|
Abbey, S. (1983). Studies in" standard Samples" of Silicate Rocks and Minerals, 1969-1982. Geological Survey of Canada. Abbott, D.H., Isley, A.E. (2002). The intensity, occurrence, and duration of superplume events and eras over geological time. Journal of Geodynamics 34, 265–307. Abrajevitch, A., Zyabrev, S., Didenko, A. N., & Kodama, K. (2012). Palaeomagnetism of the West Sakhalin Basin: evidence for northward displacement during the Cretaceous. Geophysical Journal International, 190(3), 1439-1454. Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204 Pb. Chemical geology, 192(1), 59-79. Ando, H. (2003). Stratigraphic correlation of Upper Cretaceous to Paleocene forearc basin sediments in Northeast Japan: cyclic sedimentation and basin evolution. Journal of Asian Earth Sciences, 21(8), 921-935. Ayabe, M., Takanashi, K., Shuto, K., Ishimoto, H., & Kawabata, H. (2012). Petrology and geochemistry of adakitic dacites and high-MgO andesites, and related calc-alkaline dacites from the Miocene Okoppe volcanic field, N Hokkaido, Japan. Journal of Petrology, 53(3), 547-588. Bazhenov, M. L., Zharov, A. E., Levashova, N. M., Kodama, K., Bragin, N. Y., Fedorov, P. I., ... & Lyapunov, S. M. (2001). Paleomagnetism of a Late Cretaceous island arc complex from South Sakhalin, East Asia: Convergent boundaries far away from the Asian continental margin?. Journal of Geophysical Research: Solid Earth (1978–2012), 106(B9), 19193-19205.a Black, L. P., and Gulson, B. L. (1978). The age of the mud tank carbonatite, strangways range, northern territory. BMR Journal of Australian Geology and Geophysics, 3(3), 227-232. Blatt, H., Tracy, R., & Owens, B. (2006). Petrology: igneous, sedimentary, and metamorphic. Macmillan. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1), 48-57. Burk, C. A., & Gnibidenko, H. S. (1977). The structure and age of acoustic basement in the Okhotsk Sea. Island Arcs, Deep Sea Trenches and Back-Arc Basins, 451-461. Castro, A., Moreno-Ventas, I., & De La Rosa, J. D. (1991). H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth-Science Reviews, 31(3-4), 237-253. Chappell, B., & White, A. J. R. (1974). Two contrasting granite types. Pacific geology, 8(2), 173-174. Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4), 489-499. Chauvel, C., Marini, J. C., Plank, T., & Ludden, J. N. (2009). Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1). Condie, K.C. (2000). Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322, 153–162. Condie, K.C., Belousova, E., Griffin, W.L., Sircombe, K.N. (2009). Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research 15, 228–242. Corfu, F., Hanchar, J. M., Hoskin, P. W., & Kinny, P. (2003). Atlas of zircon textures. Reviews in mineralogy and geochemistry, 53(1), 469-500. Davidson, J.P., Arculus, R.J. (2005). The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown, M., Rushmer, T. (eds.), Evolution and Differentiation of the Continental Crust. Cambridge U. Press, pp. 135–172. Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7), 641-644. Engebretson, D. C., Cox, A., & Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Papers, 206, 1-60. Filatova, N. I. (2015). Transform margin Maastrichtian-Paleogene magmatism in East Asia: The problem of “belts” in the Koryak-Western Kamchatka region. Petrology, 23(4), 331-352. Flanagan, F.J. (1984). Three USGS mafic rock reference samples, W-2, DNC-1, and BIR-1: U.S. Geological Survey Bulletin 1623, 54 p. Flanagan, F. J., & Carroll, G. V. (1976). Mica schist, SDC-1, from Rock Creek Park, Washington, DC. Descriptions and Analyses of Eight New USGS Rock Standards, 29-32. Fournier, M., Jolivet, L., Huchon, P., Sergeyev, K. F., & Oscorbin, L. S. (1994). Neogene strike‐slip faulting in Sakhalin and the Japan Sea opening. Journal of Geophysical Research: Solid Earth, 99(B2), 2701-2725. Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of petrology, 42(11), 2033-2048. Chiu, H. Y., Chung, S. L., Wu, F. Y., Liu, D., Liang, Y. H., Lin, I. J., Iizuka, Y., Xie, L.W. Wang, Y., and Chu, M. F. (2009). Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1), 3-19. Gill, R. (2010). Igneous rock and processes: a practical guide. West Sussex, UK: John Wiley & Sons Ltd., 2010. ISBN: 9780632063772, 9781444330656. Gill, R., and Ramsey, M. H. (1997). What a geochemical analysis means. In R. Gill (eds.), Modern Analytical Geochemistry (pp. 1-11). Harlow, England: Addison Wesley Longman Limited. Gladney, E. S., & Roelandts, I. (1988). 1987 Compilation of Elemental Concentration Data for USGS BHVO‐1, MAG‐1, QLO‐1, RGM‐1, SCo‐1, SDC‐1, SGR‐1 and STM‐1. Geostandards Newsletter, 12(2), 253-362. Gnibidenko, H. S. (1985). The Sea of Okhotsk—Kuril Islands Ridge and Kuril—Kamchatka Trench. In The ocean basins and margins (pp. 377-418). Springer US. Gnibidenko, H. S., Hilde, T. W., Gretskaya, E. V., & Andreyev, A. A. (1995). Kuril (south Okhotsk) backarc basin. In Backarc Basins (pp. 421-449). Springer US. Goldstein, S. L., O''nions, R. K., & Hamilton, P. J. (1984). A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2), 221-236. Gouchi, N., Omata, M., Katoh, T., Itaya, T., & Watanabe, T. (1992). K-Ar Ages of White Mica Fractiones from the Susunai Metamorphic Rocks in Sakhalin, Far East Russia. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 23(2), 281-286. Govindaraju, K. (1994). 1994 compilation of working values and sample description for 383 geostandards. Geostandards and Geoanalytical Research, 18(S1), 1-158. Grannik, V. M. (2012). Igneous rocks of accretionary and accretionary-collisional complexes of the Tonin-Aniva Peninsula (Sakhalin). Doklady Earth Sciences, 447(2), 1297-1300. doi:10.1134/s1028334x12110086 Grannik, V. M. (2016). Igneous rocks of the West Sakhalin Terrane of Sakhalin Island. In Doklady Earth Sciences (Vol. 470, pp. 1019-1022). Grebennikov, A. V. (2014). A-type granites and related rocks: petrogenesis and classification. Russian Geology and Geophysics, 55(9), 1074-1086. Grebennikov, A. V., Khanchuk, A. I., Gonevchuk, V. G., & Kovalenko, S. V. (2016). Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia): Geochemistry and tectonic implications. Lithos, 261, 250-261. Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O’Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1), 133-147. Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O''Reilly, S. Y., Xu, X., & Zhou, X. (2002). Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3), 237-269. Harris, N. B., Pearce, J. A., & Tindle, A. G. (1986). Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1), 67-81. Hawkesworth, C. J., & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3), 144-162. Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 18(4), 423-439. Ishihara, S. (2007). Origin of the Cenozoic–Mesozoic magnetite-series and ilmenite-series granitoids in East Asia: Gondwana Research, v. 11, n. 12, p. 247–260, http://dx.doi.org/10.1016/j.gr.2006.04.003 Ishihara, S., Matsuhisa, Y., Tanaka, R., Ihara, H., Nagasaka, A., Koike, T., and Shibata, K. (1998). The timing and geneses of ilmenite-series and magnetite-series granitic magmatism in the north-central Hokkaido, Japan: Bulletin of the Geological Survey of Japan, v. 49, p. 605–620. Ishiwatari, A., Sokolov, S. D., and Vysotskiy, S. V. (2003). Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. In Y. Dilek & P. T. Robinson (eds.), Ophiolites in earth history. Geological Society, London, Special Publications, 218, 597-617, doi:10.1144/GSL.SP.2003.218.01.30 Ivanov, V.S., Tararin, I.A., Ignatiev, A.V., Azarova, L.I., and Nedashkovskaya, L.V., (1998) Geochemical characteristics of the high-aluminum granitoids from the Aniva Massif, the Sakhalin Island. In: New Data on Magmatism and Metallogeny of the Russian Far East. Dalnauka. Vladivostok, 22-32. (in Russian) Ivashchenko, A. I., Kim, C. U., Oscorkin, L. S., Poplavskaya, L. N., Poplavsky, A. A., Burymskaya, R. N., ... & Streltsov, M. I. (1997). The Neftegorsk, Sakhalin Island, earthquake of 27 May 1995. Island Arc, 6(3), 288-302. Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1), 47-69. Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139-155. Jahn, B. M. (2004). The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1), 73-100. Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., & Reichow, M. (2009). Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos, 113(3), 521-539. Jahn, B. M. (2010). Accretionary orogen and evolution of the Japanese Islands: Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. American Journal of Science, 310(10), 1210-1249. Jahn, B. M., Usuki, M., Usuki, T., & Chung, S. L. (2014). Generation of Cenozoic granitoids in Hokkaido (Japan): Constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth. American Journal of Science, 314(2), 704-750. Jahn, B. M., Valui, G., Kruk, N., Gonevchuk, V., Usuki, M., & Wu, J. T. (2015). Emplacement ages, geochemical and Sr–Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution. Journal of Asian Earth Sciences, 111, 872-918. Jahn, B. M., Wu, F., & Chen, B. (2000a). Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2), 82-92. Jahn, B. M., Wu, F., & Chen, B. (2000b). Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Geological Society of America Special Papers, 350, 181-193. Jahn, B. M., Zhou, X. H., & Li, J. L. (1990). Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics, 183(1-4), 145-160. Jochum K.P., Nohl U., Herwig K., Lammel E., Stoll B. and Hofmann A.W. (2005) GeoReM: A new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29, 333–338. Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., ... & Günther, D. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397-429. Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., ... & Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research. Jolivet, L., Fournier, M., Huchon, P., Rozhdestvenskiy, V. S., Sergeyev, K. F., & Oscorbin, L. S. (1992). Cenozoic intracontinental dextral motion in the Okhotsk‐Japan Sea Region. Tectonics, 11(5), 968-977. Jolivet, L., Shibuya, H., & Fournier, M. (1995). Paleomagnetic rotations and the Japan Sea opening. Active margins and marginal basins of the western Pacific, 355-369. Kanamatsu, T., Nanayama, F., Iwata, K., & Fujiwara, Y. (1992). Pre-Tertiary Systems on the western side of the Abashiri Tectonic Line in the Shiranuka area, eastern Hokkaido, Japan: implications to the tectonic relationship between the Nemuro and Tokoro Belts. The Journal of the Geological Society of Japan, 98(12), 1113-1128_1. Kemkin, I. V. (2008). Structure of terranes in a Jurassic accretionary prism in the Sikhote-Alin-Amur area: implications for the Jurassic geodynamic history of the Asian eastern margin. Russian Geology and Geophysics, 49(10), 759-770. Kemkin, I. V., Khanchuk, A. I., & Kemkina, R. A. (2016). Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. Journal of Geodynamics, 102, 202-230. Kemp, A. I. S., & Hawkesworth, C. J. (2003). 3.11. Granitic perspectives on the generation and secular evolution of the continental crust: in Rudnick, R. L. (eds.), The crust, Treatise on Geochemistry, Volume 3. Elsevier, p.349-410. Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., ... & Whitehouse, M. J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814), 980-983. Kemp, A. I. S., Shimura, T., & Hawkesworth, C. J. (2007). Linking granulites, silicic magmatism, and crustal growth in arcs: Ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan. Geology, 35(9), 807-810. Khanchuk, A. I. (2001). Pre-Neogene tectonics of the Sea-of-Japan region: a view from the Russian side. Earth Science, 55(5), 275-291. Khanchuk, A. I., Kemkin, I. V., & Kruk, N. N. (2016). The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences, 120, 117-138. Khanchuk, A. I., Kruk, N. N., Golozubov, V. V., Kovach, V. P., Serov, P. A., Kholodnov, V. V., ... & Kasatkin, S. A. (2013). The nature of the continental crust of Sikhote-Alin as evidenced from the Nb isotopy of Rocks of Southern Primorie. In Doklady Earth Sciences (Vol. 451, No. 2, pp. 809-813). Springer