跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳品臻
研究生(外文):Ping-Jhen Chen
論文名稱:CaO/TiO2中孔洞微米球之合成、改質及其對二氧化碳捕集能力之研究
論文名稱(外文):Synthesis and modification of mesoporous CaO/TiO2 microsphere for CO2 capture
指導教授:劉雅瑄
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:137
中文關鍵詞:碳化/煅燒迴圈燒結氣膠自組裝系統中孔含浸法
外文關鍵詞:carbonation/calcination cyclessinteringAASA systemmesoporesimpregnation method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
能耐高溫之鈣基吸附劑已被視為有潛力之碳捕捉技術之一,且具有再生簡單、高溫下穩定、成本低等優點。本研究利用氣膠自組裝系統(aerosol-assisted self-assembly system, AASA system) 合成中孔洞材料(mesoporous material)作為載體,分別為摻雜鈣之二氧化鈦微米球(Ca-TiO2)及純二氧化鈦微米球(TiO2),接下來利用含浸法改質載體以期提升材料之二氧化碳吸附容量。從X光繞射分析(XRD) 可以發現Ca-TiO2有鈦酸鈣(CaTiO3)之特徵峰。在穿透式電子顯微鏡(TEM)下,可觀察到微米球呈現規則圓球狀,且結構內部具孔洞。經由BET分析之比表面積可以發現TiO2及Ca-TiO2之比表面積分別為45.01 m2/g及39.44 m2/g。
本研究使用含浸法改質材料,並使用不同變因,找出迴圈吸脫附二氧化碳表現最佳的材料。所採取的變因分別為載體(Ca-TiO2及TiO2)、溶劑(99.5%酒精及去離子水)以及鈣前驅物(醋酸鈣及硝酸鈣)。於XRD分析中可發現改質後之材料皆出現鈦酸鈣特徵峰以及氫氧化鈣或氧化鈣特徵峰,顯示改質能使載體和鈣反應形成鈦酸鈣,而鈣化合物形式以氫氧化鈣或氧化鈣為主。另外,以酒精製得之材料的二氧化碳吸附量較以去離子水製得之材料約高出0.07 g-CO2/g-CaO,對於吸附劑之衰減趨勢影響不大。
相較於溶劑的影響,鈣前驅物的不同則對吸附劑的二氧化碳吸脫附表現影響較大。以醋酸鈣製得之材料的比表面積較大(最大有50.09 m2/g),故與二氧化碳之反應較為迅速,初期碳化轉換率皆大於80%,由於含浸改質上去之鈣的顆粒聚集現象較為明顯,故其衰減速率仍快,衰減速率約60%左右。另外,以硝酸鈣製得之材料的衰減現象則不明顯,僅於最後數個迴圈有約5%的衰減,但由於其比表面積較低(最大僅10.26 m2/g),故碳化轉換率較低,皆低於60%。
Because of high thermal stability than other techniques, calcium-based adsorbent has been regarded as one of the most potential carbon capture technology. In this research, supports of mesoporous microspheres were synthesized from aerosol-assisted self-assembly system (AASA system), which are pure titanium dioxide(TiO2) and titanium dioxide with calcium(Ca-TiO2, Ca/Ti=0.3). In order to enhance CO2 adsorption capacity of materials, supports were modified through impregnation method. From X-ray Powder Diffraction (XRD), Ca-TiO2 synthesized through AASA system possesses crystalline CaTiO3 phase. Besides XRD, Transmission Electron Microscope (TEM) revealed that TiO2 and Ca-TiO2 are all microspheres with ordered mesopores. Brunauer–Emmett–Teller (BET) analysis was used to identify the surface area and pore size of adsorbent and the results showed that the specific surface areas of pure TiO2 and Ca-TiO2 are 45.01 m2/g and 39.44 m2/g, respectively.
Different variables of modification, which were support (TiO2 and Ca-TiO2), solvent (99.5% ethanol and DI water) and calcium precursor (calcium acetate and calcium nitrate), were discussed in this research. After modification, the peak of CaTiO3, Ca(OH)2 and CaO can be observed from XRD. The CO2 adsorption capacity of materials made through ethanol is higher than materials made through DI water about 7 g-CO2/g-CaO. The influence of different solvents on decay is not obvious.
