonlinear subsidence rate estimation using permanent Scatterer in differential SARinterferometry. IEEE Trans. Geosci. Remote Sens., 38(5), pp. 2202-2212.
Ferretti, A., Prati, C. and Rocca, F., 2001. Permanent Scatterer in SARinterferometry. IEEE Trans. Geosci. Remote Sens, 39(1), pp. 8-20.
Fu Tsu Construction, 2017. Retrieved July 7, 2017, from http://www.futsu.com.tw/representative_03_ca450b.html
G-AVE Technology , 2013. Retrieved February 7, 2017, from http://web.g-ave.com/images_csks_eng.aspx
Global Volcanism Program, 2012. Report on Mauna Loa (United States). In: Wunderman, R (ed.), Bulletin of the Global Volcanism Network, 37:5. Smithsonian Institution. Retrieved February 7, 2017, from http://dx.doi.org/10.5479/si.GVP.BGVN201205-332020.
Graham, L. C., 1974. Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62(6), pp. 763-768.
Hooper, A., Segall, P. and Zebker, H., 2007. Persistent scatterer interferometric synthetic aperture radar for crustaldeformation analysis, with application to Volcan Alcedo, Galapagos.. J. Geophys. Res, pp. 112, B07407.
Hooper, A., Zebker, H., Segall, P. and Kampes, B., 2004. A new method for measuring deformation on volcanoes and othernatural terrains using InSAR persistent Scatterer. Geophys. Res. Lett, 31(23), p. doi: 10.1029/2004gl021737.
Hu, J. C., J. Angelier, J. C. Lee, T. H. Chu, and D. Byrne (1996), Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling, Tectonophysics, 255(3-4), 243–268, doi:10.1016/0040-1951(95)00140-9.
Hu, J. C., Yu, S. B., Chu, H. T. & Angelier, J., 2002. Transition tectonics of Taiwan. Geol. Soc. Am. Special Papers 358, pp. 149-162.
JARS, 1999. Remote Sensing Notes. Japan: Japan Association of Remote Sensing.
Lu, C. Y., J. Angelier, H. T. Chu, and J. C. Lee (1995), Contractional, Transcurrent, Rotational and Extensional Tectonics - Examples from Northern Taiwan, Tectonophysics, 246(1-3), 129–146, doi:10.1016/0040-1951(94)00252-5.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T., 1993. The displacement filed of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), pp. 138-142, doi:10.1038/364138a0.
Murphy, D. and Trivers, G., 1993. Retrieved February 7, 2017, from https://www.navcen.uscg.gov/?pageName=iipHowDoesIIPDetectNorthAtlanticIcebergs.
Ou, C. Y., & Chen, S. H. (2010). Performance and analysis of pumping tests in a gravel formation. Bulletin of engineering geology and the environment, 69(1), 1-12.
Rau, R. J., Ching, K. E., Hu, J. C. and Lee, J. C., 2008. Crustal deformation and block kinematics in transition from collision to subduction: Global positioning system measurements in northern Taiwan, 1995-2005. J. Geophys, Res., 113, B0904, doi:10.1029/2007JBB005414.
Tan, K., 1939. Geological Consideration On The Taihoku Basin. Jubilee publication in the Commemoration of professor H. Yabe, M.I.A. : Sixtieth birthday, 1, pp. 371-380.
Teng, L. S., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), pp. 949-952.
Teng, L. S., Yuan, P. B., Chen, P. Y., Peng, C. H., Lai, T. C., Fei, L. Y., and Liu, H. C., 1999. Lithostratigraphy of Taipei Basin deposits. Cent. Geol. Surv. Spec. Publ, 11, pp. 41-66. (in Chinese with English abstract)
Teng, L. S., Lee, C. T., Liew, Ping. Mei., Song, S. R., Tsao, S. J., Liu, H.C., Peng, C. H., 2004. On the Taipei Dammed Lake. Journal of Geographical Science, 36, pp. 77-100.
Teng, L. S., 2006. Geologic research of Taipei Basin. Western Pacific Earth Sciences, 6, pp. 1-28.
TRE ALTAMIRA, 2016. World leader in displacement monitoring services. Retrieved February 7, 2017, from http://tre-altamira.com/technology/.
Tung, H., Chen, H. Y., Hu, J. C., Ching, K. E., Chen, H., & Yang, K. H. (2016). Transient deformation induced by groundwater change in Taipei metropolitan area revealed by high resolution X-band SAR interferometry. Tectonophysics, 692, 265-277.
Yu, S. B. and Kuo, L. C., 1999. GPS observation of crustal deformation in the Taiwan-Luzon. Geophys. Res. Lett, 26(7), pp. 923-926.
Wu, F. T., 1965. Subsurface geology of the Hsinchuang structure in the Taipei Basin. Petrol. Geol. Taiwan, 4, pp. 271-282.
Zebker, H. A. and Villasenor, J., 1992. Decorrelation in Interferometric Radar Echoes. IEEE Transactions on geoscience and remote sensing, 30(5), pp. 950-959.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