跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/15 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖家平
研究生(外文):Jia-Ping Liao
論文名稱:俄羅斯遠東地區庫頁島南部始新世花崗岩之地球化學特徵、岩石成因與大地構造含義
論文名稱(外文):Eocene granites in South Sakhalin, Russian Far East: geochemical and Sr-Nd-Hf isotopic characteristics, petrogenesis and tectonic implications
指導教授:江博明江博明引用關係鍾孫霖鍾孫霖引用關係
指導教授(外文):Bor-Ming JahnSun-Lin Chung
口試委員:羅清華楊懷仁王國龍李皓揚
口試委員(外文):Ching-Hua LoHuai-Jen YangKuo-Lung WangHao-Yang Lee
口試日期:2017-05-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:234
中文關鍵詞:庫頁島花崗岩始新世岩漿期Sr-Nd-Hf同位素年輕地殼
外文關鍵詞:SakhalingraniteEocene magmatismSr-Nd-Hf isotopesjuvenile crust
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
庫頁島(Sakhalin Island)地處俄羅斯遠東地區,是西太平洋造山帶(Western Pacific Orogenic Belt)北部的一環,由數個自白堊紀至第三紀增積至古東亞大陸邊緣的地塊(terrane)構成。地層學以及構造帶的對比指出庫頁島的各地塊與東北日本北海道島的各地塊有地質上的連續性。然而,部分地塊的起源與對比仍具爭議。
為了探討庫頁島及北海道島的地質帶對比,地處兩島交界處的南庫頁島之研究顯得更為重要。庫頁島南部的地塊記錄了新生代以來的隱沒與地塊增積事件,以及走向滑移與塊體旋轉運動。南庫頁島始新世花崗岩可提供此區地殼組成以及地塊對比的重要線索,並且能進一步納入西太平洋造山帶的地殼演化的討論之中。
鄂霍次克(Okhotsk)與阿尼瓦(Aniva)岩體為庫頁島南部的兩大花崗岩體。此研究將報導在此兩岩體中花崗岩、火山岩脈與沉積圍岩的鋯石鈾鉛定年與Hf同位素分析以及全岩元素與Sr-Nd同位素分析結果,進一步討論花崗岩以及伴生火山岩的成因,並提供對新生代南庫頁島大地構造解釋以及與北海道地塊對比的制約。
研究結果表明此兩花崗岩體具有顯著不同的地球化學特徵。鄂霍次克花崗岩於44 ~ 42 Ma侵入Ozersk地塊,屬輕度過鋁質(A/CNK = 1.02-1.08)、鐵質、鹼鈣系列,有著過渡I型與A型花崗岩的地球化學特徵。阿尼瓦花崗岩於41 ~ 40 Ma侵入Tonin-Aniva地塊,屬過鋁質、鎂質、鈣鹼系列,有著典型的S型花崗岩特徵。
同位素特徵顯示此兩岩體的岩漿來自於新生的地函岩漿來源組分(juvenile mantle component)為主的混合源岩,而此源岩的地殼組分(增積岩體)比例相對較少。鄂霍次克花崗岩的 Nd (T)值介於+3.1 ~ +3.7,初始Sr同位素值介於0.7047 ~ 0.7048之間。阿尼瓦花崗岩的 Nd (T)值介於+0.5 ~ +0.9,初始Sr同位素值介於0.7052 ~ 0.7055之間。北海道中始新世(45~37 Ma)的花崗岩體有著分別與此兩岩體相對應的同位素特徵。因此,此中始新世期南庫頁島的花崗岩可與同期北海道的花崗岩作為對比。
本研究提出鄂霍次克與阿尼瓦花崗岩生成於在因太平洋板塊向東後退(retreat)而造成局部張裂與岩石圈減薄的環境。來自地函的玄武岩質岩漿底侵造成下地殼年輕增積岩體的部分融熔,並造成較基性的玄武岩質岩漿與較酸性的地殼源融體混合而形成花崗岩質岩漿。阿尼瓦花崗岩(Nd (T) = +0.5  +0.9; Hf (T) = +5  +12)相較於鄂霍次克花崗岩(Nd (T) = +3.1  +3.7; Hf (T) = +11  +16)有更富集的同位素特徵,顯示Tonin-Aniva地塊有著更古老的地殼沉積物組成。雖然此兩花崗岩體岩漿形成年代以及構造環境相似,但藉由地球化學與岩相學特徵的差異推斷它們各自繼承的侵入地塊源岩性質並不相似。
本研究推論庫頁島南部的中始新世花崗岩成因與當時該區處於太平洋板塊邊界向東後退(retreat)的大地構造環境轉換有關,此岩漿期也對應到南庫頁島由隱沒轉換為轉型板塊邊界的變換期。同期的北海道島可能仍為隱沒帶之上的岩漿活動造成的I型花崗岩所主導。南庫頁島則出現具有不同地球化學特徵的I-/A-型花崗岩。當時南庫頁島位於歐亞大陸板塊、鄂霍次克海板塊與太平洋板塊的交界,由隱沒到轉型板塊邊界的轉變造成末期隱沒帶之上(supra-subduction)的岩漿作用轉變為走向滑移斷層邊界上局部張裂環境的花崗岩漿作用。
The Sakhalin Island in Russian Far East represents a geological component of the northern Western Pacific Orogenic Belt. The island comprises several exotic terranes that have recorded multiple episodes of accretion to the paleo-Asain continental marigin with strike-slip displacements from the Cretaceous to Tertiary. The stratigraphic and structural features of terranes of South Sakhalin can be correlated with those of the Hokkaido Island in northern Japan. However, the origin and correlation of some terranes remain controversial.
South Sakhalin is an important link between the tectonic units of the Sakhalin and Hokkaido Islands. Different kinds of tectonic activities including subduction, strike-slip movement, and block rotation have been documented in South Sakhalin in the Cenozoic. Eocene granitic rocks that occurred in South Sakhalin provide clues to examine the crustal formation and terrane correlation between the Sakhalin and Hokkaido Island in specific, and the crustal evolution of the northern Western Pacific orogenic belt in general.
