跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊伯禹
研究生(外文):Po-Yu Chuang
論文名稱:利用跨孔奈米鐵示蹤劑試驗偵測裂隙水流路徑之研究
論文名稱(外文):Delineation of Fracture Flow Paths Using a Cross-hole Nano-Iron Tracer Test
指導教授:賈儀平賈儀平引用關係鄧茂華鄧茂華引用關係
指導教授(外文):Yeeping ChiaMao-Hua Teng
口試日期:2017-07-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:137
中文關鍵詞:裂隙岩層流速儀奈米級零價鐵示蹤劑試驗水流路徑
外文關鍵詞:Fractured rockFlowmeterNanoscale zero-valent ironTracer testFlow path
相關次數:
  • 被引用被引用:2
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來國際上發展諸多地球物理技術,可間接推判裂隙岩層中優勢地下水流路徑,然而直接偵測技術仍在發展中。本研究針對調查技術瓶頸與關鍵課題,首次將奈米級零價鐵作為示蹤劑調查裂隙水流路徑,奈米鐵溶液已被廣泛的運用在地下水污染整治方面,研究中利用奈米鐵具備磁性的特性,設計一個磁鐵陣列偵測裝置,當奈米鐵投注於試驗井後,流經透水連通裂隙到達觀測井,並被置於觀測井內的磁鐵陣列吸附,藉由奈米鐵顆粒吸附之量化分布,可直接得知示蹤劑抵達觀測井的深度位置,進而估算地下水及滲流大小或污染物(溶質)傳輸可能擴散及延散範圍。
本研究選定位於南投縣信義鄉的和社水文地質試驗井場進行現地試驗,當地岩層裂隙大多導水性不佳,僅有少數透水裂隙,為確認試驗井之間的水力連通性,先藉由跨孔水力試驗,選定兩口具良好水力連通性之裸井作為試驗井,再運用熱脈衝流速儀量測兩口井之透水裂隙垂向分布情形,繼而依此規劃奈米鐵示蹤劑試驗之投注位置及導電度監測位置。從觀測井的導電度變化,可以得知示蹤劑經透水裂隙抵達觀測井之所需時間,同時利用磁鐵陣列奈米鐵吸附量的分布剖面,可判釋透水連通裂隙的深度位置。本研究發現奈米鐵示蹤劑抵達的位置與觀測井高度透水裂隙所在位置相符,然而奈米鐵示蹤劑的回收率僅有0.01%,可能會大幅限制現地應用價值。
經檢討改進後,本研究選擇一口裸井與一口全開篩井,進行第二次跨孔奈米鐵示蹤劑試驗。先利用熱脈衝流速儀調查兩口井的透水裂隙分布情形,並依此選定注入井1.5 m開篩區段,封塞其他區段後,將奈米鐵示蹤劑注入。由觀測井磁鐵陣列吸附奈米鐵的分布情形,可判釋示蹤劑經由裂隙抵達觀測井的深度。試驗結果指出奈米鐵顆粒的回收率高達7.5%,使用區段開篩的注入方式可有效增加奈米鐵顆粒流進岩層裂隙的數目,而奈米鐵吸附量最多的位置,也是熱脈衝流速儀所偵測到的透水裂隙所在位置。本研究也執行跨孔鹽水示蹤劑試驗,試驗成果用以比對兩種示蹤劑的傳輸與延散特性。此外利用MODFLOW和MT3DMS建置一個水文地質概念模型,計算相連透水裂隙之水文地質參數。本研究結果顯示,奈米鐵示蹤劑試驗搭配熱脈衝流速儀試驗,有潛力運用於偵測裂隙岩層中優勢水流路徑。
Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. Nanoscale zero-valent iron (nZVI) has been widely applied to in-situ remediation of groundwater contamination. In this study, a novel approach using nZVI particles as tracers was developed for detecting fracture flow paths directly. As nZVI particles are magnetic, they are attracted to magnets. This feature spurred the development of a magnet array for locating the position of incoming tracers. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet.
