跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高立誠
研究生(外文):Li Cheng Kao
論文名稱:混合相二氧化鈦奈米柱陣列之合成、特性鑑定及其成長機制探討
論文名稱(外文):Synthesis, Characterization, and Crystal Nucleation Pathway of Heterogeneous Phase TiO2 Nanorod Arrays
指導教授:劉雅瑄
指導教授(外文):Ya Hsuan Liou
口試日期:2017-07-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:176
中文關鍵詞:二氧化鈦能源材料光催化劑晶體成長加速器光源
外文關鍵詞:titanium dioxideenergy materialsphotocatalystcrystal nucleationsynchrotron-based X-ray spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦因為其化學穩性佳,有著良好的光催化能力和對環境的友善性,近幾年來被廣泛的應用。其中材料合成的結晶形態上,因為混合相一維奈米結構擁有載子移動優良、光應用性佳和利於光電催化反應等特性,特別受關注。然而受限於二氧化鈦本身成長偏好的限制,傳統溶液相合成多以懸浮於溶液中的顆粒經離心、煅燒的方式取得材料,難以合成出垂直基材表面成長的大規模混相態二氧化鈦奈米柱陣列薄膜。在本研究中,利用基材濺鍍層與金紅石相二氧化鈦的結晶結構相似的概念,設計出雙面二氧化鈦奈米柱陣列電極,並在兩面分別沉積上性能相異的量子點達到大幅提升光分解水產氫的效率。再者,透過對溶液中二氧化鈦成長單體的認識,成功的利用固體前驅物有效地動態改變了溶液中酸度、鈦和氯離子濃度,營造一混和相二氧化鈦奈米柱陣列薄膜可成長之水溶液。最後,因為水溶液的成長環境其鈦前驅物水解結晶的速度相當快且難以控制,透過有機溶液為主的成長環境,達到以顆粒彼此聚合的成長方式來合成垂直成長於基材表面的混和相一維二氧化鈦奈米柱陣列薄膜,並透過同步輻射光源針對不同相聚合產生介面的缺陷分析。缺陷變化趨勢與光催化能力進步幅度一致說明了在成長異質同相的介面所產生的缺陷有助於材料光催化能力的增進。雖然晶體的成長過程相當複雜且依然還有許多部份是未知,但透過更基礎的方式去理解,可以設計出更適合特定應用的材料特性。
Titanium dioxide (TiO2) has extensive technological applications because of its chemical stability, general reactivity, high photocatalytic activity, and nontoxicity. 1D-nanostructures arrays with heterogeneous phases which provided effective charge separation and collection and enhanced photocatalytic activity aroused wildly attention. Reports about the conventional solution-based method for synthesizing heterogeneous phase 1D TiO2 nanorod which is suspended in solution and obtained by centrifugation and sintering are hard to preserve as a large-scale film. Thus, geometrically 1D nanostructured arrays offer unique properties that are difficult to synthesize by conventional solution-based method. In this thesis, the double-sided CdS and CdSe co-sensitized 1D TiO2 photoelectrode was achieved due to epitaxial relation between the FTO substrate and rutile TiO2 with a small lattice mismatch, leading hight solar-to-hydrogen conversion efficiency. Besides, the TiO2 growth monomers in solution was well adjusted by adding the additional solid-state precursor, forming the anatase growth-friendly condition. At last, the nonaqueous approaches provides better control over reaction rates than that in aqueous dominant condition. The anatase/rutile heterogeneous TiO2 crystal structure in hierarchical architecture was implemented through forming the hybrid organic-inorganic interfaces in solvent-based environment. This specially shaped nanostructures with interface defects was achieved by introducing the oriented attachment growth mechanism, providing enhanced photocatalytic activity and remarkable crystalline phase stability. Although the nucleation and condensation process are still too complex to fully comprehend, understanding the growth mechanism will be a useful strategy for the artificial material synthesis.