This study reports new whole-rock geochemical and Sr-Nd isotope data as well as zircon U-Pb ages and Hf isotope data of granitic rocks from the Okhotsk and Aniva plutons, and associated volcanic dikes and sedimentary rocks in South Sakhalin. Based on these data, I discuss petrogenesis of the granitic and associated volcanic rocks, and its implications on the Cenozoic tectonics and crustal compositions of South Sakhalin.
Two mid-Eocene granitic plutons in South Sakhalin show markedly different geochemical characteristics: (1) the Okhotsk granites that intruded into the Ozersk terrane from ca. 44 to 42 Ma are slightly peraluminous (A/CNK = 1.02 - 1.08), ferroan and alkali-calcic, and have transitional I- and A-type features, and (2) the Aniva granites that intruded into the Tonin-Aniva terrane from ca. 41 to 40 Ma are peraluminous (A/CNK = 1.08 - 1.21), magnesian and calc-alkaline, typical of S-type features.
The Sr-Nd-Hf isotopic ratios of both plutons suggest a common origin from partial melting of mixed sources with a dominant juvenile mantle component and a subordinate crustal component. The Okhotsk granites have εNd (T) values of +3.1 to +3.7 and initial 87Sr/86Sr ratios of 0.7047 to 0.7048. The Aniva granites have εNd (T) values of +0.5 to +0.9 and initial 87Sr/86Sr ratios of 0.7052 to 0.7055. I argue that the I-/A-type Okhotsk and S-type Aniva granites can be correlated to the mid-Eocene granites in the western and eastern part of the Hidaka terrane in Hokkaido with similar isotopic signatures respectively.
The Okhotsk and Aniva granites were presumably generated by partial melting of accretionary complexes, a result of underplating of mantle-derived basaltic magmas during local extension and lithospheric thinning due to the retreat of the Pacific plate. The Aniva granites (Nd (T) = +0.5  +0.9; Hf (T) = +5  +12) were produced with more recycled crustal components than the Okhotsk granites (Nd (T) = +3.1  +3.7; Hf (T) = +11  +16). It indicates that more recycled crustal materials were involved in the Tonin-Aniva terrane. Although the Okhotsk and Aniva granites were generated in a similar period and tectonic setting, the source nature of their intruded terranes (i.e. the Ozersk and Tonin-Aniva terrane) is different, deduced from their distinctive geochemical and petrographic features.
During 45 and 37 Ma, the Hokkaido Island may have been in a supra-subduction setting that led to the emplacement of I-type granitoids. The broadly coeval Okhotsk granites in South Sakhalin, however, show different geochemical features with I-/A-type signatures. I attribute the granitic magmatism (44-40 Ma) in South Sakhalin to a transition from supra-subduction to strike-slip tectonics in response to the retreat of the Pacific plate at the junction of the Asian continent, the Pacific plate, and the Okhotsk Sea plate.
國立台灣大學碩士學位論文口試委員會審定書 I
Acknowledgments II
摘要 III
Abstract V
Contents of Tables XI
Contents of Figures XIII
Chapter 1. Introduction 1
Chapter 2. Literature Review 5
2.1 Geological background and terrane correlation 5
2.2 Tectonic history of the Sakhalin Island 12
2.3 Granitic plutons in South Sakhalin 18
2.3.1 The Okhotsk pluton 18
2.3.2 The Aniva pluton 20
2.4 Granitic plutons in Hokkaido 20
2.5 Tectonic models of South Sakhalin and Hokkaido 23
Chapter 3. Geochemical principles used in studies on granitic rocks 29
3.1 Classification of granite types 29
3.1.1 The alphabetic classification system 29
3.1.2 Geochemical characteristics of I-, S- and A- type granites 31
3.2 Possible sources and tectonic settings of granitic rocks 33
3.2.1 The tectonic discrimination diagrams 33
3.2.2 Possible sources and tectonic settings for granitic rocks 34
3.3 Relationship between granites and crustal growth 36
Chapter 4. Sample description 38
4.1 Sampling 38
4.1.1 Geographic locations 38
4.1.2 Field investigation and outcrops 38
4.1.3 Sample preparation 48
4.2 Sample description and occurrence 48
4.2.1 Samples from the Okhotsk pluton and Ozersk terrane 48
4.2.2 Samples from the Aniva pluton and the Tonin-Aniva terrane 49
4.3 Petrography: thin section examination 53
4.3.1 The Okhotsk complex 53
4.3.1.1 Granitic rocks 53
4.3.1.2 Volcanic dike rocks 57
4.3.1.3 Country rocks 58
4.3.2 The Aniva pluton 59
Chapter 5. Analytical Methods 65
5.1 Zircon U-Pb dating and Hf isotope analyses 65
5.1.1 Zircon target preparation and Cathodoluminescence (CL) imaging 65
5.1.1.1 Zircon target preparation 65
5.1.1.2 Cathodoluminescence (CL) images 65
5.1.2 Zircon U-Pb dating analysis (LA-ICP-MS) 66
5.1.3 Zircon Hf isotope analysis (MC-ICP-MS) 69
5.2 Whole-rock chemical analysis 70
5.2.1 Sample powder preparation 70
5.2.2 L.O.I. determination 71
5.2.3 Major element analysis (XRF) 72
5.2.3.1 Fused glass bead method 72
5.2.3.2 XRF measurements 72
5.2.4 Trace element analysis (ICP-MS) 73
5.3 Whole-rock Sr-Nd isotopic analysis 82
5.3.1 Chemical column separation 82
5.3.2 Sample loading 86
5.3.3 Sr-Nd isotope analysis (TIMS) 87
Chapter 6. Analytical Results 89
6.1 Zircon U-Pb dating data and CL images 89
6.1.1 The Okhotsk pluton 90
6.1.1.1 Magmatic zircons of granitic rocks 91
6.1.1.2 Magmatic zircons of volcanic dike rocks 97
6.1.1.3 Detrital zircons of sedimentary country rocks 101
6.1.2 The Aniva pluton 104
6.1.2.1 Magmatic zircons of granitoids 104
6.2 Whole-rock geochemical data 111
6.3 Whole-rock Sr-Nd isotopic data 124
6.4 Zircon Hf isotopic data 132
Chapter 7. Discussion 141
7.1 Significant zircon ages and magmatic events in Sakhalin and Hokkaido 141
7.2 Petrogenesis of granitoids in South Sakhalin 143
7.2.1 The Okhotsk pluton and accompanying dikes 143
7.2.2 The Aniva pluton 146
7.2.3 Petrogenesis by geochemical and isotopic constraints 147
7.3 Detrital zircon peak ages and crust formation in South Sakhalin 151
7.4 Comparison with Cenozoic granites in the Hokkaido Isalnd 156
7.4.1 Comparison of isotopic and geochemical signatures 156
7.4.2 Terrane relationship between the Sakhalin and Hokkaido Island 161
7.5 Juvenile crustal growth in Sakhalin and its neighboring areas of the Western Pacific Orogenic Belt 164
7.6 Tectonic implications 169
Chapter 8. Conclusion 172
References 174
Appendices 188
Appendix A. Zircon U-Pb dating results 189
Appendix B. Trace element compositions measured on powder samples 210
Appendix C. The CIPW normative mineral composition of granitic and dike rocks. 213
Appendix D. Zircon Hf isotope analytical results 214
Abbey, S. (1983). Studies in" standard Samples" of Silicate Rocks and Minerals, 1969-1982. Geological Survey of Canada.