The specific surface area of materials which made from calcium acetate monohydrate is bigger, and the maximal value is 50.09 m2/g. Bigger specific surface area results in bigger area of contact between CO2 and materials as well as higher molar conversion (about 80~90%). However, because of apparent aggregation calcium particles on support, the decay rate is still fast (about 60%). The surface area of these serial materials which were made from calcium nitrate is small, and the maximal value is only 10.26 m2/g, so the area of contact between CO2 and materials is also smaller which results in lower molar conversion (less than 60%). Because of evenly distributed CaO particles, there is almost no decay can be observed.
目錄
中文摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 溫室效應 3
2.2 二氧化碳捕獲 4
2.2.1 二氧化碳捕獲路徑 4
2.2.2 二氧化碳捕獲技術及材料 6
2.3 化學迴路程序(Chemical Looping Process, CLC) 14
2.3.1 第一類(Type I):Me / MeO 15
2.3.2 第二類(Type II):MeO / MeCO3 16
2.3.2.1 鈣迴路程序(Calcium Looping Process, CaL) 17
2.3.2.2 燒結(Sintering) 19
2.3.2.3 吸附劑改善 21
2.4 中孔洞材料 29
2.4.1 孔洞材料分類 29
2.4.2 中孔洞材料之合成 29
2.4.3 擔體負載金屬氧化物之製備方法 32
第三章 實驗設備及方法 34
3.1 研究架構與內容 34
3.2 材料製備 36
3.2.1 以氣膠自組裝系統合成中孔洞載體 36
3.2.2 以含浸法將鈣引入至中孔洞載體上 37
3.2.3 材料命名 38
3.3 特徵分析 39
3.4.1 X-射線繞射光譜(XRD) 39
3.4.2 場發射掃描式電子顯微鏡暨能量散佈分析儀(SEM) 40
3.4.3 穿透式電子顯微鏡(TEM) 40
3.4.4 聚焦離子束電子束掃瞄式顯微鏡系統(FIB) 41
3.4.5 感應耦合電漿發射光譜儀(ICP-OES) 42
3.4.6 比表面積分析儀(BET) 42
3.4 二氧化碳吸附實驗:熱重分析儀(TGA) 45
3.4.1 實驗流程 46
3.4.2 實驗分析 47
第四章 結果與討論 49
4.1 中孔洞載體(CaT、T)之特徵分析 49
4.1.1 形貌分析 49
4.1.2 比表面積分析 52
4.1.3 晶相分析 55
4.2 中孔洞載體之表面改質 56
4.2.1 以不同中孔洞載體進行改質 56
4.2.1.1 形貌分析 56
4.2.1.2 比表面積分析 61
4.2.1.3 晶相分析 64
4.2.1.4 改質後材料之鈣濃度定量 66
4.2.1.5 二氧化碳吸附容量測試 67
4.2.2 使用不同溶劑進行中孔洞載體之改質 74
4.2.2.1 形貌分析 75
4.2.2.2 比表面積分析 76
4.2.2.3 晶相分析 79
4.2.2.4 改質後材料之鈣濃度定量 80
4.2.2.5 二氧化碳吸附容量測試 81
4.2.3 利用不同鈣前驅物進行中孔洞載體之改質 86
4.2.3.1 形貌分析 86
4.2.3.2 比表面積分析 92
4.2.3.3 晶相分析 98
4.2.3.4 改質後材料之鈣濃度定量 100
4.2.3.5 二氧化碳吸附容量測試 103
4.3 機制探討 119
4.3.1 以醋酸鈣一水合物做為鈣前驅物之材料反應機制 119
4.3.2 以硝酸鈣四水合物做為鈣前驅物之材料反應機制 121
第五章 結論 123
參考文獻 125
參考文獻
Abanades, J. C., Alvarez, D., “Conversion Limits in the Reaction of CO2 with Lime’’, Energy& Fuels, 17, 2003, 308-315.
Abanades, J. C., Anthony, E. J., Lu, D. Y., Salvador, C., Alvarez, D., “Capture of CO2 from combustion gases in a fluidized bed of CaO’’, AIChE Journal, 50, 2004, 1614-1622.
Aihara, M., Nagai, T., Matsushita, J., Negishi, Y., Ohya, H., “Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction’’, Applied Energy, 69, 2001, 225-238.
Albrecht, K. O., Wagenbach, K. S., Satrio, J. A., Shanks, B. H., Wheelock, T. D., “Development of a CaO-Based CO2 Sorbent with Improved Cyclic Stability’’, Ind. Eng. Chem. Res., 47, 2008, 7841–7848.
