中文部分
林宏奕(1999)破裂岩體優勢水流路徑之研究:國立成功大學資源工程研究所博士論文,共135頁。劉雅瑄(2006)零價鐵表面改質對水中硝酸鹽還原脫硝反應之影響:國立台灣大學環境工程研究所博士論文,共151頁。洪志雄(2007)奈米複合金屬製備及其對土壤/地下水汙染整治應用之研究:國立中山大學環境工程研究所博士論文,共126頁。陳重諭(2007)表面改質之奈米零價鐵對地下水DNAL汙染物現址整治之研究:元智化學工程與材料學學系碩士論文,共285頁。蔡利局 (2009) 提升奈米級零價鐵在地下水層孔隙間移動性之研究研究成果報告,國家科學委員會,共30頁。
陳柏瑞 (2009) 埔里盆地透水性垂向分布量測,國立台灣大學地質學研究所碩士論文,共51頁。宋政輝(2012)裂隙岩體破裂面參數與滲透性調查技術之研究:國立台北科技大學資源工程研究所碩士論文,共152頁。李在平(2012)熱脈衝流速儀試驗與地層透水性分布之研究:國立台灣大學地質科學研究所博士論文,共177頁。
詹宛真 (2014) 應用示蹤劑調查裂隙岩層中優勢地下水流路徑:國立台灣大學地質科學研究所碩士論文,共62頁。戴東霖 (2016) 地下水溫度變化之研究:國立台灣大學地質科學研究所碩士論文,共95頁。 英文部分
Banks EW, Shanafield MA, Cook PG (2014) Induced temperature gradients to examine groundwater flowpaths in open boreholes, Ground Water 52:943-951, doi 10.1111/gwat.12157
Barton CA, Zoback MD, Moos D (1995) Fluid-Flow Along Potentially Active Faults in Crystalline Rock, Geology 23:683-686, doi 10.1130/0091-7613(1995)023<0683:Ffapaf>2.3.Co;2
Basiricò S, Crosta GB, Frattini P, Villa A, Godio A (2015) Borehole flowmeter logging for the accurate design and analysis of tracer tests. Ground Water 53 Suppl 1: 3-9. doi 10.1111/gwat.12293
Bennett P, He F, Zhao D, Aiken B, Feldman L (2010) In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J. Contam Hydrol 116: 35-46. doi 10.1016/j.jconhyd.2010.05.006
Bense VF, Read T, Bour O, Le Borgne T, Coleman T, Krause S, Chalari A, Mondanos M, Ciocca F, Selker JS (2016) Distributed Temperature Sensing as a downhole tool in hydrogeology, Water Resources Research 52:9259-9273, doi 10.1002/2016wr018869
Berkowitz B (2002) Characterizing flow and transport in fractured geological media: A review, Adv Water Resour 25:861-884, doi 10.1016/S0309-1708(02)00042-8
Bradley JS (2007) The Chemistry of Transition Metal ColloidsClusters and Colloids:459-544.
Braester C, Thunvik R (1984) Determination of Formation Permeability by Double-Packer Tests, Journal of Hydrology 72:375-389, doi 10.1016/0022-1694(84)90090-8
Chapuis RP (1992) Using Cooper-Jacob Approximation to Take Account of Pumping Well Pipe Storage Effects in Early Drawdown Data of a Confined Aquifer, Ground Water 30:331-337, doi 10.1111/j.1745-6584.1992.tb02000.x
Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere 41:1307-1311, doi 10.1016/S0045-6535(99)00506-8
Chou KS, Ren CY (2000) Synthesis of nanosized silver particles by chemical reduction method, Materials Chemistry and Physics 64:41-246, doi 10.1016/S0254-0584(00)00223-6
Chuang PY, Chia Y, Liou YH, Teng MH, Liu CY, Lee TP (2016) Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test, Hydrogeol J 24:1651-1662, doi 10.1007/s10040-016-1426-7
Chuang PY, Chia Y, Chiu YC, Teng MH, Liou S. YH (2017) Mapping fracture flow paths with nanoscale zero-valent iron tracer test and flowmeter test, Hydrogeol J, doi 10.1007/s10040-017-1651-8.