Two nZVI tracer tests were implemented in fractured rock at a hydrogeological research station in central Taiwan. Generally only a few rock fractures are permeable while most are much less permeable. In the first field test, a series of field experiments were conducted in two open boreholes. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. However, a low mass recovery rate of approximately 0.01% would restrict the potential application of nZVI particles as tracers beyond the experimental range.
In the second field test, the tracer test was intended to carry out between an open hole and a screened well at the hydrogeological research station. Heat-pulse flowmeter tests were conducted to characterize the vertical distribution of permeable zones for locating the screened depth of the injection well. After the sealing of the injection well, the screened section was only 1.5 m. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The mass recovery rate in the nZVI tracer test was approximately 7.5%, suggesting the mass recovery was successfully enhanced by hydraulically isolating a permeable segment in the injection well. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.
目錄
口試委員會審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 研究方法 5
第二章 奈米鐵示蹤劑 7
2.1 奈米鐵的製備 8
2.2 奈米鐵顆粒的團聚與分散劑 11
2.3 奈米鐵示蹤劑的沉降特性 13
2.4 奈米鐵示蹤劑之優點 15
第三章 奈米鐵示蹤劑實驗室試驗 17
3.1 裂隙岩層模擬試驗 17
3.1.1 試驗系統設置 17
3.1.2 試驗過程與結果 19
3.2 單一連通道模擬試驗 19
3.2.1 試驗系統設置 19
3.2.2 試驗過程與結果 21
第四章 現地試驗-裸孔試驗井 24
4.1 和社水文地質試驗井場與試驗井 24
4.1.1 和社水文地質試驗井場 24
4.1.2 試驗井 29
4.2 現地試驗流程 31
4.3 跨孔水力試驗 33
4.4 裂隙分布位態 38
4.5 熱脈衝流速儀試驗 40
4.5.1 熱脈衝流速儀量測方法 40
4.5.2 熱脈衝流速儀試驗結果 43
4.6 奈米鐵示蹤劑試驗 47
4.6.1 現地試驗設置 47
4.6.2 試驗結果 50
4.6.3 奈米鐵示蹤劑傳輸特性與裂隙水流路徑 54
4.6.4 試驗結果水力參數分析 58
4.6.5 試驗結果討論 60
第五章 現地試驗-封塞試驗井 62
5.1 試驗井 62
5.2 現地試驗流程 65
5.3 跨孔水力試驗 67
5.4 熱脈衝流速儀試驗 70
5.5 W6試驗井封塞 74
5.6 鹽水示蹤劑試驗 76
5.6.1 實驗配置 76
5.6.2 試驗結果分析 79
5.7 奈米鐵示蹤劑試驗 81
5.7.1 實驗配置 81
5.7.2 試驗結果分析 84
5.7.3 跨孔之地下水流路徑 89
第六章 數值模擬 91
6.1 GMS數值模擬軟體 91
6.2 數學模式:地下水流動與溶質傳輸 93
6.3 地下水流動與溶質傳輸模式設定 94
6.4 鹽水示蹤劑試驗模擬結果 98
6.5 奈米鐵示蹤劑模擬結果 100
第七章 討論 103
7.1 奈米鐵示蹤劑與鹽水示蹤劑之比較 103
7.2 奈米鐵沉降效應與回收率 105
7.3 奈米鐵化學反應及滯留機制 107
第八章 結論與建議 110
8.1 結論 110
8.2 建議 112
參考文獻 113
附錄A 和社試驗井場岩心品質指標(RQD)與岩心破裂面指數(FI) 126
附錄B 和社試驗井場導水系數 130
附錄C 奈米鐵示蹤劑現地試驗之磁鐵陣列中釹鐵硼磁鐵吸附重量 134
中文部分
林宏奕(1999)破裂岩體優勢水流路徑之研究:國立成功大學資源工程研究所博士論文,共135頁。
劉雅瑄(2006)零價鐵表面改質對水中硝酸鹽還原脫硝反應之影響:國立台灣大學環境工程研究所博士論文,共151頁。
洪志雄(2007)奈米複合金屬製備及其對土壤/地下水汙染整治應用之研究:國立中山大學環境工程研究所博士論文,共126頁。
陳重諭(2007)表面改質之奈米零價鐵對地下水DNAL汙染物現址整治之研究:元智化學工程與材料學學系碩士論文,共285頁。