Alvarez, D., Abanades, J. C., “Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2’’, Ind. Eng. Chem. Res., 44, 2005a, 5608-5615.
Alvarez, D., Abanades, J. C., “Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles’’, Energy & Fuels, 19, 2005b, 270-278.
Anderson, S., Newell, R. “Prospects for Carbon Capture and Storage Technologies.’’, 2003
Arenillas, A., Rubiera, F., Parra, J. B., Ania, C. O., Pis, J. J., “Surface modification of low cost carbons for their application in the environmental protection’’, Applied Surface Science, 252, 2005, 619-624.
Barker, R.., “The Reversibility of the Reaction CaCO3→CaO+CO2’’,J. appl. Chem. Biotechnol, 23, 1973, 733-742.
Beck, J. S., VartUli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Schlenkert, J. L., “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates’’, J. Am. Chem. Sot., 114, 1992 10834-10843.
Ben-Mansour, R., Habib, M. A., Bamidele, O. E., Basha, M., Qasem, N. A. A., Peedikakkal, A., Ali, M., “Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review’’, Applied Energy, 161, 2016, 225-255.
Bhatja, S. K., Perlmutter, D. D., “Effect of the Product Layer on the Kinetics of the C02-Lime Reaction’’, AlChE Journal, 29, 1983, 79-86.
Blamey, J., Anthony, E. J., Wang, J., Fennell, P. S., “The calcium looping cycle for large-scale CO2 capture’’, Progress in Energy and Combustion Science, 36, 2010, 260-279.
Brinker, C. J., Lu, Y., Sellinger, A., Fan, H., “ Evaporation-Induced Self-Assembly: Nanostructures Made Easy’’, Adv. Mater., 11, 1999, 579-585.
Broda, M., Kierzkowska, A. M., Muller, C. R., “Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents’’, Environ Sci Technol, 46, 2012, 10849-10856.
Chang, P. H., Chang, Y. P., Chen, S. Y., Yu, C. T., Chyou, Y. P., “Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity’’, ChemSusChem, 4, 2011, 1844-1851.
Chen, Y.-T., Karthik, M., Bai, H., “Modification of CaO by Organic Alumina Precursorfor Enhancing Cyclic Capture of CO2 Greenhouse Gas’’, Journal of Environmental Engineering, 135, 2009, 459-464.
Calleja, G., Pau, J., Calles, J. A., “Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene, and Propane on ZSM-5 Zeolites with Different Si/Al Ratios”, J. Chem. Eng. Data, 43, 1998, 994-1003.
Chang, Y. P., Chen, Y. C., Chang, P. H., Chen, S. Y., “Synthesis, characterization, and CO2 adsorptive behavior of mesoporous AlOOH-supported layered hydroxides”, ChemSusChem, 5, 2012, 1249-1257.
Cui, Y., Kita, H., Okamoto, K., “Preparation and gas separation performance of zeolite T membrane”, Journal of Materials Chemistry, 14, 2004, 924.
D''Alessandro, D. M., Smit, B., Long, J. R., “Carbon dioxide capture: prospects for new materials’’, Angew Chem Int Ed Engl, 49, 2010, 6058-6082.
Dennis, J. S., Pacciani, R., “The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent’’, Chemical Engineering Science, 64, 2009, 2147-2157.
Derevschikov, V. S., Lysikov, A. I., Okunev, A. G., “High Temperature CaO/Y2O3Carbon Dioxide Absorbent with Enhanced Stability for Sorption-Enhanced Reforming Applications’’, Industrial & Engineering Chemistry Research, 50, 2011, 12741-12749.
Fan, J., Boettcher, S. W., Stucky, G. D., “Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol-Gel Process’’, Chem. Mater., 18, 2006, 6391-6396.
Fan, L.S., “Chemical Looping Systems for Fossil Energy Conversions’’, Wiley., 2010.
Fennell, P. S., Pacciani, R., Dennis, J. S., Davidson, J. F., Hayhurst, A. N., “The Effects of Repeated Cycles of Calcination and Carbonation on a Variety of Different Limestones, as Measured in a Hot Fluidized Bed of Sand’’, Energy & Fuels, 21, 2007, 2072-2081.