US. Kiminami, K. (1986). Tectonic divisions and stratigraphy of the Mesozoic rocks of Hokkaido, Japan. Monograph Assoc. Geol. Collab. Japan, 31, 1-15. Kiminami, K., Miyashita, S., Kimura, G., Takika, J., Iwata, K., Sakai, A., ... & Kontani, Y. (1986). Mesozoic rocks in the Hidaka belt-Hidaka Supergroup. Association of Geological Collaboration. Japan Monograph, 31, 137-155. (in Japanese with English abstract) Kimura, G. (1996). Collision orogeny at arc‐arc junctions in the Japanese Islands. Island Arc, 5(3), 262-275. Kimura, G., and Kusunoki, K., (1997). The Hidaka orogeny and tectonics of arc-arc junction: The Memoirs of the Geological Society of Japan, v. 47, p. 295–305 (in Japanese with English abstract). Kimura, G., Rodzdestvenskiy, V. S., Okumura, K., Melinikov, O., & Okamura, M. (1992a). Mode of mixture of oceanic fragments and terrigenous trench fill in an accretionary complex: Example from southern Sakhalin. Tectonophysics, 202(2-4), 361-374. Kimura, G., Sakakibara, M., Ofuka, H., Ishizuka, H., Miyashita, S., Okamura, M., ... & Lushchenko, V. (1992b). A deep section of accretionary complex: Susunai complex in Sakhalin island, northwest Pacific margin. Island Arc, 1(1), 166-175. Kogan, M. G., Bürgmann, R., Vasilenko, N. F., Scholz, C. H., King, R. W., Ivashchenko, A. I., ... & Egorov, S. G. (2003). The 2000 Mw 6.8 Uglegorsk earthquake and regional plate boundary deformation of Sakhalin from geodetic data. Geophysical research letters, 30(3). Kojima, M. and Shimura, T. (2014). Pre-Tertiary Systems on the western side of the Abashiri Tectonic Line in the Shiranukaarea, eastern Hokkaido, Japan: Implications to the tectonic reiationship betweenthe Nemuro and Tokoro Belts. Journal-Geological Society of Japan, 120 (11), 393–412. (In Japanese with English Abstract) Komatsu, M., Toyoshima, T., Osanai, Y., & Arai, M. (1994). Prograde and anatectic reactions in the deep arc crust exposed in the Hidaka metamorphic belt, Hokkaido, Japan. Lithos, 33(1-3), 31-49. Konstantinovskaya, E. A. (2001). Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia), in Active Subduction and Collision in Southeast Asia (SEASIA), S. Lallemand, C.-S. Liu, J. Angelier, and Y.B. Tsai, Eds., Tectonophysics, vol. 333, pp. 75–94. Konstantinovskaya, E. A. (2011). Early Eocene arc–continent collision in Kamchatka, Russia: structural evolution and geodynamic model. In Arc-Continent Collision Springer Berlin Heidelberg, pp. 247-277. Kruk, N. N., Simanenko, V. P., Gvozdev, V. I., Golozubov, V. V., Kovach, V. P., Serov, P. I., ... & Kuibida, M. L. (2014). Early Cretaceous granitoids of the Samarka terrane (Sikhote-Alin’): geochemistry and sources of melts. Russian Geology and Geophysics, 55(2), 216-236. Lallemand, S., & Jolivet, L. (1986). Japan Sea: a pull-apart basin?. Earth and Planetary Science Letters, 76(3-4), 375-389. Lelikov, E. P., & Emel’yanova, T. A. (2007). Volcanogenic complexes of the Sea of Okhotsk and the Sea of Japan (comparative analysis). Oceanology, 47(2), 273-281. Lin, I. J., Chung, S. L., Chu, C. H., Lee, H. Y., Gallet, S., Wu, G., Ji, J. and Zhang, Y. (2012). Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 53, 131-150. Loiselle, M. C., & Wones, D. R. (1979, November). Characteristics and origin of anorogenic granites. In Geological Society of America Abstracts with Programs (Vol. 11, No. 7, p. 468). Ludwig, K. R. (2008). Isoplot v. 4.15: Geochronol. Toolkit for Microsoft Exel. Spec. Publ. (Berkley Geochronol. Center) Lugmair, G. W., & Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349-357. Maeda, J. I. (1990). Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, North Japan. Tectonophysics, 174(3-4), 235-255. Maeda, J. I., & Kagami, H. (1994). Mafic igneous rocks derived from N-MORB source mantle, Hidaka magnatic zone, Central Hokkaido: Sr and Nd isotopic evidence. The Journal of the Geological Society of Japan, 100(2), 185-188. Malinovsky, A. I., Golozoubov, V. V., & Simanenko, V. P. (2006). The Kema island-arc terrane, eastern Sikhote Alin: Formation settings and geodynamics. In Doklady earth sciences (Vol. 410, No. 1, pp. 1026-1029). MAIK Nauka/Interperiodica. Malinovsky, A. I., Golozoubov, V. V., Simanenko, V. P., & Simanenko, L. F. (2008). Kema terrane: A fragment of a back‐arc basin of the early Cretaceous Moneron–Samarga island‐arc system, East Sikhote–Alin range, Russian Far East. Island Arc, 17(3), 285-304. Maruyama, S. (1997). Pacific‐type orogeny revisited: Miyashiro‐type orogeny proposed. Island Arc, 6(1), 91-120. Maruyama, S., & Seno, T. (1986). Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics, 127(3-4), 305-329. Miyashita, S. & Katsushima, N. (1986). The Tomuraushi greenstone complex of the central Hidaka zone-contemporaneous occurrence of abyssal tholeiite and terrigenous sediments. Journal-Geological Society of Japan. 92: 535-557. Miyashita, S., & Yoshida, A. (1994). Geology and petrology of the Shimokawa ophiolite (Hokkaido, Japan): ophiolite possibly generated near RTT triple junction. In Circum Pacific Ophiolite, Proc. 29th IGC Ophiolite Symposium, Part D, VSP Pub., Netherlands (pp. 163-182). Nakajima, T., Takahashi, M., Imaoka, T., & Shimura, T. (2016). Granitic rocks. In T. Moreno, S. Wallis, T. Kojima, & W. Gibbons (eds.), The Geology of Japan (pp. 251-272). London: Geological Society. Nanayama, F., Terada, T., Omata, M., Kito, N., Zharov, A, E., Ishizaki, S. (1994): Accretionary tectonics in the southeastern Sakhalin, Far East Russia: Relationship of ‘Mesozoic’ systems between Sakhalin and Hokkaido. Chishitsu News no. 478, p. 15-26. Nanayama, F., Kanamatsu, T., & Fujiwara, Y. (1993). Sedimentary petrology and paleotectonic analysis of the arc—arc junction: the Paleocene Nakanogawa Group in the Hidaka Belt, central Hokkaido, Japan. Palaeogeography, palaeoclimatology, palaeoecology, 105(1-2), 53-69. Nishio, M., & Yoshida, K. (2014). Tectonic constraints to Cretaceous magmatic arc deduced from detrital heavy minerals in northeastern Japan–evidence from detrital garnets, tourmalines and chromian spinels. Cretaceous Research, 48, 39-53. Nokleberg, W. J. (2000). Phanerozoic tectonic evolution of the Circum-North Pacific (No. 1626). US Department of the Interior, US Geological Survey. Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J., & Taylor, R. N. (1998). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149(3), 211-233. Okamura, S., Arculus, R. J., & Martynov, Y. A. (2004). Cenozoic magmatism of the North-Eastern Eurasian margin: the role of lithosphere versus asthenosphere. Journal of Petrology. Okamura, S., Arculus, R. J., Martynov, Y. A., Kagami, H., Yoshida, T., & Kawano, Y. (1998a). Multiple magma sources involved in marginal-sea formation: Pb, Sr, and Nd isotopic evidence from the Japan Sea region. Geology, 26(7), 619-622. Okamura, S., Martynov, Y. A., Furuyama, K., & Nagao, K. (1998b). K–Ar ages of the basaltic rocks from Far East Russia: Constraints on the tectono‐magmatism associated with the Japan Sea opening. Island Arc, 7(1‐2), 271-282. Osanai, Y., Miyashita, S., Arita, K., & Bamba, M. (1986). The metamorphism and thermal structure of the collisional terrain of a continental and oceanic crusts: A case of the Hidaka metamorphic belt, Hokkaido, Japan. Geology and Tectonics of Hokkaido, 31, 205-222. Owada, M., Yamasaki, T., Osanai, Y., Yoshimoto, K., Hamamoto, T., & Kagami, H. (2006). Poly-metamorphism, anatexis and formation of granitic magma due to intrusion of the Niobetsu complex during Miocene, the Nozuka-dake area, Hidaka metamorphic belt, northern Japan. Journal-Geological Society of Japan, 112(11), 666-683. Parfenov, L. M. (1984). Continental margins and island arcs in the Mesozoides of Northeastern Asia. (in Russian), 192 pp., Nauka, Novosibirsk. Parfenov, L. M., Badarch, G., Berzin, N. A., Khanchuk, A. I., Kuzmin, M. I., Nokleberg, W. J., ... & Yan, H. (2009). Summary of Northeast Asia geodynamics and tectonics. Stephan Mueller Special Publication Series, 4, 11-33. Parfenov, L. M., & Natal''in, B. A. (1986). Mesozoic tectonic evolution of northeastern Asia. Tectonophysics, 127(3-4), 291-304. Parfenov, L. M., Nokleberg, W. J., Berzin, N. A., Badarch, G., Dril, S. I., Gerel, O., ... & Prokopiev, A. V. (2011). Tectonic and metallogenic model for Northeast Asia. US Department of the Interior, US Geological Survey Open-File Report 2011-1026. Parfenov, L. M., Voinova, I. P., Natal''in, B. A., & Semenov, D. F. (1978). Geodynamics of the north-eastern Asia in Mesozoic and Cenozoic time and the nature of volcanic belts. Journal of Physics of the Earth, 26(Supplement), S503-S525. Paterson, B. A., & Stephens, W. E. (1992). Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 109(3), 373-385. Pearce, J. (1996). Sources and settings of granitic rocks. Episodes, 19, 120-125. Pearce, J. A., Harris, N. W., and Tindle, A. G. (1984), Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, n. 4, p. 956–983, http://dx.doi.org/10.1093/petrology/25.4.956. Pitcher, W. S. (1983). Granite type and tectonic environment. Mountain building processes, 19, 40. Prokopiev, A., Toro, J., Miller, E.L., Gehrels, G.E. (2008). The paleo–Lena River—200 m.y. of transcontinental zircon transport in Siberia. Geology 36, 699–702. Pushcharovsky, Yu. M., V. P. Zinkevich, and O. A. Mazarovich (1983). Thrust nappe structures in the northwest Pacific margin (in Russian). Geotektonika, 6, 30-45. Raznitsin, Yu. N., (1975). Comparative tectonics of hyperbasic belts of Schmidt peninsula (Sakhalin), Papua (New Guinea) and Sabakh (Kalimantan). Geotektonika, 2: 68-84 (in Russian). Raznitsin, Yu. N., (1978). Serpentinite mélange and olistostrome of the south-eastern part of East Sakhalin Mountains (in Russian). Geotektonika, 1: 98-108. Rino, Sh., Komiya, T., Windley, B., Katayama, I., Motoki, A., Hirata, T. (2004). Major episodic increases of continental crustal growth determined from zircon ages of river sands: implications for mantle overturns in the Early Precambrian. Physics of Earth and Planetary Interiors 146, 369–394. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D. (2008). The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research 14, 51–72. Rodnikov, A. G., Sergeyeva, N. A., & Zabarinskaya, L. P. (2013). Ancient subduction zone in Sakhalin Island. Tectonophysics, 600, 217-225. Rodnikov, A. G., Sergeyeva, N. A., Zabarinskaya, L. P., Filatova, N. I., Piip, V. B., & Rashidov, V. A. (2008). The deep structure of active continental margins of the Far East (Russia). Russ. J. Earth Sci, 10(4). Rozhdestvensky, V. S. (1986). Evolution of the Sakhalin fold system. Tectonophysics, 127(3-4), 331-339. Rozhdestvensky, V. S., & Rechkin, A. N. (1982). Evolution of the ophiolitic magmatism of Sakhalin. Tikhookeanskaya geol, (2), 40-44. Safonova, I., Maruyama, S., Hirata, T., Kon, Y., & Rino, S. (2010). LA ICP MS U–Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation. Journal of Geodynamics, 50(3), 134-153. Sakakibara, M., Niida, K., Toda, H., Kito, N., Kimura, G., Tajika, J., ... & Yoshida, A. (1986). Nature and tectonic history of the Tokoro belt. Geology and Tectonic History of Hokkaido, 31, 173. Sakakibara, M., Ofuka, H., Kimura, C., Ishizuka, H., Miyashita, S., Okamura, M., & Melinikov, O. A. (1997). Metamorphic evolution of the Susunai metabasites in southern Sakhalin, Russian Republic. Journal of Metamorphic Geology, 15(5), 565-580. Sengör, A. M. C., & Natal’in, B. A., (1996). Turkic-type orogeny and its role in the making of the continental crust: Annual Review of Earth and Planetary Sciences. v. 24, p. 263–337, http://dx.doi.org/10.1146/ Shand, S. J. (1943). The Eruptive Rocks, 2nd edn. New York: John Wiley, 444 pp. Simanenko, V. P., Rasskazov, S. V., Yasnygina, T. A., Simanenko, L. F., & Chashchin, A. A. (2011). Cretaceous complexes of the frontal zone of the Moneron-Samarga Island arc: Geochemical data on the basalts from the deep borehole on Moneron Island, the Sea of Japan. Russian Journal of Pacific Geology, 5(1), 26-46. Shimazu, M., Furuyama, K., Kawano, Y., Okamura, S., Ohira, H., & Genju, Y. A. M. A. M. O. T. O. (1992). K-Ar ages, major and minor element compositions and Sr, Nd isotope ratios of volcanic rocks from the western part of south Sakhalin, USSR. Journal of Mineralogy, Petrology and Economic Geology, 87(2), 50-61. Shimura, T. (1999). Genesis of the pyroxene-bearing I-type tonalite and melting degree of the source rock, in the Hidaka Metamorphic Belt, northern Japan. Journal-Geological Society of Japan, 105, 536-551. Shimura, T., Komatsu, M., & Iiyama, J. T. (1992). Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka Metamorphic Belt, northern Japan. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2), 259-268. Shimura, T., Osanai, Y., Toyoshima, T., Owada, M., & Komatsu, M. (2006). Cooling process of the basal tonalite magma, Hidaka metamorphic belt, northern Japan. Journal-Geological Society of Japan, 112(11), 654. (In Japanese with English Abstract) Shimura, T., Owada, M., Osanai, Y., Komatsu, M., & Kagami, H. (2004). Variety and genesis of the pyroxene-bearing S-and I-type granitoids from the Hidaka Metamorphic Belt, Hokkaido, northern Japan. Geological Society of America Special Papers, 389, 161-179. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J. (2008). Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1-35. Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176 Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3), 311-324. State Geological Map of the Russian Federation, scale 1:200 000. Second edition. Sakhalin series. Sheets: L-54-X,XI, L-54-XII, L-54-XVI, XXII, L-54-XVII,XXIII, L-54-XVIII. Explanatory note. 2001. St. Petersburg. VSEGEI publishing. 276 P. (in Russian). Steiger R. H. & Jäger E. 1977. Subcommission on geochronology: Convection on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62. Stern, R. J. (2008). Neoproterozoic crustal growth: the solid Earth system during a critical episode of Earth history. Gondwana research, 14(1), 33-50. Streckeisen, A., and Le Maitre, R. W. (1979). A chemical approximation to the modal QAPF classification of the igneous rocks: Neues Jahrbuch fu¨ r Mineralogie, Abhandlungen, v. 136, p. 169–206. Strelnikov S.I. (2008). Geological map of Russia at a scale of 1 : 5000000 (in Russian). Su, Y. J. (2002). Mid-ocean ridge basalt trace element systematics: Constraints from database management, ICP-MS analyses, global data compilation and petrologic modeling. PhD thesis. Columbia University, New York, 472 pp. Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (eds.), Magmatism in the Ocean Basins, pp. 313–45. Geological Society of London, Special Publication no. 42. Sylvester, P. J. (1989). Post-collisional alkaline granites. The Journal of Geology, 97(3), 261-280. Takanashi, K., Kakihara, Y., Ishimoto, H., & Shuto, K. (2012). Melting of crustal rocks as a possible origin for Middle Miocene to Quaternary rhyolites of northeast Hokkaido, Japan: Constraints from Sr and Nd isotopes and major-and trace-element chemistry. Journal of Volcanology and Geothermal Research, 221, 52-70. Takeuchi, T. (1997). K-Ar ages of the Tertiary volcanic rocks in South Sakhalin and their tectonic significance. Jour. Geol. Soc. Japan, 103, 67-97. Takeuchi, T., Kodama, K., & Ozawa, T. (1999). Paleomagnetic evidence for block rotations in central Hokkaido–south Sakhalin, Northeast Asia. Earth and Planetary Science Letters, 169(1), 7-21. Tang, J., Xu, W., Niu, Y., Wang, F., Ge, W., Sorokin, A. A., & Chekryzhov, I. Y. (2016). Geochronology and geochemistry of Late Cretaceous–Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate. Lithos, 266, 202-212. Tatsumi, Y. (2005). The subduction factory: how it operates in the evolving Earth. GSA Today 15 (7), 4–10 Ueda, H. (2005). Accretion and exhumation structures formed by deeply subducted seamounts in the Kamuikotan high‐pressure/temperature zone, Hokkaido, Japan. Tectonics, 24(2). Ueda, H. (2016). Hokkaido. In T. Moreno, S. Wallis, T. Kojima, & W. Gibbons (eds.), The Geology of Japan (pp. 201-221). London: Geological Society. Ueda, H., & Miyashita, S. (2005). Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest. Island Arc, 14(4), 582-598. Ueda, H., Kawamura, M., & Niida, K. (2000). Accretion and tectonic erosion processes revealed by the mode of occurrence and geochemistry of greenstones in the Cretaceous accretionary complexes of the Idonnappu Zone, southern central Hokkaido, Japan. Island Arc, 9(2), 237-257. Usuki, T., Kaiden, H., Misawa, K., & Shiraishi, K. (2006). Sensitive high‐resolution ion microprobe U‐Pb ages of the Latest Oligocene‐Early Miocene rift‐related Hidaka high‐temperature metamorphism in Hokkaido, northern Japan. Island Arc, 15(4), 503-516. Valui, G. A., & Moskalenko, E. Y. (2010). First data on the isotopes of Sm—Nd and Sr for Cretaceous—Paleogene granitoids of primors’e and some problems of their genesis. In Doklady Earth Sciences (Vol. 435, No. 1, pp. 1511-1514). SP MAIK Nauka/Interperiodica. Vernon, R. H., Etheridge, M. A., & Wall, V. J. (1988). Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos, 22(1), 1-11. Vervoort, J. D., & Patchett, P. J. (1996). Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19), 3717-3733. Weaver, R., Roberts, A. P., Flecker, R., Macdonald, D. I., & Fot''yanova, L. M. (2003). Geodynamic implications of paleomagnetic data from Tertiary sediments in Sakhalin, Russia (NW Pacific). Journal of Geophysical Research: Solid Earth (1978–2012), 108(B2). Weaver, R., Roberts, A. P., Flecker, R., & Macdonald, D. I. (2004). Tertiary geodynamics of Sakhalin (NW Pacific) from anisotropy of magnetic susceptibility fabrics and paleomagnetic data. Tectonophysics, 379(1), 25-42. Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). A-type granites: geochemical characteristics, discriminations and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, n. 4, p. 407–419, http://dx.doi.org/10.1007/BF00402202 White, A. J. R. (1979, November). Sources of granite magmas. In Geological Society of America Abstracts with Programs (Vol. 11, No. 7, p. 539). White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2), 7-22. White, A. J. R., Clemens, J. D., Holloway, J. R., Silver, L. T., Chappell, B. W., & Wall, V. J. (1986). S-type granites and their probable absence in southwestern North America. Geology, 14(2), 115-118. Wiedenbeck, M. A. P. C., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., ... & Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards newsletter, 19(1), 1-23. Worrall, D. M., Kruglyak, V., Kunst, F., & Kuznetsov, V. (1996). Tertiary tectonics of the Sea of Okhotsk, Russia: Far‐field effects of the India‐Eurasia collision. Tectonics, 15(4), 813-826. Wu, F. Y., Li, X. H., Zheng, Y. F., & Gao, S. (2007). Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23 (2): 185-220. Wu, J. T. J. (2016). Geochemical Characteristics and Petrogenesis of Adakites in Sikhote-Alin, Russian Far East (Master''s thesis). National Taiwan University, Taipei, Taiwan. Xiao, W. J., Zhang, L. C., Qin, K. Z., Sun, S. H. U., & Li, J. L. (2004). Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. American Journal of Science, 304(4), 370-395. Zharov, A. E. (2005). South Sakhalin tectonics and geodynamics: A model for the Cretaceous-Paleogene accretion of the East Asian continental margin, Russ. J. Earth. Sci., 7, ES5002, doi:10.2205/2005ES000190. Zhao, P., Jahn, B. M., Alexandrov, I., Liao, J. P., Ivin, V. (2017a) Geochronological, geochemical and Sr-Nd isotopic study of granites in the central Sakhalin Island (Russian Far East) and its bearing on accretion in northwestern Pacific domain. (in prep.) Zhao, P., Alexandrov, I. et al. (2017b) Accretion history and formation of the Sakhalin Island: Constraints from detrital zircon ages of metasediments in eastern accretionary complex. (in prep.) Zonenshain, L. P., Kuzmin, M. I., Natapov, L. M., & Page, B. M. (1990). Sikhote-Alin-Sakhalin Foldbelt (pp. 109-120). In L. P. Zonenshain, M. I. Kuzmin, L. M. Natapov and B. M. Page (eds.), Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical Union, Washington, D. C.. doi: 10.1029/GD021p0109
|