Abbott, D.H., Isley, A.E. (2002). The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of Geodynamics 34, 265–307.
Abrajevitch, A., Zyabrev, S., Didenko, A. N., & Kodama, K. (2012). Palaeomagnetism of the West Sakhalin Basin: evidence for northward displacement during the Cretaceous. Geophysical Journal International, 190(3), 1439-1454.
Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204 Pb. Chemical geology, 192(1), 59-79.
Ando, H. (2003). Stratigraphic correlation of Upper Cretaceous to Paleocene forearc basin sediments in Northeast Japan: cyclic sedimentation and basin evolution. Journal of Asian Earth Sciences, 21(8), 921-935.
Ayabe, M., Takanashi, K., Shuto, K., Ishimoto, H., & Kawabata, H. (2012). Petrology and geochemistry of adakitic dacites and high-MgO andesites, and related calc-alkaline dacites from the Miocene Okoppe volcanic field, N Hokkaido, Japan. Journal of Petrology, 53(3), 547-588.
Bazhenov, M. L., Zharov, A. E., Levashova, N. M., Kodama, K., Bragin, N. Y., Fedorov, P. I., ... & Lyapunov, S. M. (2001). Paleomagnetism of a Late Cretaceous island arc complex from South Sakhalin, East Asia: Convergent boundaries far away from the Asian continental margin?. Journal of Geophysical Research: Solid Earth (1978–2012), 106(B9), 19193-19205.a
Black, L. P., and Gulson, B. L. (1978). The age of the mud tank carbonatite, strangways range, northern territory. BMR Journal of Australian Geology and Geophysics, 3(3), 227-232.
Blatt, H., Tracy, R., & Owens, B. (2006). Petrology: igneous, sedimentary, and metamorphic. Macmillan.
Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1), 48-57.
Burk, C. A., & Gnibidenko, H. S. (1977). The structure and age of acoustic basement in the Okhotsk Sea. Island Arcs, Deep Sea Trenches and Back-Arc Basins, 451-461.
Castro, A., Moreno-Ventas, I., & De La Rosa, J. D. (1991). H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth-Science Reviews, 31(3-4), 237-253.
Chappell, B., & White, A. J. R. (1974). Two contrasting granite types. Pacific geology, 8(2), 173-174.
Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4), 489-499.
Chauvel, C., Marini, J. C., Plank, T., & Ludden, J. N. (2009). Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1).
Condie, K.C. (2000). Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322, 153–162.
Condie, K.C., Belousova, E., Griffin, W.L., Sircombe, K.N. (2009). Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research 15, 228–242.
Corfu, F., Hanchar, J. M., Hoskin, P. W., & Kinny, P. (2003). Atlas of zircon textures. Reviews in mineralogy and geochemistry, 53(1), 469-500.
Davidson, J.P., Arculus, R.J. (2005). The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown, M., Rushmer, T. (eds.), Evolution and Differentiation of the Continental Crust. Cambridge U. Press, pp. 135–172.
Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7), 641-644.
Engebretson, D. C., Cox, A., & Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, 206, 1-60.
Filatova, N. I. (2015). Transform margin Maastrichtian-Paleogene magmatism in East Asia: The problem of “belts” in the Koryak-Western Kamchatka region. Petrology, 23(4), 331-352.
Flanagan, F.J. (1984). Three USGS mafic rock reference samples, W-2, DNC-1, and BIR-1: U.S. Geological Survey Bulletin 1623, 54 p.
Flanagan, F. J., & Carroll, G. V. (1976). Mica schist, SDC-1, from Rock Creek Park, Washington, DC. Descriptions and Analyses of Eight New USGS Rock Standards, 29-32.
Fournier, M., Jolivet, L., Huchon, P., Sergeyev, K. F., & Oscorbin, L. S. (1994). Neogene strike‐slip faulting in Sakhalin and the Japan Sea opening. Journal of Geophysical Research: Solid Earth, 99(B2), 2701-2725.
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of petrology, 42(11), 2033-2048.
Chiu, H. Y., Chung, S. L., Wu, F. Y., Liu, D., Liang, Y. H., Lin, I. J., Iizuka, Y., Xie, L.W. Wang, Y., and Chu, M. F. (2009). Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1), 3-19.
Gill, R. (2010). Igneous rock and processes: a practical guide. West Sussex, UK: John Wiley & Sons Ltd., 2010. ISBN: 9780632063772, 9781444330656.
Gill, R., and Ramsey, M. H. (1997). What a geochemical analysis means. In R. Gill (eds.), Modern Analytical Geochemistry (pp. 1-11). Harlow, England: Addison Wesley Longman Limited.