Dissertation Verification I
誌謝 II
摘要 III
Abstract IV
Contents VI
Figure Caption VIII
Table Caption XIII
Chapter 1: Introduction 14
1.1 Structure of nanocrystalline TiO2 17
1.2 Crystal growth 20
1.2.1 The classical nucleation theory 21
1.2.2 Oriented attachment 23
1.3 Synthesis of TiO2 nanoparticles 25
1.3.1 Aqueous method 25
1.3.2 Nonaqueous method 31
1.4 Synthesis of 1D TiO2 nanomaterials 36
1.5 Objective and research motivation 40
1.6 References 43
Chapter 2: Experimental section 51
2.1 Chemicals 51
2.2 Characterization 52
2.2.1 Scanning electron microscope, SEM 52
2.2.2 Focused ion beam, FIB 53
2.2.3 Transmission electron microscopy, TEM 54
2.2.4 X-ray diffraction, XRD 56
2.2.5 Fourier transform infrared spectroscopy, FTIR 57
2.2.6 Ultraviolet–visible spectroscopy, UV-Vis 58
2.3 Synchrotron based X-ray spectroscopy 58
2.3.1 Scanning photoelectron microscopy, SPEM 58
2.3.2 X-ray absorption spectroscopy, XAS 59
2.3.3 Resonant inelastic X-ray scattering, RIXS 61
2.4 References 62
Chapter 3: The tandem structure of QD co-sensitized TiO2 nanorod ar-rays for solar light driven hydrogen generation 64
3.1 Introduction 64
3.2 Experimental section 67
3.2.1 QD Sensitization TiO2 photoelectrode fabrication 67
3.2.2 Characterization 69
3.2.3 Photoelectrochemical measurements 70
3.3 Results and discussion 71
3.3.1 Morphology and structure characterization of QD sensitization TiO2 71
3.3.2 One-sided QD sensitization TiO2 75
3.3.3 Double-sided tandem structure of QD co-sensitization TiO2 87
3.4 Conclusion 93
3.5 References 94
Chapter 4: Transparent free-standing film of 1D rutile/anatse TiO2 nanorod arrays by one-step hydrothermal process 103
4.1 Introduction 103
4.2 Experimental section 105
4.2.1 Sample fabrication 105
4.2.2 Scanning photoelectron microscopy at Ti L-edge 106
4.2.3 The degradation of methyl blue (MB) by UV irradiation 106
4.3 Results and discussion 107
4.4 Conclusion 121
4.5 References 122
Chapter 5: Oriented attached growth heterogeneous crystal structure in hierarchical architecture with enhanced photocatalytic activity 130
5.1 Introduction 130
5.2 Experimenatl section 134
5.2.1 Synthesis of HA (hierarchical architecture) _TiO2 nanorod arrays with heterogeneous structure 134
5.2.2 Materials characterization 135
5.2.3 Synchrotron based X-ray spectroscopy and data analysis 136
5.2.4 Photocatalytic activity test 136
5-3 Results and discussion 138
5.4 Conclusion 164
5.5 References 165
Chapter 6: Conclusion and prospect 174
Chapter1
(1)Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891-2959.
(2)Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238, 37-38.
(3)Wijnhoven, J. E. G. J.; Vos, W. L. Preparation of Photonic Crystals Made of Air Spheres in Titania. Science, 1998, 281, 802-804.
(4)Roduner, E. Size matters: why nanomaterials are different. Chem. Soc. Rev., 2006, 35, 583-592.
(5)Zhang, H.; Penn, R. L.; Hamers, R. J.; Banfield, J. F. Enhanced Adsorption of Molecules on Surfaces of Nanocrystalline Particles. J. Phys. Chem. B, 1999, 103, 4656–4662.
(6)Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.;Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008, 3, 31–35.
(7)Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4, 455-459.
(8)Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes. Science, 2010, 327, 185-187.
(9)Yan, R. X.; Gargas, D.; Yang, P. D Nanowire photonics. Nat. Photonics, 2009, 3, 569–576.
(10)Dong, W.; Zhang, T.; Epstein, J.; Cooney, L.; Wang, H.; Li, Y.; Jiang, Y.-B.; Cogbill, A.; Varadan, V.; Tian, Z. R Multifunctional Nanowire Bioscaffolds on Titanium. Chem. Mater, 2007, 19, 4454–4459.
(11)Huang, C. T.; Song, J. H.; Lee, W. F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc, 2010, 132, 4766-4771.
(12)Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010, 5, 540–552.
(13)) Ding, Y.; Wang, X. D.; Wang, Z. L. Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem. Phys. Lett, 2004, 398, 32-36.
(14)Casavola, M.; Buonsanti, R.; Caputo, G.; Cozzoli, P. D. Colloidal Strategies for Preparing Oxide-Based Hybrid Nanocrystals. Eur. J. Inorg. Chem., 2008, 2008, 837-854.
(15)Buonsanti, R.; Carlino, E.; Giannini, C.; Altamura, D.; De Marco, L.; Giannuzzi, R.; Manca, M.; Gigli, G.; Cozzoli, P. D. Hyperbranched Anatase TiO2 Nanocrystals: Nonaqueous Synthesis, Growth Mechanism, and Exploitation in Dye-Sensitized Solar Cells. J. Am. Chem. Soc, 2011, 133, 19216–19239.
(16)Baur, W. H.; Khan, A. A. Ruffle-Type Compounds. IV. SiO2, GeO2 and a Comparison with other Ruffle-Type Structures. Acta Crystallogr., Sect. B: Struct.
Crystallogr. Cryst. Chem., 1971, 27, 2133.
(17)Horn, M.; Schwerdtfeger, C. F.; Meagher, E. P. Z. Refinement of the structure of anatase at several temperatures. Kristallogr., 1972, 136, 273.
(18)Feist, T.; Davies, P. The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem, 1992, 101, 275-295.
(19)Latroche, M.; Brohan, L.; Marchand, R.; Tournoux, M. New hollandite oxides: TiO2(H) and K0.06TiO2. J. Solid State Chem., 1989, 81, 78-82.