Filburn, T., Helble, J. J., Weiss, R. A., “Development of Supported Ethanolamines and Modified Ethanolamines for CO2 Capture’’, Ind. Eng. Chem. Res., 44, 2005, 1542-1546.
Filitz, R., Kierzkowska, A. M., Broda, M., Muller, C. R., “Highly efficient CO2 sorbents: development of synthetic, calcium-rich dolomites’’, Environ Sci Technol, 46, 2012, 559-565.
Florin, N. H., Blamey, J., Fennell, P. S., “Synthetic CaO-Based Sorbent for CO2 Capture from Large-Point Sources’’, Energy & Fuels, 24, 2010, 4598-4604.
Florin, N. H., Harris, A. T., “Screening CaO-Based Sorbents for CO2 Capture in Biomass Gasifiers’’, Energy & Fuels, 22, 2008, 2734–2742.
Fan, L. S., Wang,W., Luo, S., “Chemical looping processes for CO2 capture and carbonaceous fuel conversion – prospect and opportunity’’, Energy & Environmental Science, 5, 2012, 7254.
Grasa, G. S., Abanades, J. C., “CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles’’, Ind. Eng. Chem. Res., 45, 2006, 8846-8851.
Gray, M. L., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens, R. W., Filburn, T., “Improved immobilized carbon dioxide capture sorbents’’, Fuel Processing Technology, 86, 2005, 1449-1455.
Guo, M., Zhang, L., Yang, Z., Tang, Q., “Removal of CO2 by CaO/MgO and CaO/Ca9Al6O18 in the Presence of SO2’’, Energy & Fuels, 25, 2011, 5514-5520.
Gupta, H., Fan, L.S., “Carbonation-Calcination Cycle Using High Reactivity Calcium
Oxide for Carbon Dioxide Separation from Flue Gas”, Ind. Eng. Chem. Res., 41, 2002, 4035-4042
Hasegawa, Y., Tanaka, T., Watanabe, K., Jeong, B.H., Kusakabe, K., Morooka, S. “Separation of CO2-CH~ and CO~-N~ Systems Using Ion-exchanged FAU-type Zeolite Membranes with Different Si/A1 Ratios’’, Korean J. Chem. Eng., 19, 2002, 309-313.
Hossain, M. M., de Lasa, H. I., “Chemical-looping combustion (CLC) for separations—a review’’, Chemical Engineering Science, 63, 2008, 4433-4451.
Huang, C.H., Chang, K.P., Yu, C.T., Chiang, P.C., Wang, C.F., “Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica’’, Chemical Engineering Journal, 161, 2010, 129-135.
Huang, H. Y., Yang, R. T., “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas’’, Ind. Eng. Chem. Res., 42, 2003, 2427-2433.
Hook, R.J., “An Investigation of Some Sterically Hindered Amines as Potential
Carbon Dioxide Scrubbing Compounds”, Ind. Eng. Chem. Res., 36, 1997,
1779-1790
Illing, G., Hellgardt, K., Wakemana, R. J., Jungbauerb, A., “Preparation and characterisation of polyaniline based membranes for gas separation’’, Journal of Membrane Science, 184, 2001, 69-78.
IPCC, “Climate Change 2007: The Physical Science Basis”, 2007.
IPCC, “Climate Change 2014: Mitigation of Climate Change”, 2014.
Kierzkowska, A. M., Pacciani, R., Muller, C. R.., “CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials’’, ChemSusChem, 6, 2013, 1130-1148.
Kierzkowska, A. M., Poulikakos, L. V., Broda, M., Müller, C. R., “Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique’’, International Journal of Greenhouse Gas Control, 15, 2013, 48-54.
Kluiters, S. C. A., “Status review on membrane systems for hydrogen separation’’, 2004
Kusakabe, K., Kuroda, T., Murata, A., Morooka, S., “Formation of a Y-Type Zeolite Membrane on a Porous r-Alumina Tube for Gas Separation’’, Ind. Eng. Chem. Res., 36, 1997, 649-655.
Krzak-Roś J1, Filipiak J, Pezowicz C, Baszczuk A, Miller M, Kowalski M, Bedziński R., “The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method”, Acta Bioeng Biomech., 11, 2009, 21-29
Lee, Z. H., Lee, K. T., Bhatia, S., Mohamed, A. R., “Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials’’, Renewable and Sustainable Energy Reviews, 16, 2012, 2599-2609.