Coleman TI, Parker BL, Maldaner CH, Mondanos MJ (2015) Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes, Journal of Hydrology 528:449-462, doi 10.1016/j.jhydrol.2015.06.061
Collar RJ, Mock PA (1997) Using Water-Supply Wells to Investigate Vertical Ground-Water Quality, Ground Water 35:743-750, doi 10.1111/j.1745-6584.1997.tb00142.x
Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum, Water Res 43:3717-3726, doi 10.1016/j.watres.2009.05.046
Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Transactions, American Geophysical Union 27:526, doi 10.1029/TR027i004p00526
Crane SR, Moore JA (1984) Bacterial Pollution of Groundwater - a Review, Water Air Soil Poll 22:67-83, doi 10.1007/Bf00587465
Day-Lewis FD, Johnson CD, Paillet FL, Halford KJ (2011) A computer program for flow-log analysis of single holes (FLASH). Groundwater 49: 926-931. doi 10.1111/j.1745-6584.2011.00798.x
Doherty J (2015) Calibration and Uncertainty Analysis for Complex Environmental Models, Watermark Numerical Computing. Brisbane, Australia. ISBN: 978-0-9943786-0-6.
Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline Metals Prepared by High-Energy Ball Milling, Metall Trans A 21:2333-2337, doi 10.1007/Bf02646980
Fischer JR, Sweeny KH (1972) Reductive degradation of halogenated pesticides Google Patents.
Foster LB, Dunn RT (1973) Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method, Clin Chem 19:338-340.
Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chemistry of Materials 21:673-681, doi 10.1021/cm8025329
Grisak GE, Pickens JF (1980) Solute Transport through Fractured Media .1. The Effect of Matrix Diffusion. Water Resour Res 16: 719-730. doi 10.1029/WR016i004p00719
Hao Y, Yeh TC, Xiang J, Illman WA, Ando K, Hsu KC, Lee CH (2008) Hydraulic tomography for detecting fracture zone connectivity, Ground Water 46:183-192, doi 10.1111/j.1745-6584.2007.00388.x
Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process US Department of the Interior, US Geological Survey Reston, VA, USA
He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44: 2360-2370. doi 10.1016/j.watres.2009.12.041
Hess AE (1986) Identifying Hydraulically Conductive Fractures with a Slow-Velocity Borehole Flowmeter. Can Geotech J. 23: 69-78. doi 10.1139/t86-008
Huyakorn PS, Lester BH, Mercer JW (1983) An Efficient Finite-Element Technique for Modeling Transport in Fractured Porous-Media. 1. Single Species Transport. Water Resour Res 19: 841-854. doi 10.1029/WR019i003p00841
James SC, Chrysikopoulos CV (2003) Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture, J Colloid Interface Sci 263:288-295, doi 10.1016/S0021-9797(03)00254-6
Johnson RL, Nurmi JT, O''Brien Johnson GS, Fan D, O''Brien Johnson RL, Shi Z, Salter-Blanc AJ, Tratnyek PG, Lowry GV (2013) Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environ Sci Technol 47: 1573-1580. doi 10.1021/es304564q
Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Synthesis and consolidation of iron nanopowders, Nanostructured Materials 10:1379-1392, doi 10.1016/S0965-9773(99)00017-3
Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42: 896-900. doi 10.1021/es071774j
Klepikova MV, Le Borgne T, Bour O, Gallagher K, Hochreutener R, Lavenant N (2014) Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media, Journal of Hydrology 512:549-562, doi 10.1016/j.jhydrol.2014.03.018
Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins L, Peace C, Sleep BE, O''Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48: 2862-2869. doi 10.1021/es4044209
Lapcevic PA, Novakowski KS, Sudicky EA (1999) The interpretation of a tracer experiment conducted in a single fracture under conditions of natural groundwater flow, Water Resources Research 35:2301-2312, doi 10.1029/1999wr900143
Lee TP, Chia YP, Chen JS, Chen HE, Liu CW (2012) Effects of free convection and friction on heat-pulse flowmeter measurement, Journal of Hydrology 428:182-190, doi 10.1016/j.jhydrol.2012.02.001
Li SZ, Hong YC, Uhm HS, Li ZK (2004) Synthesis of Nanocrystalline Iron Oxide Particles by Microwave Plasma Jet at Atmospheric Pressure, Japanese Journal of Applied Physics 43:7714.