(20)Akimoto, J.; Gotoh, Y.; Oosawa, Y.; Nonose, N.; Kumagai, T.; Aoki, K.; Takei, H Topotactic Oxidation of Ramsdellite-Type Li0.5TiO2, a New Polymorph of Titanium Dioxide: TiO2(R). J. Solid State Chem., 1994, 113, 27-36.
(21)Breneman, G.; Willett, R. Lattice constants and space groups for several trihalide compounds. Acta Crystallogr, 1967, 23, 334.
(22)Swamy, V.; Dubrovinsky, L. S.; Dubrovinskaia, N. A.; Langenhorst, F.; Simionovici, A. S.; Drakopoulos, M.; Dmitriev, V.; Weber, H.-P. Size effects on the structure and phase transition behavior of baddeleyite TiO2. Solid State Commun, 2005, 134, 541-546.
(23)Dubrovinsky, L. S.; Dubrovinskaia, N. A.; Swamy, V.; Muscat, J.; Harrison, N. M.; Ahuja, R.; Holm, B.; Johansson, B. Materials science: The hardest known oxide. Nature, 2001, 410, 653-654.
(24)Mattesini, M.; de Almeida, J. S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. Phys. Rev. B, 2004, 70, 212101.
(25)Banfield, J. F.; Veblen, D. R.; Smith, D. The identification of naturally occurring titanium dioxide (B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares refinement. J. Am. Mineral, 1991, 76, 343-353.
(26)Müller, U. Inorganic Structural Chemistry. John Wiley & Sons: New York, 2007.
(27)Zhang, H.; Banfield, J. F. Structural Characteristics and Mechanical and Thermodynamic Properties of Nanocrystalline TiO2. Chem. Rev., 2014, 114, 9613–9644.
(28)Kashchiev, D. Thermodynamically consistent description of the work to form a nucleus of any size. J. Chem. Phys., 2003, 118, 1837–1851.
(29)Giuffre, A. J.; Hamm, L. M.; Han, N.; De Yoreo, J. J.; Dove, P. M. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 9261–9266.
(30)Habraken, W. J. et al., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun., 2013, 4, 1507.
(31)Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281, 969–971.
(32)De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349 (6247), aaa6760.
(33)Tao, A. R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small, 2008, 4, 310–325.
(34)Wang, F.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and Mechanisms of Aggregative Nanocrystal Growth. Chem. Mater, 2013, 26, 5-21.
(35)Banfield, J. F.; Welch, S. A.; Zhang, H. Z.; Thomsen, E. T.; Penn, R. L. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science, 2000, 289, 751–754.
(36)Zhang, J.; Huang, F.; Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2010, 2, 18–34.
(37)Cargnello, M.; Gordon, G. R.; Murray, C. B. Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. Chem. Rev., 2014, 114, 9319–9345.
(38)Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater., 1995, 7, 663-671.
(39)Pottier, A.; Chane´ac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J.-P. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem., 2001, 11, 1116-1121.
(40)Paola, A. D.; Cufalo, G.; Addamo, M.; Bellardita, M.; Campostrini, R.; Ischia, M.; Ceccato, R.; Palmisano, L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf., A, 2008, 317, 366-376.
(41)Testino, A.; Bellobono, I. R.; Buscaglia, V.; Canevali, C.; D’Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. Optimizing the Photocatalytic Properties of Hydrothermal TiO2 by the Control of Phase Composition and Particle Morphology. A Systematic Approach. J. Am. Chem. Soc., 2007, 129, 3564-3575.
(42)Garnweitner, G.; Niederberger, M. Organic chemistry in inorganic nanomaterials synthesis. J. Mater. Chem., 2008, 18, 1171-1182.
(43)Ye, J.; Liu, W.; Cai, J.; Chen, S.; Zhao, X.; Zhou, H.; Qi, L. Nanoporous Anatase TiO2 Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. J. Am. Chem. Soc., 2011, 133, 933–940.
(44)Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals. ACS Nano, 2009, 3, 3737–3743.
(45)Cozzoli, P. D.; Kornowski, A.; Weller, H. Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods. J. Am. Chem. Soc., 2003, 125, 14539–14548.
(46)Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions. J. Am. Chem. Soc., 2004, 126, 7790-7791.
(47)Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985-3990.
(48)Wu, H. B.; Hng, H. H.; Lou, X. W. Direct Synthesis of Anatase TiO2 Nanowires with Enhanced Photocatalytic Activity. Adv. Mater., 2012, 24, 2567-2571.
Chapter2
(1)Goldstein, J. I. Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Plenum Press,1992.
(2)Reimer, L. Scanning electron microscopy: physics of image formation and microanalysis. Springer,1998.
(3)Giannuzzi, L. A.; Stevie, F. A. A review of focused ion beam milling techniques for TEM specimen preparation. Micron, 1999, 30, 197-204.