Li, L., King, D. L., Nie, Z., Howard, C., “Magnesia-Stabilized Calcium Oxide Absorbents with Improved Durability for High Temperature CO2 Capture’’, Ind. Eng. Chem. Res., 48, 2009, 10604–10613
Li, L., King, D. L., Nie, Z., Li, X. S., Howard, C., “MgAl2O4 Spinel-Stabilized Calcium Oxide Absorbents with Improved Durability for High-Temperature CO2 Capture’’, Energy & Fuels, 24, 2010, 3698-3703.
Li, S., Alvarado, G., Noble, R., Falconer, J., “Effects of impurities on CO/CH separations through SAPO-34 membranes’’, Journal of Membrane Science, 251, 2005, 59-66.
Li, Z. S., Cai, N. S., Huang, Y. Y., “Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based CO2 Sorbent’’, Ind. Eng. Chem. Res., 45, 2006, 1911-1917.
Li, Z. S., Cai, N. S., Huang, Y. Y., Han, H. J., “Synthesis, Experimental Studies, and Analysis of a New Calcium-Based Carbon Dioxide Absorbent’’, Energy & Fuels, 19, 2005, 1447-1452.
Li, Z. S., Cai, N. S., Huang, Y. Y., “Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based CO2 Sorbent’’, Ind. Eng. Chem. Res., 45, 2006, 1911-1917.
Liu, W., An, H., Qin, C., Yin, J., Wang, G., Feng, B., Xu, M., “Performance Enhancement of Calcium Oxide Sorbents for Cyclic CO2 Capture—A Review’’, Energy & Fuels, 26, 2012, 2751-2767.
Liu, W., Low, N. W., Feng, B., Wang, G., Costa, J. C. D., “Calcium Precursors for the Production of CaO Sorbents for Multicycle CO2 Capture’’, Environ. Sci. Technol., 44, 2010a, 841–847.
Liu, W., N. WL Low, Feng, B., Wang, G., João C. Diniz da Costa, “Synthesis of Sintering-Resistant Sorbents for CO2 Capture”, Environ. Sci. Technol., 44, 2010b, 3093–3097
Lu, H., Reddy, E. P., Smirniotis, P. G., “Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures’’, Ind. Eng. Chem. Res., 45, 2006, 3944-3949.
Lu, Y., Fan, H., Stump, A., Ward, T. L., Rieker, T., Brinker, C. J. “Aerosol-assisted selfassembly of mesostructured spherical nanoparticles’’ Nature, 398, 1999, 223-226.
Luo, C., Zheng, Y., Ding, N., Wu, Q. L., Zheng, C. G., “SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture’’, Chinese Chemical Letters, 22, 2011, 615-618.
Luo, C., Zheng, Y., Ding, N., Zheng, C., “Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives’’, Korean Journal of Chemical Engineering, 28, 2011, 1042-1046.
Lysikov, A. I., Salanov, A. N., Okunev, A. G., “Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation-Decomposition Cycles’’, Ind. Eng. Chem. Res., 46, 2007, 4633-4638.
Lu, H., Khan, A., Pratsinis, S. E., Smirniotis, P. G., “Flame-Made Durable Doped-CaO Nanosorbents for CO2 Capture’’, Energy & Fuels, 23, 2009, 1093–1100.
Luo, C., Zheng, Y., Ding, N., Wu, Q., Bian, G., Zheng, C., “Development and Performance of CaO/La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture’’, Ind. Eng. Chem. Res., 49, 2010, 11778–11784.
MacKenzie, A., Granatstein, D. L., Anthony, E. J., Abanades, J. C., “Economics of CO2 Capture Using the Calcium Cycle with a Pressurized Fluidized Bed Combustor’’, Energy & Fuels, 21, 2007, 920-926.
Manovic, V., Anthony, E. J., “Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles’’, Environ. Sci. Technol., 42, 2008,4170–4174.
Manovic, V., Anthony, E. J. “CaO-Based Pellets Supported by Calcium Aluminate Cements for High-Temperature CO2 Capture’’, Environ. Sci. Technol., 43, 2009a, 7117–7122.
Manovic, V., Anthony, E. J., “Improvement of CaO-based sorbent performances for CO2 looping cycles’’, Thermal Science, 2009b
Manovic, V., Anthony, E. J., “Long-Term Behavior of CaO-Based Pellets Supported by Calcium Aluminate Cements in a Long Series of CO2 Capture Cycles’’, Ind. Eng. Chem. Res., 48, 2009c, 8906–8912.