Liu J, Wang LQ, Samuels WD, Exarhos GJ (1997) Aggregation and dispersion of colloidal suspensions by inorganic surfactants: Effect of chemical speciation and molecular conformation, J Phys Chem B 101:8264-8269, doi 10.1021/jp971609y
Ma R, Zheng CM, Zachara JM, Tonkin M (2012) Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions, Water Resources Research 48, doi W0852310.1029/2011wr011281
Molz FJ, Morin RH, Hess AE, Melville JG, Guven O (1989) The Impeller Meter for Measuring Aquifer Permeability Variations - Evaluation and Comparison with Other Tests. Water Res 25: 1677-1683. doi 10.1029/WR025i007p01677
Molz FJ, Boman GK, Young SC, Waldrop WR (1994) Borehole Flowmeters - Field Application and Data-Analysis, Journal of Hydrology 163:347-371, doi 10.1016/0022-1694(94)90148-1
Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279:208-211, doi 10.1126/science.279.5348.208
National Research Council (NRC) (1996) Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. National Academy Press
Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks, Hydrogeol J 13:124-147, doi 10.1007/s10040-004-0397-2
Novakowski KS, Lapcevic PA (1994) Field Measurement of Radial Solute Transport in Fractured Rock, Water Resources Research 30:37-44, doi 10.1029/93wr02401
Paillet FL, Hess AE, Cheng CH, Hardin E (1987) Characterization of Fracture Permeability with High-Resolution Vertical Flow Measurements during Borehole Pumping. Ground Water 25: 28-40. doi 10.1111/j.1745-6584.1987.tb02113.x
Papadopulos IS, Cooper HH (1967) Drawdown in a Well of Large Diameter. Water Res 3: 241. doi 10.1029/WR003i001p00241
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ Sci Technol 41:284-290, doi 10.1021/es061349a
Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation, J Nanopart Res 10:795-814 doi 10.1007/s11051-007-9315-6
Read T, Bour O, Bense V, Le Borgne T, Goderniaux P, Klepikova MV, Hochreutener R, Lavenant N, Boschero V (2013) Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing, Geophysical Research Letters 40:2055-2059, doi 10.1002/grl.50397
Read T, Bour O, Selker JS, Bense VF, Le Borgne T, Hochreutener R, Lavenant N (2014) Active-Distributed Temperature Sensing to continuously quantify vertical flow in boreholes, Water Resources Research 50:3706-3713, doi 10.1002/2014wr015273
Reynolds GW, Hoff JT, Gillham RW (1990) Sampling Bias Caused by Materials Used to Monitor Halocarbons in Groundwater, Environmental Science & Technology 24:135-142, doi 10.1021/es00071a017
Rodrigues SN, Dickson SE, Qu J (2013) Colloid retention mechanisms in single, saturated, variable-aperture fractures, Water Res 47:31-42, doi 10.1016/j.watres.2012.08.033
Sellwood SM, Bahr JM, Hart DJ (2016) Evaluation of a discrete-depth heat dissipation test for thermal characterization of the subsurface, Geological Society of America Special Papers 519:67-79, doi 10.1130/2016.2519(05)
Sharmeen R, Illman WA, Berg SJ, Yeh TCJ, Park YJ, Sudicky EA, Ando K (2012) Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments, Water Resources Research 48, doi Artn W10532 10.1029/2012wr012216
Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Copolymers, J Colloid Interface Sci 212:197-211, doi 10.1006/jcis.1998.6035
Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloid Surface A 308: 60-66. doi 10.1016/j.colsurfa.2007.05.029
Swanson SK, Bahr JM, Bradbury KR, Anderson KM (2006) Evidence for preferential flow through sandstone aquifers in Southern Wisconsin. Sediment Geology 184: 331-342. doi 10.1016/j.sedgeo.2005.11.008
Theis CV, Branch GSGW (1935) The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground Water Storage U.S. Department of the Interior, Geological Survey, Water Resources Division, Ground Water Branch.
Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum, J Colloid Interface Sci 324:71-79, doi 10.1016/j.jcis.2008.04.064
Tiedeman CR, Hsieh PA (2001) Assessing an open-well aquifer test in fractured crystalline rock, Ground Water 39:68-78, doi 10.1111/j.1745-6584.2001.tb00352.x
Tsang CF, Hufschmied P, Hale FV (1990) Determination of Fracture Inflow Parameters with a Borehole Fluid Conductivity Logging Method, Water Resources Research 26:561-578, doi 10.1029/WR026i004p00561
Van Meir N, Jaeggi D, Herfort M, Loew S, Pezard P, Lods G (2007) Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data. Hydrogeol J 15: 225-240. doi 10.1007/s10040-006-0086-4
Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles, Chemosphere 66:1031-1038, doi 10.1016/j.chemosphere.2006.07.036
Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environmental Science & Technology 31:2154-2156, doi 10.1021/es970039c
Wang XL, Zhou LZ, Ma YJ, Li X, Gu HC (2009) Control of Aggregate Size of Polyethyleneimine-Coated Magnetic Nanoparticles for Magnetofection, Nano Res 2: 365-372 doi 10.1007/s12274-009-9035-6
Wagner R, Ellis W (1964) Vapor‐liquid‐solid mechanism of single crystal growth, Applied Physics Letters 4:89-90.
Williams DN, Gold KA, Holoman TRP, Ehrman SH, Wilson OC (2006) Surface modification of magnetic nanoparticles using gum arabic, J Nanopart Res 8:749-753, doi 10.1007/s11051-006-9084-7
Williams JH, Johnson CD (2000) Borehole-wall imaging with acoustic and optical televiewers for fractured-bedrock aquifer investigations, Seventh International Symposium on Borehole Geophysics for Minerals, Geotechnical, and Groundwater Applications, Houston. p 43-53
Williams JH, Paillet FL (2002) Using flowmeter pulse tests to define hydraulic connections in the subsurface: a fractured shale example, Journal of Hydrology 265:100-117 doi 10.1016/S0022-1694(02)00092-6
Zha YY, Yeh TCJ, Mao DQ, Yang JZ, Lu WX (2014) Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium, Adv Water Resour 71:162-176, doi 10.1016/j.advwatres.2014.06.008
Zha Y, Yeh T-CJ, Illman WA, Tanaka T, Bruines P, Onoe H, Saegusa H (2015) What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments, Journal of Hydrology 531:17-30, doi 10.1016/j.jhydrol.2015.06.013
Zha Y, Yeh TJ, Illman WA, Tanaka T, Bruines P, Onoe H, Saegusa H, Mao D, Takeuchi S, Wen JC (2016) An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan, Ground Water 54:793-804, doi 10.1111/gwat.12421
Zhao J (1998) Rock mass hydraulic conductivity of the Bukit Timah granite, Singapore. Engineering Geology 50:211-216, doi 10.1016/S0013-7952(98)00021-0
Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user''s guide DTIC Document.