(4)Wirth, R. J. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol., 2009, 261, 217–229.
(5)Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science. Springer, 2009.
(6)Moore, D. M.; R. C. Reynolds, Jr. X-Ray diffraction and the identification and analysis of clay minerals. 2nd Ed. Oxford University Press, New York, 1997.
(7)Kapilashrami, M.; Zhang, Y.; Liu, Y.-S.; Hagfeldt, A.; Guo, J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chem. Rev., 2014, 114, 9662−9707.
(8)Newville, M. Fundamentals of X-ray Absorption Fine Structure. uchicago.edu/xafs, 2005.
(9)Ament, L. J. P.; Veenendaal, M.; Devereaux, T. P.; Hill, J. P.; Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys., 2011, 83, 705-767.
Chapter3
(1)Akira, F.; Kenichi, H. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
(2)Hou, Y.; Li, X.; Zou, X.; Quan, X.; Chen, G. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-Chlorophenol degradation. Environ. Sci. Technol. 2009, 43, 858-863.
(3)Liang, K.; Tay, B. K.; Kupreeva, O. V.; Orekhovskaya, T. I.; Lazarouk, S. K.; Borisenko, V. E. Fabrication of double-walled titania nanotubes and their photocatalytic activity. ACS Sustainable Chem. Eng. 2014, 2, 991–995.
(4)Kao, L. C.; Lin, C. J.; Dong, C. L.; Chen, C. L.; Liou, S. Y. H. Transparent free-standing film of 1-D rutile/anatase TiO2 nanorod arrays by a one-step hydrothermal process. Chem. Commun. 2015, 51, 6361-6364.
(5)Madian, M.; Giebeler, L.; Klose, M.; Jaumann, T.; Uhlemann, M.; Gebert, A.; Oswald, S.; Ismail, N.; Eychmüller, A.; Eckert, J. Self-organized TiO2/CoO nanotubes as potential anode materials for Lithium ion batteries. ACS Sustainable Chem. Eng. 2015, 3, 909–919.
(6)Zhu, K.; Neale, N.; Miedaner, A.; Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69-74.
(7)Mor, G. K.; Prakasam, H. E.; Varghese, O. K.; Shankar, K.; Grimes, C. A. Vertically oriented Ti-Fe-O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 2007, 7, 2356-2364.
(8)Frank, A. J.; Kopidakis, N.; Lagemaat, J. van de Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties. Coord. Chem. Rev. 2004, 248, 1165-1179.
(9)Banerjee, S.; Mohapatra, S.K.; Misra, M. Water photooxidation by TiSi2-TiO2 nanotubes. J. Phys. Chem. C 2011, 115, 12643-12649.
(10)Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 2013, 13, 2989−2992.
(11)Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.
(12)Hensel, J.; Wang, G.; Li, Y.; Zhang, J. Z. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett. 2010, 10, 478-483.
(13)Chen,Y.; Tao, Q.; Fu, W.; Yang, H.; Zhou, X.; Su, S.; Ding, D.; Mu, Y.; Li, X.; Li, M. Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun. 2014, 50, 9509-9512.
(14)Choi, J.; Park, H.; Hoffmann, M. R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783-792.
(15)Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 2013, 135, 9995-9998.
(16)Nguyen, N. T.; Yoo, J.E.; Altomarea, M.; Schmuki, P. “Suspended’’ Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 2014, 50, 9653-9656.
(17)Gra1tzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841-6851.
(18)Liou, Y.-H.; Kao, L.-C.; Tsai, M.-C.; Lin, C.-J. Deposition of CdS nanoparticles within free-standing both-side-open stretched TiO2 nanotube-array films for the enhancement of photoelectrochemical performance. Electrochem. Commun. 2012, 15, 66-69.
(19)Yeh, S.-C.; Lee, P.-H.; Liao, H.-Y.; Chen, Y.-Y.; Chen, C.-T.; Jeng, R.-J.; Shuye, J.-J. Facile solution dropping method: A green process for dyeing TiO2 electrodes of dye-sensitized solar cells with enhanced power conversion efficiency. ACS Sustainable Chem. Eng. 2015, 3, 71−81.
(20)Park, H.; Choi, W.; Hoffmann, M. R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 2008, 18, 2379-2385.
(21)Su, D.; Wang, J.; Tang, Y.; Liu, C.; Liua, L.; Han, X. Constructing WO3/TiO2 composite structure towards sufficient use of solar energy. Chem. Commun. 2011, 47, 4231-4233.
(22)Cao, J.; Luo, B.; Lin, H.; Xu, B.; Chen, S. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl. Catal. B 2012, 111– 112, 288-296.
(23)Isimjan, T. T.; He, Q.; Liu, Y.; Zhu, J.; Puddephatt, R. J.; Anderson, D. J. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis. ACS Sustainable Chem. Eng. 2013, 1, 381–388.
(24)Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985-3990.