蔡利局 (2009) 提升奈米級零價鐵在地下水層孔隙間移動性之研究研究成果報告,國家科學委員會,共30頁。
陳柏瑞 (2009) 埔里盆地透水性垂向分布量測,國立台灣大學地質學研究所碩士論文,共51頁。
宋政輝(2012)裂隙岩體破裂面參數與滲透性調查技術之研究:國立台北科技大學資源工程研究所碩士論文,共152頁。
李在平(2012)熱脈衝流速儀試驗與地層透水性分布之研究:國立台灣大學地質科學研究所博士論文,共177頁。
詹宛真 (2014) 應用示蹤劑調查裂隙岩層中優勢地下水流路徑:國立台灣大學地質科學研究所碩士論文,共62頁。
戴東霖 (2016) 地下水溫度變化之研究:國立台灣大學地質科學研究所碩士論文,共95頁。

英文部分
Banks EW, Shanafield MA, Cook PG (2014) Induced temperature gradients to examine groundwater flowpaths in open boreholes, Ground Water 52:943-951, doi 10.1111/gwat.12157
Barton CA, Zoback MD, Moos D (1995) Fluid-Flow Along Potentially Active Faults in Crystalline Rock, Geology 23:683-686, doi 10.1130/0091-7613(1995)023<0683:Ffapaf>2.3.Co;2
Basiricò S, Crosta GB, Frattini P, Villa A, Godio A (2015) Borehole flowmeter logging for the accurate design and analysis of tracer tests. Ground Water 53 Suppl 1: 3-9. doi 10.1111/gwat.12293
Bennett P, He F, Zhao D, Aiken B, Feldman L (2010) In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J. Contam Hydrol 116: 35-46. doi 10.1016/j.jconhyd.2010.05.006
Bense VF, Read T, Bour O, Le Borgne T, Coleman T, Krause S, Chalari A, Mondanos M, Ciocca F, Selker JS (2016) Distributed Temperature Sensing as a downhole tool in hydrogeology, Water Resources Research 52:9259-9273, doi 10.1002/2016wr018869
Berkowitz B (2002) Characterizing flow and transport in fractured geological media: A review, Adv Water Resour 25:861-884, doi 10.1016/S0309-1708(02)00042-8
Bradley JS (2007) The Chemistry of Transition Metal ColloidsClusters and Colloids:459-544.
Braester C, Thunvik R (1984) Determination of Formation Permeability by Double-Packer Tests, Journal of Hydrology 72:375-389, doi 10.1016/0022-1694(84)90090-8
Chapuis RP (1992) Using Cooper-Jacob Approximation to Take Account of Pumping Well Pipe Storage Effects in Early Drawdown Data of a Confined Aquifer, Ground Water 30:331-337, doi 10.1111/j.1745-6584.1992.tb02000.x
Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere 41:1307-1311, doi 10.1016/S0045-6535(99)00506-8
Chou KS, Ren CY (2000) Synthesis of nanosized silver particles by chemical reduction method, Materials Chemistry and Physics 64:41-246, doi 10.1016/S0254-0584(00)00223-6
Chuang PY, Chia Y, Liou YH, Teng MH, Liu CY, Lee TP (2016) Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test, Hydrogeol J 24:1651-1662, doi 10.1007/s10040-016-1426-7
Chuang PY, Chia Y, Chiu YC, Teng MH, Liou S. YH (2017) Mapping fracture flow paths with nanoscale zero-valent iron tracer test and flowmeter test, Hydrogeol J, doi 10.1007/s10040-017-1651-8.