Gladney, E. S., & Roelandts, I. (1988). 1987 Compilation of Elemental Concentration Data for USGS BHVO‐1, MAG‐1, QLO‐1, RGM‐1, SCo‐1, SDC‐1, SGR‐1 and STM‐1. Geostandards Newsletter, 12(2), 253-362.
Gnibidenko, H. S. (1985). The Sea of Okhotsk—Kuril Islands Ridge and Kuril—Kamchatka Trench. In The ocean basins and margins (pp. 377-418). Springer US.
Gnibidenko, H. S., Hilde, T. W., Gretskaya, E. V., & Andreyev, A. A. (1995). Kuril (south Okhotsk) backarc basin. In Backarc Basins (pp. 421-449). Springer US.
Goldstein, S. L., O''nions, R. K., & Hamilton, P. J. (1984). A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2), 221-236.
Gouchi, N., Omata, M., Katoh, T., Itaya, T., & Watanabe, T. (1992). K-Ar Ages of White Mica Fractiones from the Susunai Metamorphic Rocks in Sakhalin, Far East Russia. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 23(2), 281-286.
Govindaraju, K. (1994). 1994 compilation of working values and sample description for 383 geostandards. Geostandards and Geoanalytical Research, 18(S1), 1-158.
Grannik, V. M. (2012). Igneous rocks of accretionary and accretionary-collisional complexes of the Tonin-Aniva Peninsula (Sakhalin). Doklady Earth Sciences, 447(2), 1297-1300. doi:10.1134/s1028334x12110086
Grannik, V. M. (2016). Igneous rocks of the West Sakhalin Terrane of Sakhalin Island. In Doklady Earth Sciences (Vol. 470, pp. 1019-1022).
Grebennikov, A. V. (2014). A-type granites and related rocks: petrogenesis and classification. Russian Geology and Geophysics, 55(9), 1074-1086.
Grebennikov, A. V., Khanchuk, A. I., Gonevchuk, V. G., & Kovalenko, S. V. (2016). Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia): Geochemistry and tectonic implications. Lithos, 261, 250-261.
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O’Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1), 133-147.
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O''Reilly, S. Y., Xu, X., & Zhou, X. (2002). Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3), 237-269.
Harris, N. B., Pearce, J. A., & Tindle, A. G. (1986). Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1), 67-81.
Hawkesworth, C. J., & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3), 144-162.
Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 18(4), 423-439.
Ishihara, S. (2007). Origin of the Cenozoic–Mesozoic magnetite-series and ilmenite-series granitoids in East Asia: Gondwana Research, v. 11, n. 12, p. 247–260, http://dx.doi.org/10.1016/j.gr.2006.04.003
Ishihara, S., Matsuhisa, Y., Tanaka, R., Ihara, H., Nagasaka, A., Koike, T., and Shibata, K. (1998). The timing and geneses of ilmenite-series and magnetite-series granitic magmatism in the north-central Hokkaido, Japan: Bulletin of the Geological Survey of Japan, v. 49, p. 605–620.
Ishiwatari, A., Sokolov, S. D., and Vysotskiy, S. V. (2003). Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. In Y. Dilek & P. T. Robinson (eds.), Ophiolites in earth history. Geological Society, London, Special Publications, 218, 597-617, doi:10.1144/GSL.SP.2003.218.01.30
Ivanov, V.S., Tararin, I.A., Ignatiev, A.V., Azarova, L.I., and Nedashkovskaya, L.V., (1998) Geochemical characteristics of the high-aluminum granitoids from the Aniva Massif, the Sakhalin Island. In: New Data on Magmatism and Metallogeny of the Russian Far East. Dalnauka. Vladivostok, 22-32. (in Russian)
Ivashchenko, A. I., Kim, C. U., Oscorkin, L. S., Poplavskaya, L. N., Poplavsky, A. A., Burymskaya, R. N., ... & Streltsov, M. I. (1997). The Neftegorsk, Sakhalin Island, earthquake of 27 May 1995. Island Arc, 6(3), 288-302.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1), 47-69.
Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139-155.
Jahn, B. M. (2004). The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1), 73-100.
Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., & Reichow, M. (2009). Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos, 113(3), 521-539.
Jahn, B. M. (2010). Accretionary orogen and evolution of the Japanese Islands: Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. American Journal of Science, 310(10), 1210-1249.
Jahn, B. M., Usuki, M., Usuki, T., & Chung, S. L. (2014). Generation of Cenozoic granitoids in Hokkaido (Japan): Constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth. American Journal of Science, 314(2), 704-750.
Jahn, B. M., Valui, G., Kruk, N., Gonevchuk, V., Usuki, M., & Wu, J. T. (2015). Emplacement ages, geochemical and Sr–Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution. Journal of Asian Earth Sciences, 111, 872-918.
Jahn, B. M., Wu, F., & Chen, B. (2000a). Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2), 82-92.
Jahn, B. M., Wu, F., & Chen, B. (2000b). Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Geological Society of America Special Papers, 350, 181-193.
Jahn, B. M., Zhou, X. H., & Li, J. L. (1990). Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics, 183(1-4), 145-160.
Jochum K.P., Nohl U., Herwig K., Lammel E., Stoll B. and Hofmann A.W. (2005) GeoReM: A new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29, 333–338.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., ... & Günther, D. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397-429.
Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., ... & Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research.
Jolivet, L., Fournier, M., Huchon, P., Rozhdestvenskiy, V. S., Sergeyev, K. F., & Oscorbin, L. S. (1992). Cenozoic intracontinental dextral motion in the Okhotsk‐Japan Sea Region. Tectonics, 11(5), 968-977.
Jolivet, L., Shibuya, H., & Fournier, M. (1995). Paleomagnetic rotations and the Japan Sea opening. Active margins and marginal basins of the western Pacific, 355-369.
Kanamatsu, T., Nanayama, F., Iwata, K., & Fujiwara, Y. (1992). Pre-Tertiary Systems on the western side of the Abashiri Tectonic Line in the Shiranuka area, eastern Hokkaido, Japan: implications to the tectonic relationship between the Nemuro and Tokoro Belts. The Journal of the Geological Society of Japan, 98(12), 1113-1128_1.