(25)Chen, H.; Fu, W.; Yang, H.; Sun, P.; Zhang, Y.; Wang, L.; Zhao, W.; Zhou, X.; Zhao, H.; Jing , Q.; Qi, X.; Li, Y. Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic devices. Electrochim. Acta 2010, 56, 919-924.
(26)Fan, S.-Q.; Kim, D.; Kim, J.-J.; Jung, D. W.; Kang, S. O.; Ko, J. Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications. Electrochem. Commun. 2009, 11, 1337-1339.
(27)Wang, G.; Yang, X.; Qian, F.; Zhang, J. Z.; Li, Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 2010, 10, 1088–1092.
(28)Guo, W.; Xue, X.; Wang, S.; Lin, C.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12 2520-2523.
(29)Lin, C.-J.; Chen, S.-y.; Liou, Y.-H. Wire-shaped electrode of CdSe-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Electrochem. Commun. 2010, 12, 1513-1516.
(30)Lin, C.-J.; Kao, L.-C.; Huang, Y.; Bañares, M. A.; Liou, S. Y.-H. Uniform deposition of coupled CdS and CdSe quantum dots on ZnO nanorod arrays as electrodes for photoelectrochemical solar water splitting. Int. J. Hydrogen Energy 2015, 40, 1388-1393.
(31)Hilal, H. S.; Turner, J. A. Controlling charge-transfer processes at semiconductor/liquid junctions. Electrochim. Acta 2006, 51, 6487–6497.
(32)Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854-2860.
(33)Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007-4015.
(34)Guo, Y.; Quan, X.; Lu, N.; Zhao, H.; Chen, S. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes. Environ. Sci. Technol. 2007, 41, 4422-4427.
(35)Yu, H.; Quan, X.; Zhang, Y.; Ma, N.; Chen, S.; Zhao, H. Electrochemically assisted photocatalytic inactivation of Escherichia coli under visible light using a ZnIn2S4 film electrode. Langmuir 2008, 24, 7599-7604.
(36)Lee, Y.-L.; Lo, Y.-S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 2009, 19, 604-609.
(37)Hagfeldt, A.; Lindström, H.; Södergren, S.; Lindquist, S.-E. Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients. J. Electroanal. Chem. 1995, 381, 39-46.
(38)Lin, C. J.; Yu, Y. H.; Liou, Y. H. Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts. Appl. Catal. B 2009, 93, 119–125.
(39)Yousefzadeh, S.; Faraji, M.; Nien,Y. T.; Moshfegh, A. Z. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode. Appl. Surf. Sci. 2014, 320, 772–779.
(40)Khan, S. U. M.; Al-Shahry, M.; Ingler Jr., W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243-2245.
(41)Lin, C. J.; Liao, S.-J.; Kao, L.-C.; Liou, S. Y. H. Photoelectrocatalytic activity of a hydrothermally grown branched ZnO nanorod-array electrode for paracetamol degradation. J. Hazard. Mater. 2015, 291, 9–17.
(42)Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.
(43)Zhang, Z.; Zhang, L.; Hedhili, M. N.; Zhang, H.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14−20.
Chapter4
(1)Frank, A. J.; Kopidakis, N.; Lagemaat, J. van de Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord. Chem. Rev., 2004, 248, 1165-1179.
(2)Zhu, K.; Neale, N.; Miedaner, A.; Frank, A. J. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Lett., 2007, 7, 69-74.
(3)Hou, Y.; Li, X.; Zou, X.; Quan, X.; Chen, G. Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation. Environ. Sci. Technol., 2009, 43, 858-863.
(4)Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential. J. Am. Chem. Soc., 2013, 135, 9995-9998.
(5)Nguyen, N. T.; Yoo, J.E.; Altomarea, M.; Schmuki, P. “Suspended’’ Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun., 2014, 50, 9653-9656.
(6)Chen, Y.; Tao, Q.; Fu, W.; Yang, H.; Zhou, X.; Su, S.; Ding, D.; Mu, Y.; Lia, X.; Li, M. Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun., 2014, 50, 9509-9512.
(7)Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions. J. Am. Chem. Soc., 2004, 126, 7790-7791.
(8)Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C.A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Lett., 2006, 6, 215-218.
(9)Liu, B.; Boercker, J. E.; Aydil, E. S. Oriented single crystalline titanium dioxide nanowires. Nanotechnology, 2008, 19, 505604-505610.
(10)Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications Nano Lett., 2008, 8, 3781-3786.
(11)Lin, C.-J.; Yu, W.-Y.; Lu, Y.-T.; Chien, S-H. Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem. Commun., 2008, 6031-6033.
(12)Wang, J.; Lin, Z. Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization. Chem. Mater., 2008, 20, 1257-1261.
(13)Liou, Y.-H.; Kao, L.-C.; Tsai, M.-C.; Lin, C.-J. Deposition of CdS nanoparticles within free-standing both-side-open stretched TiO2 nanotube-array films for the enhancement of photoelectrochemical performance. Electrochem. Commun., 2012, 15, 66-69.