Coleman TI, Parker BL, Maldaner CH, Mondanos MJ (2015) Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes, Journal of Hydrology 528:449-462, doi 10.1016/j.jhydrol.2015.06.061
Collar RJ, Mock PA (1997) Using Water-Supply Wells to Investigate Vertical Ground-Water Quality, Ground Water 35:743-750, doi 10.1111/j.1745-6584.1997.tb00142.x
Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum, Water Res 43:3717-3726, doi 10.1016/j.watres.2009.05.046
Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Transactions, American Geophysical Union 27:526, doi 10.1029/TR027i004p00526
Crane SR, Moore JA (1984) Bacterial Pollution of Groundwater - a Review, Water Air Soil Poll 22:67-83, doi 10.1007/Bf00587465
Day-Lewis FD, Johnson CD, Paillet FL, Halford KJ (2011) A computer program for flow-log analysis of single holes (FLASH). Groundwater 49: 926-931. doi 10.1111/j.1745-6584.2011.00798.x
Doherty J (2015) Calibration and Uncertainty Analysis for Complex Environmental Models, Watermark Numerical Computing. Brisbane, Australia. ISBN: 978-0-9943786-0-6.
Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Nanocrystalline Metals Prepared by High-Energy Ball Milling, Metall Trans A 21:2333-2337, doi 10.1007/Bf02646980
Fischer JR, Sweeny KH (1972) Reductive degradation of halogenated pesticides Google Patents.
Foster LB, Dunn RT (1973) Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method, Clin Chem 19:338-340.
Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chemistry of Materials 21:673-681, doi 10.1021/cm8025329
Grisak GE, Pickens JF (1980) Solute Transport through Fractured Media .1. The Effect of Matrix Diffusion. Water Resour Res 16: 719-730. doi 10.1029/WR016i004p00719
Hao Y, Yeh TC, Xiang J, Illman WA, Ando K, Hsu KC, Lee CH (2008) Hydraulic tomography for detecting fracture zone connectivity, Ground Water 46:183-192, doi 10.1111/j.1745-6584.2007.00388.x
Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process US Department of the Interior, US Geological Survey Reston, VA, USA
He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44: 2360-2370. doi 10.1016/j.watres.2009.12.041
Hess AE (1986) Identifying Hydraulically Conductive Fractures with a Slow-Velocity Borehole Flowmeter. Can Geotech J. 23: 69-78. doi 10.1139/t86-008
Huyakorn PS, Lester BH, Mercer JW (1983) An Efficient Finite-Element Technique for Modeling Transport in Fractured Porous-Media. 1. Single Species Transport. Water Resour Res 19: 841-854. doi 10.1029/WR019i003p00841
James SC, Chrysikopoulos CV (2003) Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture, J Colloid Interface Sci 263:288-295, doi 10.1016/S0021-9797(03)00254-6
Johnson RL, Nurmi JT, O''Brien Johnson GS, Fan D, O''Brien Johnson RL, Shi Z, Salter-Blanc AJ, Tratnyek PG, Lowry GV (2013) Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environ Sci Technol 47: 1573-1580. doi 10.1021/es304564q
Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Synthesis and consolidation of iron nanopowders, Nanostructured Materials 10:1379-1392, doi 10.1016/S0965-9773(99)00017-3
Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42: 896-900. doi 10.1021/es071774j
Klepikova MV, Le Borgne T, Bour O, Gallagher K, Hochreutener R, Lavenant N (2014) Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media, Journal of Hydrology 512:549-562, doi 10.1016/j.jhydrol.2014.03.018
Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins L, Peace C, Sleep BE, O''Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48: 2862-2869. doi 10.1021/es4044209
Lapcevic PA, Novakowski KS, Sudicky EA (1999) The interpretation of a tracer experiment conducted in a single fracture under conditions of natural groundwater flow, Water Resources Research 35:2301-2312, doi 10.1029/1999wr900143
Lee TP, Chia YP, Chen JS, Chen HE, Liu CW (2012) Effects of free convection and friction on heat-pulse flowmeter measurement, Journal of Hydrology 428:182-190, doi 10.1016/j.jhydrol.2012.02.001
Li SZ, Hong YC, Uhm HS, Li ZK (2004) Synthesis of Nanocrystalline Iron Oxide Particles by Microwave Plasma Jet at Atmospheric Pressure, Japanese Journal of Applied Physics 43:7714.