Kemkin, I. V. (2008). Structure of terranes in a Jurassic accretionary prism in the Sikhote-Alin-Amur area: implications for the Jurassic geodynamic history of the Asian eastern margin. Russian Geology and Geophysics, 49(10), 759-770.
Kemkin, I. V., Khanchuk, A. I., & Kemkina, R. A. (2016). Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. Journal of Geodynamics, 102, 202-230.
Kemp, A. I. S., & Hawkesworth, C. J. (2003). 3.11. Granitic perspectives on the generation and secular evolution of the continental crust: in Rudnick, R. L. (eds.), The crust, Treatise on Geochemistry, Volume 3. Elsevier, p.349-410.
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., ... & Whitehouse, M. J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814), 980-983.
Kemp, A. I. S., Shimura, T., & Hawkesworth, C. J. (2007). Linking granulites, silicic magmatism, and crustal growth in arcs: Ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan. Geology, 35(9), 807-810.
Khanchuk, A. I. (2001). Pre-Neogene tectonics of the Sea-of-Japan region: a view from the Russian side. Earth Science, 55(5), 275-291.
Khanchuk, A. I., Kemkin, I. V., & Kruk, N. N. (2016). The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences, 120, 117-138.
Khanchuk, A. I., Kruk, N. N., Golozubov, V. V., Kovach, V. P., Serov, P. A., Kholodnov, V. V., ... & Kasatkin, S. A. (2013). The nature of the continental crust of Sikhote-Alin as evidenced from the Nb isotopy of Rocks of Southern Primorie. In Doklady Earth Sciences (Vol. 451, No. 2, pp. 809-813). Springer US.
Kiminami, K. (1986). Tectonic divisions and stratigraphy of the Mesozoic rocks of Hokkaido, Japan. Monograph Assoc. Geol. Collab. Japan, 31, 1-15.
Kiminami, K., Miyashita, S., Kimura, G., Takika, J., Iwata, K., Sakai, A., ... & Kontani, Y. (1986). Mesozoic rocks in the Hidaka belt-Hidaka Supergroup. Association of Geological Collaboration. Japan Monograph, 31, 137-155. (in Japanese with English abstract)
Kimura, G. (1996). Collision orogeny at arc‐arc junctions in the Japanese Islands. Island Arc, 5(3), 262-275.
Kimura, G., and Kusunoki, K., (1997). The Hidaka orogeny and tectonics of arc-arc junction: The Memoirs of the Geological Society of Japan, v. 47, p. 295–305 (in Japanese with English abstract).
Kimura, G., Rodzdestvenskiy, V. S., Okumura, K., Melinikov, O., & Okamura, M. (1992a). Mode of mixture of oceanic fragments and terrigenous trench fill in an accretionary complex: Example from southern Sakhalin. Tectonophysics, 202(2-4), 361-374.
Kimura, G., Sakakibara, M., Ofuka, H., Ishizuka, H., Miyashita, S., Okamura, M., ... & Lushchenko, V. (1992b). A deep section of accretionary complex: Susunai complex in Sakhalin island, northwest Pacific margin. Island Arc, 1(1), 166-175.
Kogan, M. G., Bürgmann, R., Vasilenko, N. F., Scholz, C. H., King, R. W., Ivashchenko, A. I., ... & Egorov, S. G. (2003). The 2000 Mw 6.8 Uglegorsk earthquake and regional plate boundary deformation of Sakhalin from geodetic data. Geophysical research letters, 30(3).
Kojima, M. and Shimura, T. (2014). Pre-Tertiary Systems on the western side of the Abashiri Tectonic Line in the Shiranukaarea, eastern Hokkaido, Japan: Implications to the tectonic reiationship betweenthe Nemuro and Tokoro Belts. Journal-Geological Society of Japan, 120 (11), 393–412. (In Japanese with English Abstract)
Komatsu, M., Toyoshima, T., Osanai, Y., & Arai, M. (1994). Prograde and anatectic reactions in the deep arc crust exposed in the Hidaka metamorphic belt, Hokkaido, Japan. Lithos, 33(1-3), 31-49.
Konstantinovskaya, E. A. (2001). Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia), in Active Subduction and Collision in Southeast Asia (SEASIA), S. Lallemand, C.-S. Liu, J. Angelier, and Y.B. Tsai, Eds., Tectonophysics, vol. 333, pp. 75–94.
Konstantinovskaya, E. A. (2011). Early Eocene arc–continent collision in Kamchatka, Russia: structural evolution and geodynamic model. In Arc-Continent Collision Springer Berlin Heidelberg, pp. 247-277.
Kruk, N. N., Simanenko, V. P., Gvozdev, V. I., Golozubov, V. V., Kovach, V. P., Serov, P. I., ... & Kuibida, M. L. (2014). Early Cretaceous granitoids of the Samarka terrane (Sikhote-Alin’): geochemistry and sources of melts. Russian Geology and Geophysics, 55(2), 216-236.
Lallemand, S., & Jolivet, L. (1986). Japan Sea: a pull-apart basin?. Earth and Planetary Science Letters, 76(3-4), 375-389.
Lelikov, E. P., & Emel’yanova, T. A. (2007). Volcanogenic complexes of the Sea of Okhotsk and the Sea of Japan (comparative analysis). Oceanology, 47(2), 273-281.
Lin, I. J., Chung, S. L., Chu, C. H., Lee, H. Y., Gallet, S., Wu, G., Ji, J. and Zhang, Y. (2012). Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 53, 131-150.
Loiselle, M. C., & Wones, D. R. (1979, November). Characteristics and origin of anorogenic granites. In Geological Society of America Abstracts with Programs (Vol. 11, No. 7, p. 468).
Ludwig, K. R. (2008). Isoplot v. 4.15: Geochronol. Toolkit for Microsoft Exel. Spec. Publ. (Berkley Geochronol. Center)
Lugmair, G. W., & Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349-357.
Maeda, J. I. (1990). Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, North Japan. Tectonophysics, 174(3-4), 235-255.
Maeda, J. I., & Kagami, H. (1994). Mafic igneous rocks derived from N-MORB source mantle, Hidaka magnatic zone, Central Hokkaido: Sr and Nd isotopic evidence. The Journal of the Geological Society of Japan, 100(2), 185-188.