(14)Lin, C.-J.; Yu, W.-Y.; Chien, S.-H. Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells J. Mater. Chem., 2010, 20, 1073-1077.
(15)Jo, Y.; Jung, I.; Lee, I.; Choi, J.; Tak, Y. Fabrication of through-hole TiO2 nanotubes by potential shock. Electrochem. Commun., 2010, 12, 616-619.
(16)Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J.D. A Structural Investigation of Titanium Dioxide Photocatalysts. J. Solid State Chem., 1991, 82, 178-190.
(17)Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal., A, 2003, 244, 383-391.
(18)Fresno, F.; Coronado, J. M.; Tudela, D.; Soria, J. Influence of the structural characteristics of Ti1-xSnxO2 nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors. Appl. Catal., B, 2005, 55, 159-167.
(19)Yan, M.; Chen, F.; Zhang, J.; Anpo, M. Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties. J. Phys. Chem. B, 2005, 109, 8673-8678.
(20)Hurum, D. C.; Gray, K. A. Recombination Pathways in the Degussa P25 Formulation of TiO2: Surface versus Lattice Mechanisms. J. Phys. Chem. B, 2005, 109, 977-980.
(21)Henderson, M. A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep., 2011, 66, 185-297.
(22)Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2: A Combined Effect of O2 and Crystallinity. J. Phys. Chem. C, 2011, 115, 21161-21168.
(23)Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin1, S. A.; Logsdail1, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P.; Watson, G. W.; Keal, T. W.; Sherwood, P.; Walsh, A.; Sokol, A. A. Band alignment of rutile and anatase TiO2. Nat. Mater., 2013, 12, 798-801.
(24)Wu, M.; Lin, G.; Chen, D.; Wang, G.; He, D.; Feng, S.; Xu, R. Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide. Chem. Mater., 2002, 14, 1974-1980.
(25)Testino, A.; Bellobono, I. R.; Buscaglia, V.; Canevali, C.; D’Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. Optimizing the Photocatalytic Properties of Hydrothermal TiO2 by the Control of Phase Composition and Particle Morphology. A Systematic Approach. J. Am. Chem. Soc., 2007, 129, 3564-3575.
(26)Li, G.; Gray, K. A. Preparation of Mixed-Phase Titanium Dioxide Nanocomposites via Solvothermal Processing. Chem. Mater., 2007, 19, 1143-1146.
(27)Wang, C.; Deng, Z.-X.; Zhang, G.; Fan, S.; Li, Y. Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol., 2002, 125, 39-44.
(28)Yin, S.; Aita, Y.; Komatsu, M.; Wang, J.; Tang, Q.; Sato, T. Synthesis of excellent visible-light responsive TiO22xNy photocatalyst by a homogeneous precipitation-solvothermal process. J. Mater. Chem., 2005, 15, 674-682.
(29)Wang, Q.; Wen, Z.; Li, J. Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional TiO2 Nanostructures. Inorg. Chem., 2006, 45, 6944-6949.
(30)Kinsinger, N. M.; Wong, A.; Li, D.; Villalobos, F.; Kisailus, D. Nucleation and Crystal Growth of Nanocrystalline Anatase and Rutile Phase TiO2 from a Water-Soluble Precursor. Cryst. Growth Des., 2010, 10, 5254-5261.
(31)Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater., 1995, 7, 663-671.
(32)Kumar, A.; Madaria, A. R.; Zhou, C. Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2010, 114, 7787-7792.
(33)Liu, B.; Aydil, E. S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc., 2009, 131, 3985-3990.
(34)Wisnet, A.; Betzler, S. B.; Zucker, R. V.; Dorman, J. A.; Wagatha, P.; Matich, S.; Okunishi, E.; Schmidt-Mende, L.; Scheu, C. Model for Hydrothermal Growth of Rutile Wires and the Associated Development of Defect Structures. Cryst. Growth Des., 2014, 14, 4658-4663.
(35)Kinsinger, N. M.; Dudchenko, A.; Wong, A.; Kisailus, D. Synergistic Effect of pH and Phase in a Nanocrystalline Titania Photocatalyst. ACS Appl. Mater. Interfaces, 2013, 5, 6247-6254.
(36)Brueggemann, W. L. Quantitative Measurement of Hydrogen Chloride Evolved from Polyolefin Polymers. Anal. Chem., 1986, 58, 665-667.
(37)Liu, Y.; Wang, H.; Wang, Y.; Xu, H.; Li, M.; Shena, H. Substrate-free, large-scale, free-standing and two-side oriented single crystal TiO2 nanorod array films with photocatalytic properties. Chem. Commun., 2011, 47, 3790-3792.
(38)Guo, W.; Xu, C.; Wang, X.; Wang, S.; Pan, C.; Lin, C.; Wang, Z. L. Rectangular Bunched Rutile TiO2 Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells. J. Am. Chem. Soc., 2012, 134, 4437-4441.