Liu J, Wang LQ, Samuels WD, Exarhos GJ (1997) Aggregation and dispersion of colloidal suspensions by inorganic surfactants: Effect of chemical speciation and molecular conformation, J Phys Chem B 101:8264-8269, doi 10.1021/jp971609y
Ma R, Zheng CM, Zachara JM, Tonkin M (2012) Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions, Water Resources Research 48, doi W0852310.1029/2011wr011281
Molz FJ, Morin RH, Hess AE, Melville JG, Guven O (1989) The Impeller Meter for Measuring Aquifer Permeability Variations - Evaluation and Comparison with Other Tests. Water Res 25: 1677-1683. doi 10.1029/WR025i007p01677
Molz FJ, Boman GK, Young SC, Waldrop WR (1994) Borehole Flowmeters - Field Application and Data-Analysis, Journal of Hydrology 163:347-371, doi 10.1016/0022-1694(94)90148-1
Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279:208-211, doi 10.1126/science.279.5348.208
National Research Council (NRC) (1996) Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. National Academy Press
Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks, Hydrogeol J 13:124-147, doi 10.1007/s10040-004-0397-2
Novakowski KS, Lapcevic PA (1994) Field Measurement of Radial Solute Transport in Fractured Rock, Water Resources Research 30:37-44, doi 10.1029/93wr02401
Paillet FL, Hess AE, Cheng CH, Hardin E (1987) Characterization of Fracture Permeability with High-Resolution Vertical Flow Measurements during Borehole Pumping. Ground Water 25: 28-40. doi 10.1111/j.1745-6584.1987.tb02113.x
Papadopulos IS, Cooper HH (1967) Drawdown in a Well of Large Diameter. Water Res 3: 241. doi 10.1029/WR003i001p00241
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ Sci Technol 41:284-290, doi 10.1021/es061349a
Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation, J Nanopart Res 10:795-814 doi 10.1007/s11051-007-9315-6
Read T, Bour O, Bense V, Le Borgne T, Goderniaux P, Klepikova MV, Hochreutener R, Lavenant N, Boschero V (2013) Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing, Geophysical Research Letters 40:2055-2059, doi 10.1002/grl.50397
Read T, Bour O, Selker JS, Bense VF, Le Borgne T, Hochreutener R, Lavenant N (2014) Active-Distributed Temperature Sensing to continuously quantify vertical flow in boreholes, Water Resources Research 50:3706-3713, doi 10.1002/2014wr015273
Reynolds GW, Hoff JT, Gillham RW (1990) Sampling Bias Caused by Materials Used to Monitor Halocarbons in Groundwater, Environmental Science & Technology 24:135-142, doi 10.1021/es00071a017
Rodrigues SN, Dickson SE, Qu J (2013) Colloid retention mechanisms in single, saturated, variable-aperture fractures, Water Res 47:31-42, doi 10.1016/j.watres.2012.08.033
Sellwood SM, Bahr JM, Hart DJ (2016) Evaluation of a discrete-depth heat dissipation test for thermal characterization of the subsurface, Geological Society of America Special Papers 519:67-79, doi 10.1130/2016.2519(05)
Sharmeen R, Illman WA, Berg SJ, Yeh TCJ, Park YJ, Sudicky EA, Ando K (2012) Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments, Water Resources Research 48, doi Artn W10532 10.1029/2012wr012216
Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Copolymers, J Colloid Interface Sci 212:197-211, doi 10.1006/jcis.1998.6035
Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloid Surface A 308: 60-66. doi 10.1016/j.colsurfa.2007.05.029
Swanson SK, Bahr JM, Bradbury KR, Anderson KM (2006) Evidence for preferential flow through sandstone aquifers in Southern Wisconsin. Sediment Geology 184: 331-342. doi 10.1016/j.sedgeo.2005.11.008
Theis CV, Branch GSGW (1935) The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground Water Storage U.S. Department of the Interior, Geological Survey, Water Resources Division, Ground Water Branch.
Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum, J Colloid Interface Sci 324:71-79, doi 10.1016/j.jcis.2008.04.064
Tiedeman CR, Hsieh PA (2001) Assessing an open-well aquifer test in fractured crystalline rock, Ground Water 39:68-78, doi 10.1111/j.1745-6584.2001.tb00352.x
Tsang CF, Hufschmied P, Hale FV (1990) Determination of Fracture Inflow Parameters with a Borehole Fluid Conductivity Logging Method, Water Resources Research 26:561-578, doi 10.1029/WR026i004p00561
Van Meir N, Jaeggi D, Herfort M, Loew S, Pezard P, Lods G (2007) Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data. Hydrogeol J 15: 225-240. doi 10.1007/s10040-006-0086-4
Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles, Chemosphere 66:1031-1038, doi 10.1016/j.chemosphere.2006.07.036
Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environmental Science & Technology 31:2154-2156, doi 10.1021/es970039c
Wang XL, Zhou LZ, Ma YJ, Li X, Gu HC (2009) Control of Aggregate Size of Polyethyleneimine-Coated Magnetic Nanoparticles for Magnetofection, Nano Res 2: 365-372 doi 10.1007/s12274-009-9035-6
Wagner R, Ellis W (1964) Vapor‐liquid‐solid mechanism of single crystal growth, Applied Physics Letters 4:89-90.
Williams DN, Gold KA, Holoman TRP, Ehrman SH, Wilson OC (2006) Surface modification of magnetic nanoparticles using gum arabic, J Nanopart Res 8:749-753, doi 10.1007/s11051-006-9084-7
Williams JH, Johnson CD (2000) Borehole-wall imaging with acoustic and optical televiewers for fractured-bedrock aquifer investigations, Seventh International Symposium on Borehole Geophysics for Minerals, Geotechnical, and Groundwater Applications, Houston. p 43-53
Williams JH, Paillet FL (2002) Using flowmeter pulse tests to define hydraulic connections in the subsurface: a fractured shale example, Journal of Hydrology 265:100-117 doi 10.1016/S0022-1694(02)00092-6
Zha YY, Yeh TCJ, Mao DQ, Yang JZ, Lu WX (2014) Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium, Adv Water Resour 71:162-176, doi 10.1016/j.advwatres.2014.06.008
Zha Y, Yeh T-CJ, Illman WA, Tanaka T, Bruines P, Onoe H, Saegusa H (2015) What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments, Journal of Hydrology 531:17-30, doi 10.1016/j.jhydrol.2015.06.013
Zha Y, Yeh TJ, Illman WA, Tanaka T, Bruines P, Onoe H, Saegusa H, Mao D, Takeuchi S, Wen JC (2016) An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan, Ground Water 54:793-804, doi 10.1111/gwat.12421
Zhao J (1998) Rock mass hydraulic conductivity of the Bukit Timah granite, Singapore. Engineering Geology 50:211-216, doi 10.1016/S0013-7952(98)00021-0
Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user''s guide DTIC Document.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top