Malinovsky, A. I., Golozoubov, V. V., & Simanenko, V. P. (2006). The Kema island-arc terrane, eastern Sikhote Alin: Formation settings and geodynamics. In Doklady earth sciences (Vol. 410, No. 1, pp. 1026-1029). MAIK Nauka/Interperiodica.
Malinovsky, A. I., Golozoubov, V. V., Simanenko, V. P., & Simanenko, L. F. (2008). Kema terrane: A fragment of a back‐arc basin of the early Cretaceous Moneron–Samarga island‐arc system, East Sikhote–Alin range, Russian Far East. Island Arc, 17(3), 285-304.
Maruyama, S. (1997). Pacific‐type orogeny revisited: Miyashiro‐type orogeny proposed. Island Arc, 6(1), 91-120.
Maruyama, S., & Seno, T. (1986). Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics, 127(3-4), 305-329.
Miyashita, S. & Katsushima, N. (1986). The Tomuraushi greenstone complex of the central Hidaka zone-contemporaneous occurrence of abyssal tholeiite and terrigenous sediments. Journal-Geological Society of Japan. 92: 535-557.
Miyashita, S., & Yoshida, A. (1994). Geology and petrology of the Shimokawa ophiolite (Hokkaido, Japan): ophiolite possibly generated near RTT triple junction. In Circum Pacific Ophiolite, Proc. 29th IGC Ophiolite Symposium, Part D, VSP Pub., Netherlands (pp. 163-182).
Nakajima, T., Takahashi, M., Imaoka, T., & Shimura, T. (2016). Granitic rocks. In T. Moreno, S. Wallis, T. Kojima, & W. Gibbons (eds.), The Geology of Japan (pp. 251-272). London: Geological Society.
Nanayama, F., Terada, T., Omata, M., Kito, N., Zharov, A, E., Ishizaki, S. (1994): Accretionary tectonics in the southeastern Sakhalin, Far East Russia: Relationship of ‘Mesozoic’ systems between Sakhalin and Hokkaido. Chishitsu News no. 478, p. 15-26.
Nanayama, F., Kanamatsu, T., & Fujiwara, Y. (1993). Sedimentary petrology and paleotectonic analysis of the arc—arc junction: the Paleocene Nakanogawa Group in the Hidaka Belt, central Hokkaido, Japan. Palaeogeography, palaeoclimatology, palaeoecology, 105(1-2), 53-69.
Nishio, M., & Yoshida, K. (2014). Tectonic constraints to Cretaceous magmatic arc deduced from detrital heavy minerals in northeastern Japan–evidence from detrital garnets, tourmalines and chromian spinels. Cretaceous Research, 48, 39-53.
Nokleberg, W. J. (2000). Phanerozoic tectonic evolution of the Circum-North Pacific (No. 1626). US Department of the Interior, US Geological Survey.
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J., & Taylor, R. N. (1998). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149(3), 211-233.
Okamura, S., Arculus, R. J., & Martynov, Y. A. (2004). Cenozoic magmatism of the North-Eastern Eurasian margin: the role of lithosphere versus asthenosphere. Journal of Petrology.
Okamura, S., Arculus, R. J., Martynov, Y. A., Kagami, H., Yoshida, T., & Kawano, Y. (1998a). Multiple magma sources involved in marginal-sea formation: Pb, Sr, and Nd isotopic evidence from the Japan Sea region. Geology, 26(7), 619-622.
Okamura, S., Martynov, Y. A., Furuyama, K., & Nagao, K. (1998b). K–Ar ages of the basaltic rocks from Far East Russia: Constraints on the tectono‐magmatism associated with the Japan Sea opening. Island Arc, 7(1‐2), 271-282.
Osanai, Y., Miyashita, S., Arita, K., & Bamba, M. (1986). The metamorphism and thermal structure of the collisional terrain of a continental and oceanic crusts: A case of the Hidaka metamorphic belt, Hokkaido, Japan. Geology and Tectonics of Hokkaido, 31, 205-222.
Owada, M., Yamasaki, T., Osanai, Y., Yoshimoto, K., Hamamoto, T., & Kagami, H. (2006). Poly-metamorphism, anatexis and formation of granitic magma due to intrusion of the Niobetsu complex during Miocene, the Nozuka-dake area, Hidaka metamorphic belt, northern Japan. Journal-Geological Society of Japan, 112(11), 666-683.
Parfenov, L. M. (1984). Continental margins and island arcs in the Mesozoides of Northeastern Asia. (in Russian), 192 pp., Nauka, Novosibirsk.
Parfenov, L. M., Badarch, G., Berzin, N. A., Khanchuk, A. I., Kuzmin, M. I., Nokleberg, W. J., ... & Yan, H. (2009). Summary of Northeast Asia geodynamics and tectonics. Stephan Mueller Special Publication Series, 4, 11-33.
Parfenov, L. M., & Natal''in, B. A. (1986). Mesozoic tectonic evolution of northeastern Asia. Tectonophysics, 127(3-4), 291-304.
Parfenov, L. M., Nokleberg, W. J., Berzin, N. A., Badarch, G., Dril, S. I., Gerel, O., ... & Prokopiev, A. V. (2011). Tectonic and metallogenic model for Northeast Asia. US Department of the Interior, US Geological Survey Open-File Report 2011-1026.
Parfenov, L. M., Voinova, I. P., Natal''in, B. A., & Semenov, D. F. (1978). Geodynamics of the north-eastern Asia in Mesozoic and Cenozoic time and the nature of volcanic belts. Journal of Physics of the Earth, 26(Supplement), S503-S525.
Paterson, B. A., & Stephens, W. E. (1992). Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 109(3), 373-385.
Pearce, J. (1996). Sources and settings of granitic rocks. Episodes, 19, 120-125.
Pearce, J. A., Harris, N. W., and Tindle, A. G. (1984), Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, n. 4, p. 956–983, http://dx.doi.org/10.1093/petrology/25.4.956.
Pitcher, W. S. (1983). Granite type and tectonic environment. Mountain building processes, 19, 40.