(39)Pottier, A.; Chane´ac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J.-P. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem., 2001, 11, 1116-1121.
(40)Paola, A. D.; Cufalo, G.; Addamo, M.; Bellardita, M.; Campostrini, R.; Ischia, M.; Ceccato, R.; Palmisano, L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf., A, 2008, 317, 366-376.
(41)Su, R.; Bechstein, R.; Sø, L.; Vang, R. T.; Sillassen, M.; Esbjörnsson, B.; Palmqvist, A.; Besenbacher, F. How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2. J. Phys. Chem. C, 2011, 115, 24287-24292.
Chapter5
(1)Lifshitz, I. M.; Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 1961, 19, 35– 50.
(2)Kashchiev, D. Thermodynamically consistent description of the work to form a nucleus of any size. J. Chem. Phys., 2003, 118, 1837–1851.
(3)Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc., 2005, 127, 7140–7147.
(4)Habraken, W. J. et al., Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun., 2013, 4, 1507.
(5)Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281, 969–971.
(6)Penn, R. L.; Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania Geochim. Cosmochim. Acta, 1999, 63 (10), 1549–1557.
(7)Banfield, J. F.; Welch, S. A.; Zhang, H. Z.; Thomsen, E. T.; Penn, R. L. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science, 2000, 289, 751–754.
(8)Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science, 2002, 297 (5579), 237–240.
(9)Liu, B.; Zeng, H. C. Mesoscale Organization of CuO Nanoribbons:  Formation of “Dandelions”. J. Am. Chem. Soc., 2004, 126 (26), 8124–8125.
(10)Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem., Int. Ed., 2005, 44 (35), 5576–5591.
(11)Geng, J.; Hou, W. H.; Lv, Y. N.; Zhu, J. J.; Chen, H. Y. One-Dimensional BiPO4 Nanorods and Two-Dimensional BiOCl Lamellae:  Fast Low-Temperature Sonochemical Synthesis,Characterization, and Growth Mechanism. Inorg. Chem., 2005, 44 (23), 8503–8509.
(12)Zhang, J.; Huang, F.; Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2010, 2, 18–34.
(13)Li, D.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science, 2012, 336 (6084), 1014-1018.
(14)Alivisatos, A. P. Naturally Aligned Nanocrystals. Science, 2000, 289, 736-737.
(15)De Yoreo, J. J. Crystal nucleation: More than one pathway. Nature Mater., 2013, 12, 284–285.
(16)De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349 (6247), aaa6760.
(17)Grätzel, M. Photoelectrochemical cells. Nature, 2001, 414, 338-344.
(18)Grätzel, M. J. Dye-sensitized solar cells. Photochem. Photobiol. C, 2003, 4, 145-153.
(19)Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chem. Rev., 2007, 107, 2891-2959.
(20)Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci., 2009, 2, 818-837.
(21)Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential. J. Am. Chem. Soc., 2013, 135, 9995-9998.
(22)Yan, M.; Chen, F.; Zhang, J.; Anpo, M. Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties. J. Phys. Chem. B, 2005, 109, 8673-8678.
(23)Cong, S.; Xu, Y. Explaining the High Photocatalytic Activity of a Mixed Phase TiO2: A Combined Effect of O2 and Crystallinity. J. Phys. Chem. C, 2011, 115, 21161-21168.
(24)Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin1, S. A.; Logsdail1, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P.; Watson, G. W.; Keal, T. W.; Sherwood, P.; Walsh, A.; Sokol, A. A. Band alignment of rutile and anatase TiO2. Nat. Mater., 2013, 12, 798-801.
(25)Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles. Chem. Mater., 1995, 7, 663-671.
(26)Kumar, A.; Madaria, A. R.; Zhou, C. Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2010, 114, 7787-7792.
(27)Li D. S. et al., Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Cryst. Growth Des., 2013, 13, 422–428.
(28)Lupulescu, A. I.; Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science, 2014, 344, 729–732.
(29)Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 2014, 345, 1158–1162.
(30)Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Coadou, C. L.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater., 2013, 12, 310–314.
(31)Nielsen, M. H.; Li, D.; Zhang, H.; Aloni, S.; Han, T. Y.-J.; Frandsen, C.; Seto, J.; Banfield, J. F.; Cölfen, H.; De Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal., 2014, 20, 425–436.
(32)Kumar, S.; Wang, Z.; Penn, R. L.; Tsapatsis, M. A structural resolution cryo-TEM study of the early stages of MFI growth. J. Am. Chem. Soc., 2008, 130, 17284–17286.
(33)Yuwono, V. M.; Burrows, N. D.; Soltis, J. A.; Penn, R. L. Oriented aggregation: Formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc., 2010, 132, 2163–2165.
(34)Boneschanscher, M. P. et al., Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science, 2014, 344, 1377–1380.
(35)Liu, X.; Yang, W.; Liu Z. Recent Progress on Synchrotron-Based In-Situ Soft X-ray Spectroscopy for Energy Materials. Adv. Mater., 2014, 26, 7710–7729.