Manovic, V., Anthony, E. J., “Screening of Binders for Pelletization of CaO-Based Sorbents for CO2 Capture’’, Energy & Fuels, 23, 2009d, 4797-4804.
Manovic, V., Anthony, E. J., “CO2 Carrying Behavior of Calcium Aluminate Pellets under High-Temperature/ High-CO2 Concentration Calcination Conditions’’, Ind. Eng. Chem. Res., 49, 2010a, 6916–6922.
Manovic, V., Anthony, E. J., “Sintering and Formation of a Nonporous Carbonate Shell at the Surface of CaO-Based Sorbent Particles during CO2 Capture Cycles’’, Energy & Fuels, 24, 2010b, 5790-5796.
Manovic, V., Anthony, E. J., Grasa, G., Abanades, J. C., “CO2 Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping. Energy & Fuels, 22, 2008, 3258–3264.
Marcin B., A. M. K., Christoph R. Mller., “Application of the sol-gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics’’, ChemSusChem, 5, 2012, 411-418.
Martavaltzi, C. S., Lemonidou, A. A., “Development of new CaO based sorbent materials for CO2 removal at high temperature’’, Microporous and Mesoporous Materials, 110, 2008, 119-127.
Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yasutaked, A.. “Removal of SO and NO over activated carbon fibers’’, Carbon, 38, 2000, 227-239.
Munnik, P., de Jongh, P. E., de Jong, K. P., “Recent developments in the synthesis of supported catalysts’’, Chem Rev, 115, 2015, 6687-6718.
Olajire, A. A., “CO2 capture and separation technologies for end-of-pipe applications – A review’’, Energy, 35, 2010, 2610-2628.
Organisation for Economic Co-operation and Development(OECD)/ International Energy Agency (IEA), “World Energy Outlook 2014”, 2014.
Pacciani, R., Müller, C. R., Davidson, J. F., Dennis, J. S., Hayhurst, A. N., “Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed’’, The Canadian Journal of Chemical Engineering, 86, 2008, 356-366.
Pinna, F., “Supported metal catalysts preparation’’, Catalysis Today, 41, 1998, 129-137.
Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Arenillas, A., Rubiera, F., Pis, J. J., “Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture’’, Journal of Thermal Analysis and Calorimetry, 92, 2008, 601–606.
Poshusta, C.J., Noble, R. D., Falconer, J. L., “Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes’’, Journal of Membrane Science, 160, 1999, 115-125.
Radfarnia, H. R., Iliuta, M. C., “Development of Zirconium-Stabilized Calcium Oxide Absorbent for Cyclic High-Temperature CO2 Capture’’, Industrial & Engineering Chemistry Research, 51, 2012, 10390-10398.
Resnik, K. P., “Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx’’, Int. J. Environmental Technology and Management, 4, 2004, 89-103.
Richter, H. J., Knoche, K. F., “Reversibility of Combustion Processes’’, 1983, 71-85.
Salvador, C., Lu, D., Anthony, E. J., Abanades, J. C., “Enhancement of CaO for CO2 capture in an FBC environment’’, Chemical Engineering Journal, 96, 2003,
Sanchez-Jimenez, P. E., Perez-Maqueda, L. A., Valverde, J. M., “Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions’’, Applied Energy, 118, 2014, 92-99.
Sayari, A., Belmabkhout, Y., Serna-Guerrero, R., “Flue gas treatment via CO2 adsorption’’, Chemical Engineering Journal, 171, 2011, 760-774.
Serna-Guerrero, R., Sayari, A., “Modeling adsorption of CO2 on amine-functionalized mesoporous silica: Kinetics and breakthrough curves’’, Chemical Engineering Journal, 161, 2010, 182-190.
Silcox, G. D., Kramlich, J. C., Pershing, D. W.. A Mathematical Model for the Flash Calcination of Dispersed CaCO3 and Ca(OH)2 Particles’’, Ind. Eng. Chem. Res., 28, 1989, 155-160.
Sultan, D. S., Müller, C. R., Dennis, J. S., “Capture of CO2 Using Sorbents of Calcium Magnesium Acetate (CMA)’’, Energy & Fuels, 24, 2010, 3687-3697.