Prokopiev, A., Toro, J., Miller, E.L., Gehrels, G.E. (2008). The paleo–Lena River—200 m.y. of transcontinental zircon transport in Siberia. Geology 36, 699–702.
Pushcharovsky, Yu. M., V. P. Zinkevich, and O. A. Mazarovich (1983). Thrust nappe structures in the northwest Pacific margin (in Russian). Geotektonika, 6, 30-45.
Raznitsin, Yu. N., (1975). Comparative tectonics of hyperbasic belts of Schmidt peninsula (Sakhalin), Papua (New Guinea) and Sabakh (Kalimantan). Geotektonika, 2: 68-84 (in Russian).
Raznitsin, Yu. N., (1978). Serpentinite mélange and olistostrome of the south-eastern part of East Sakhalin Mountains (in Russian). Geotektonika, 1: 98-108.
Rino, Sh., Komiya, T., Windley, B., Katayama, I., Motoki, A., Hirata, T. (2004). Major episodic increases of continental crustal growth determined from zircon ages of river sands: implications for mantle overturns in the Early Precambrian. Physics of Earth and Planetary Interiors 146, 369–394.
Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D. (2008). The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research 14, 51–72.
Rodnikov, A. G., Sergeyeva, N. A., & Zabarinskaya, L. P. (2013). Ancient subduction zone in Sakhalin Island. Tectonophysics, 600, 217-225.
Rodnikov, A. G., Sergeyeva, N. A., Zabarinskaya, L. P., Filatova, N. I., Piip, V. B., & Rashidov, V. A. (2008). The deep structure of active continental margins of the Far East (Russia). Russ. J. Earth Sci, 10(4).
Rozhdestvensky, V. S. (1986). Evolution of the Sakhalin fold system. Tectonophysics, 127(3-4), 331-339.
Rozhdestvensky, V. S., & Rechkin, A. N. (1982). Evolution of the ophiolitic magmatism of Sakhalin. Tikhookeanskaya geol, (2), 40-44.
Safonova, I., Maruyama, S., Hirata, T., Kon, Y., & Rino, S. (2010). LA ICP MS U–Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation. Journal of Geodynamics, 50(3), 134-153.
Sakakibara, M., Niida, K., Toda, H., Kito, N., Kimura, G., Tajika, J., ... & Yoshida, A. (1986). Nature and tectonic history of the Tokoro belt. Geology and Tectonic History of Hokkaido, 31, 173.
Sakakibara, M., Ofuka, H., Kimura, C., Ishizuka, H., Miyashita, S., Okamura, M., & Melinikov, O. A. (1997). Metamorphic evolution of the Susunai metabasites in southern Sakhalin, Russian Republic. Journal of Metamorphic Geology, 15(5), 565-580.
Sengör, A. M. C., & Natal’in, B. A., (1996). Turkic-type orogeny and its role in the making of the continental crust: Annual Review of Earth and Planetary Sciences. v. 24, p. 263–337, http://dx.doi.org/10.1146/
Shand, S. J. (1943). The Eruptive Rocks, 2nd edn. New York: John Wiley, 444 pp.
Simanenko, V. P., Rasskazov, S. V., Yasnygina, T. A., Simanenko, L. F., & Chashchin, A. A. (2011). Cretaceous complexes of the frontal zone of the Moneron-Samarga Island arc: Geochemical data on the basalts from the deep borehole on Moneron Island, the Sea of Japan. Russian Journal of Pacific Geology, 5(1), 26-46.
Shimazu, M., Furuyama, K., Kawano, Y., Okamura, S., Ohira, H., & Genju, Y. A. M. A. M. O. T. O. (1992). K-Ar ages, major and minor element compositions and Sr, Nd isotope ratios of volcanic rocks from the western part of south Sakhalin, USSR. Journal of Mineralogy, Petrology and Economic Geology, 87(2), 50-61.
Shimura, T. (1999). Genesis of the pyroxene-bearing I-type tonalite and melting degree of the source rock, in the Hidaka Metamorphic Belt, northern Japan. Journal-Geological Society of Japan, 105, 536-551.
Shimura, T., Komatsu, M., & Iiyama, J. T. (1992). Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka Metamorphic Belt, northern Japan. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2), 259-268.
Shimura, T., Osanai, Y., Toyoshima, T., Owada, M., & Komatsu, M. (2006). Cooling process of the basal tonalite magma, Hidaka metamorphic belt, northern Japan. Journal-Geological Society of Japan, 112(11), 654. (In Japanese with English Abstract)
Shimura, T., Owada, M., Osanai, Y., Komatsu, M., & Kagami, H. (2004). Variety and genesis of the pyroxene-bearing S-and I-type granitoids from the Hidaka Metamorphic Belt, Hokkaido, northern Japan. Geological Society of America Special Papers, 389, 161-179.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J. (2008). Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1-35.
Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176 Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3), 311-324.
State Geological Map of the Russian Federation, scale 1:200 000. Second edition. Sakhalin series. Sheets: L-54-X,XI, L-54-XII, L-54-XVI, XXII, L-54-XVII,XXIII, L-54-XVIII. Explanatory note. 2001. St. Petersburg. VSEGEI publishing. 276 P. (in Russian).
Steiger R. H. & Jäger E. 1977. Subcommission on geochronology: Convection on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.
Stern, R. J. (2008). Neoproterozoic crustal growth: the solid Earth system during a critical episode of Earth history. Gondwana research, 14(1), 33-50.
Streckeisen, A., and Le Maitre, R. W. (1979). A chemical approximation to the modal QAPF classification of the igneous rocks: Neues Jahrbuch fu¨ r Mineralogie, Abhandlungen, v. 136, p. 169–206.
Strelnikov S.I. (2008). Geological map of Russia at a scale of 1 : 5000000 (in Russian).
Su, Y. J. (2002). Mid-ocean ridge basalt trace element systematics: Constraints from database management, ICP-MS analyses, global data compilation and petrologic modeling. PhD thesis. Columbia University, New York, 472 pp.
Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (eds.), Magmatism in the Ocean Basins, pp. 313–45. Geological Society of London, Special Publication no. 42.