(36)Kapilashrami, M.; Zhang, Y.; Liu, Y.-S.; Hagfeldt, A.; Guo, J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chem. Rev., 2014, 114, 9662−9707.
(37)Ament, L. J. P.; Veenendaal, M.; Devereaux, T. P.; Hill, J. P.; Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys., 2011, 83, 705-767.
(38)Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. A Simple Non-Aqueous Route to Anatase TiO2. Eur. J. Inorg. Chem., 2008, 1236–1240.
(39)Ye, J.; Liu, W.; Cai, J.; Chen, S.; Zhao, X.; Zhou, H.; Qi, L. Nanoporous Anatase TiO2 Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. J. Am. Chem. Soc., 2011, 133, 933–940.
(40)Yang, M.-H.; Chen, P.-C.; Tsai, M.-C.; Chen, T.-T.; Chang, I.-C.; Chiu, H.-T.; Lee, C.-Y. Alkali metal ion assisted synthesis of faceted anatase TiO2. CrystEngComm, 2013, 15, 2966–2971.
(41)Finnegan, M. P.; Zhang, H.; Banfield, J. F. Anatase Coarsening Kinetics under Hydrothermal Conditions As a Function of Ph and Temperature. Chem. Mater., 2008, 20, 3443–3449.
(42)Cottineau, T.; Richard-Plouet, M.; Rouet, A.; Puzenat, E.; Sutrisno, H.; Piffard, Y.; Petit, P.-E.; Brohan, L. Photosensitive Titanium Oxo-polymers: Synthesis and Structural Characterization. Chem. Mater., 2008, 20, 1421–1430.
(43)Cottineau, T.; Richard-Plouet, Mevellec, J.-Y.; Brohan, L. Hydrolysis and Complexation of N,N-Dimethylformamide in New Nanostructurated Titanium Oxide Hybrid Organic-Inorganic Sols and Gel. J. Phys. Chem. C, 2011, 115, 12269–12274.
(44)Kucheyev, S. O.; Buuren, T.; Baumann, T. F.; Satcher, J. H.; Willey, Jr., T. M.; Meulenberg, R. W.; Felter, T. E.; Poco, J. F.; Gammon, S. A.; Terminello, L. J. Electronic structure of titania aerogels from soft x-ray absorption spectroscopy. Phys. Rev. B, 2004, 69, 245102.
(45)Kronawitter, C. X.; Bakke, J. R.; Wheeler, D. A.; Wang, W.-C.; Chang C.; Antoun, B. R.; Zhang, J. Z.; Guo, J.; Bent, S. F.; Mao, S. S.; Vayssieres, L. Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures. Nano Lett., 2011, 11, 3855–3861.
(46)Kronawitter, C. X.; Kapilashrami, M.; Bakke, J. R.; Bent, S. F.; Chuang, C.-H.; Pong, W.-F.; Guo, J.; Mao, S. S.; Vayssieres, L. TiO2-SnO2:F interfacial electronic structure investigated by soft x-ray absorption spectroscopy. Phys. Rev. B, 2012, 85, 125109.
(47)Li, J.; Sham, T.-K.; Ye, Y.; Zhu, J.; Guo, J. Structural and Optical Interplay of Palladium-Modified TiO2 Nanoheterostructure. J. Phys. Chem. C, 2015, 119, 2222−2230.
(48)Kürger, P. Multichannel multiple scattering calculation of L2,3-edge spectra of TiO2 and SrTiO3: Importance of multiplet coupling and band structure. Phys. Rev. B, 2010, 81, 125121.
(49)Harada, Y.; Kinugasa, T.; Eguchi, R.; Matsubara, M.; Kotani, A.; Watanabe, M.; Yagishita, A.; Shin, S. Polarization Dependence of Soft- X-ray Raman Scattering at the L Edge of TiO2. Phys. Rev. B, 2000, 61,12854−12859.
(50)Augustsson, A.; Henningsson, A.; Butorin, S. M.; Siegbahn, H.; Nordgren, J.; Guo, J. H. Lithium Ion Insertion in Nanoporous Anatase TiO2 Studied with RIXS. J. Chem. Phys., 2003, 119, 3983−3987.
(51)Moser, S.; Fatale, S.; Kürger, P.; Berger, H.; Bugnon, P.; Magrez, A.; Niwa, H.; Miyawaki, J.; Harada, Y.; Grioni, M. Electron-Phonon Coupling in the Bulk of Anatase TiO2 Measured by Resonant Inelastic X-Ray Spectroscopy Phys. Rev. Lett., 2015, 115, 096404.
(52)Zhou, K.-J.; Radovic, M.; Schlappa, J.; Strocov, V.; Frison, R.; Mesot, J.; Patthey, L.; Schmitt, T. Localized and delocalized Ti 3d carriers in LaAlO3/SrTiO3 superlattices revealed by resonant inelastic x-ray scattering. Phys. Rev. B, 2011, 83, 201402.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