Tao, M., Meng, X., Lv, Y., Bian, Z., Xin, Z., “Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction’’, Fuel, 165, 2016, 289-297.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)’’, Pure and Applied Chemistry, 87, 2015
Tsung, C. K., Fan, J., Zheng, N., Shi, Q., Forman, A. J., Wang, J., Stucky, G. D., “A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks’’, Angew Chem Int Ed Engl, 47, 2008, 8682-8686.
Tuinier, M. J., van Sint Annaland, M., Kramer, G. J., Kuipers, J. A. M., “Cryogenic capture using dynamically operated packed beds’’, Chemical Engineering Science, 65, 2010, 114-119.
Valverde, J. M., “Ca-based synthetic materials with enhanced CO2capture efficiency’’, J. Mater. Chem. A, 1, 2013, 447-468.
Valverde, J. M., Perejon, A., Perez-Maqueda, L. A., “Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions’’, Environ Sci Technol, 46, 2012, 6401-6408.
Vieille, L., Govin, A., Grosseau, P., “Improvements of calcium oxide based sorbents for multiple CO2 capture cycles’’, Powder Technology, 228, 2012, 319-323.
Walton, K. S., Abney, M. B., Douglas LeVan, M., “CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange’’, Microporous and Mesoporous Materials, 91, 2006, 78-84.
Wang, M., Lee, C.G., “Absorption of CO2 on CaSiO3 at high temperatures’’, Energy Conversion and Management, 50, 2009, 636-638.
Wang, Q., Luo, J., Zhong, Z., Borgna, A., “CO2 capture by solid adsorbents and their applications: current status and new trends’’, Energy Environ. Sci., 4, 2011, 42-55.
Weiss, H., “Rectisol wash for purification of partial oxidation gasess’’, Gas Separation & Purification, 2, 1988, 171-176.
Wu, S. F., Li, Q. H., Kim, J. N., Yi, K. B., “Properties of a Nano CaO/Al2O3 CO2 Sorbent’’, Ind. Eng. Chem. Res., 47, 2008, 180-184.
Wu, S. F., Zhu, Y. Q., “Behavior of CaTiO3/Nano-CaO as a CO2 Reactive Adsorbent’’, Ind. Eng. Chem. Res., 49, 2010, 2701–2706.
Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., “Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture’’, Energy & Fuels, 16, 2002, 1463-
Xu, Z.K., Dannenbergb, C., Springerb, J., Banerjee, S., Maierc, G., “Novel poly(arylene ether) as membranes for gas separation’’, Journal of Membrane Science, 205, 2002, 23–31.
Yu, C.H., “A Review of CO2 Capture by Absorption and Adsorption’’, Aerosol and Air Quality Research’’, 12, 2012, 745–769.
Zhou, Z., Qi, Y., Xie, M., Cheng, Z., Yuan, W., “Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance’’, Chemical Engineering Science, 74, 2012, 172-180.
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D., “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores’’, Science, 279, 1998, 548-552.
朱敬平,鍾裕仁,盧昱彰,許國恩,陳誼勳,孫世勤,廖明村,高效能生質氣化試驗設施建造評估規劃計畫(計畫編號:EPA-97-1605-02-02), 2010。
李正光,郭紹偉,以嵌段共聚物為模板製備奈米中孔洞材料,化學,72期,2014,127-136。
林弘萍,何佳容,王暐翔,陳鐸文,中孔洞氧化矽材料之合成與量產,化工,61期,2014,81-91。
林韋霖,「BaCe0.4Zr0.4Gd0.1Dy0.1O3-δ質導陶瓷薄膜之導電度及化學穩定性研究」,碩士論文,國立交通大學材料科學與工程學系所,2013。
胡蒨傑,魏大欽,21世紀的新森林—氣體分離薄膜,科學發展,429期,2008,32-37。
徐恆文,二氧化碳的捕獲與分離,科學發展,413期,2007,24-27。
陳航,陳郁文,二氧化碳之捕集及再利用技術之應用介紹,工業污染防治, 94期,2005,117-133。
黃昱源,吳嘉文,無用之用的奈米孔洞材料,科學發展,513期,2015,16-21。
林智仁,羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,201期,2003,90-98。
陳俊淇,謝健,林俊宏,電子束/聚焦離子束雙束系統應用簡介,奈米通訊,第15期,2008,10-14。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top