Sylvester, P. J. (1989). Post-collisional alkaline granites. The Journal of Geology, 97(3), 261-280.
Takanashi, K., Kakihara, Y., Ishimoto, H., & Shuto, K. (2012). Melting of crustal rocks as a possible origin for Middle Miocene to Quaternary rhyolites of northeast Hokkaido, Japan: Constraints from Sr and Nd isotopes and major-and trace-element chemistry. Journal of Volcanology and Geothermal Research, 221, 52-70.
Takeuchi, T. (1997). K-Ar ages of the Tertiary volcanic rocks in South Sakhalin and their tectonic significance. Jour. Geol. Soc. Japan, 103, 67-97.
Takeuchi, T., Kodama, K., & Ozawa, T. (1999). Paleomagnetic evidence for block rotations in central Hokkaido–south Sakhalin, Northeast Asia. Earth and Planetary Science Letters, 169(1), 7-21.
Tang, J., Xu, W., Niu, Y., Wang, F., Ge, W., Sorokin, A. A., & Chekryzhov, I. Y. (2016). Geochronology and geochemistry of Late Cretaceous–Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate. Lithos, 266, 202-212.
Tatsumi, Y. (2005). The subduction factory: how it operates in the evolving Earth. GSA Today 15 (7), 4–10
Ueda, H. (2005). Accretion and exhumation structures formed by deeply subducted seamounts in the Kamuikotan high‐pressure/temperature zone, Hokkaido, Japan. Tectonics, 24(2).
Ueda, H. (2016). Hokkaido. In T. Moreno, S. Wallis, T. Kojima, & W. Gibbons (eds.), The Geology of Japan (pp. 201-221). London: Geological Society.
Ueda, H., & Miyashita, S. (2005). Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest. Island Arc, 14(4), 582-598.
Ueda, H., Kawamura, M., & Niida, K. (2000). Accretion and tectonic erosion processes revealed by the mode of occurrence and geochemistry of greenstones in the Cretaceous accretionary complexes of the Idonnappu Zone, southern central Hokkaido, Japan. Island Arc, 9(2), 237-257.
Usuki, T., Kaiden, H., Misawa, K., & Shiraishi, K. (2006). Sensitive high‐resolution ion microprobe U‐Pb ages of the Latest Oligocene‐Early Miocene rift‐related Hidaka high‐temperature metamorphism in Hokkaido, northern Japan. Island Arc, 15(4), 503-516.
Valui, G. A., & Moskalenko, E. Y. (2010). First data on the isotopes of Sm—Nd and Sr for Cretaceous—Paleogene granitoids of primors’e and some problems of their genesis. In Doklady Earth Sciences (Vol. 435, No. 1, pp. 1511-1514). SP MAIK Nauka/Interperiodica.
Vernon, R. H., Etheridge, M. A., & Wall, V. J. (1988). Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos, 22(1), 1-11.
Vervoort, J. D., & Patchett, P. J. (1996). Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19), 3717-3733.
Weaver, R., Roberts, A. P., Flecker, R., Macdonald, D. I., & Fot''yanova, L. M. (2003). Geodynamic implications of paleomagnetic data from Tertiary sediments in Sakhalin, Russia (NW Pacific). Journal of Geophysical Research: Solid Earth (1978–2012), 108(B2).
Weaver, R., Roberts, A. P., Flecker, R., & Macdonald, D. I. (2004). Tertiary geodynamics of Sakhalin (NW Pacific) from anisotropy of magnetic susceptibility fabrics and paleomagnetic data. Tectonophysics, 379(1), 25-42.
Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). A-type granites: geochemical characteristics, discriminations and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, n. 4, p. 407–419, http://dx.doi.org/10.1007/BF00402202
White, A. J. R. (1979, November). Sources of granite magmas. In Geological Society of America Abstracts with Programs (Vol. 11, No. 7, p. 539).
White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2), 7-22.
White, A. J. R., Clemens, J. D., Holloway, J. R., Silver, L. T., Chappell, B. W., & Wall, V. J. (1986). S-type granites and their probable absence in southwestern North America. Geology, 14(2), 115-118.
Wiedenbeck, M. A. P. C., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., ... & Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards newsletter, 19(1), 1-23.
Worrall, D. M., Kruglyak, V., Kunst, F., & Kuznetsov, V. (1996). Tertiary tectonics of the Sea of Okhotsk, Russia: Far‐field effects of the India‐Eurasia collision. Tectonics, 15(4), 813-826.
Wu, F. Y., Li, X. H., Zheng, Y. F., & Gao, S. (2007). Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23 (2): 185-220.
Wu, J. T. J. (2016). Geochemical Characteristics and Petrogenesis of Adakites in Sikhote-Alin, Russian Far East (Master''s thesis). National Taiwan University, Taipei, Taiwan.
Xiao, W. J., Zhang, L. C., Qin, K. Z., Sun, S. H. U., & Li, J. L. (2004). Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. American Journal of Science, 304(4), 370-395.
Zharov, A. E. (2005). South Sakhalin tectonics and geodynamics: A model for the Cretaceous-Paleogene accretion of the East Asian continental margin, Russ. J. Earth. Sci., 7, ES5002, doi:10.2205/2005ES000190.
Zhao, P., Jahn, B. M., Alexandrov, I., Liao, J. P., Ivin, V. (2017a) Geochronological, geochemical and Sr-Nd isotopic study of granites in the central Sakhalin Island (Russian Far East) and its bearing on accretion in northwestern Pacific domain. (in prep.)
Zhao, P., Alexandrov, I. et al. (2017b) Accretion history and formation of the Sakhalin Island: Constraints from detrital zircon ages of metasediments in eastern accretionary complex. (in prep.)
Zonenshain, L. P., Kuzmin, M. I., Natapov, L. M., & Page, B. M. (1990). Sikhote-Alin-Sakhalin Foldbelt (pp. 109-120). In L. P. Zonenshain, M. I. Kuzmin, L. M. Natapov and B. M. Page (eds.), Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical Union, Washington, D. C.. doi: 10.1029/GD021p0109
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top