跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴晶婷
研究生(外文):Ching-Ting Tai
論文名稱:a-氫氧化鎳/石墨烯衍生物及a-氫氧化鎳/脫層奈米蒙托土混摻複合材料於高效能超級電容電極之製備與應用
論文名稱(外文):Fabrication and application of a-Ni(OH)2/graphene derivative and a-Ni(OH)2/exfoliated montmorillonite composites and their hybrids for high-performance supercapacitor electrodes
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
口試委員:何國川羅世強
口試委員(外文):Kuo-Chuan HoShyh-Chyang Luo
口試日期:2016-10-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:136
中文關鍵詞:超級電容氫氧化鎳鋁基取代氧化石墨烯還原氧化石墨烯脫層蒙托土泡沫鎳電極
外文關鍵詞:SupercapacitorNickel HydroxideAl-substitutedGraphene OxideReduced Graphene OxideExfoliated ClayNickel Foam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來超級電容的發展可歸因於高功率密度、長效穩定性、可瞬間充放電之性質,為了更進一步縮短充放電時間,提高能量密度以及在高電流密度下的電容保持率,本論文利用簡單且對乾淨的化學析出法製備出一種被鋁基局部取代的a相氫氧化鎳(Al-Ni(OH)2),作為超級電容之工作電極,再藉由額外添加石墨烯衍生物(氧化石墨烯、還原氧化石墨烯、 改質之帶正電石墨烯、改質之帶正電還原氧化石墨烯)和脫層奈米蒙托土作為氫氧化鎳的成核基板,成功合成出氫氧化鎳複合材料。此外,若將exMMT/Al-Ni(OH)2與石墨烯衍生物/Al-Ni(OH)2這兩種複材混合可再製成Al-Ni(OH)2混摻複合材料,其在高電流密度下擁有較高的電容保持率與穩定性。
上述之石墨烯衍生物與脫層蒙托土由以下方法所製成,氧化石墨烯(GO)是由modified Hummers method製成,再藉由添加聯氨使GO還原為還原氧化石墨烯(rGO),若再將乙二胺加入GO與rGO的溶液中,可以利用化學改質法製成帶正電石墨烯(GO+)與帶正電還原氧化石墨烯(rGO+)。脫層蒙托土(exMMT)則是由本實驗室的無乳化劑聚合法製備而成,接著在a相氫氧化鎳合成過程中加入四種不同重量百分比(0.8%, 1.59%, 3.13%, 6.09%)的添加物,便可得到相氫氧化鎳與石墨烯衍生物及脫層奈米蒙托土之複合材料。
本實驗利用XRD、TEM、SEM、Raman等儀器分析材料特性,再進一步利用GCD、CV、EIS測量電化學性質。由實驗結果發現,那些帶負電之複材(GO/Al-Ni(OH)2, rGO/Al-Ni(OH)2, and exMMT/Al-Ni(OH)2),氫氧化鎳奈米薄片會散亂地直立在添加物上,呈現一個3D孔隙結構。然而,對於那些帶正電之複材(GO+/Al-Ni(OH)2 and rGO+/Al-Ni(OH)2),表面卻呈現相對平坦的形貌,我們甚至觀察到rGO+/Al-Ni(OH)2 有局部層狀堆疊結構。所有複材中,以1.59% GO/Al-Ni(OH)2表現最為優異,在1A/g之電流密度,電容值高達2759.32 F/g,在20A/g尚餘1279.94 F/g,電容保持率為46%。1.59% GO/Al-Ni(OH)2相較於純Al-Ni(OH)2,在1A/g與20A/g下電容值分別高出30%與70%,這個結果可以用兩個理由解釋:(1) 3D結構提供較高的比表面積讓電解液與電極材料接觸,大幅增加有效氧化反應面積。(2)氧化石墨烯在合成過程中還原為還原氧化石墨烯,故能大幅增加氫氧化鎳複合材料之導電性。
在Al-Ni(OH)2混摻複合材料中,exMMT/Al-Ni(OH)2與rGO+Al-Ni(OH)2 以重量比1:1混摻時,具有最突出的電容表現,在1A/g之電流密度,電容值為2498.81 F/g,在20A/g尚餘1760.76 F/g,電容保持率高達70%。由EIS結果我們發現,將兩種不同的複材混摻後,Rct大幅度下降,幾乎與1.59% GO/Al-Ni(OH)2之Rct相等。推測原因是由於exMMT和rGO+表面所帶之相反電荷造成庫倫引力作用,使兩種複材在混摻過程中吸附在一起。在這個混摻複合材料中,exMMT的陽離子交換特性有利於電解液之擴散,而rGO+則可增加整體複材之導電度,因此,Al-Ni(OH)2混摻複合材料的特殊結構能有效提升電化學之氧化還原反應動力學,成功製備出一種高效能超級電容之電極材料。
In recent years, supercapacitor has attracted significant attention by its superior performance such as high specific power, long lifecycle, short charging time, and environment-friendly. To improve the specific energy, rate capability, and cycle stability of electrode materials for supercapacitor, in this thesis a facile one-step solution precipitation method was conducted to prepare 3D structural Al-Ni(OH)2 composites in a-phase. The composites are composed of Al-Ni(OH)2 and 2D supporting additives (graphene oxide, reduced graphene oxide, modified graphene oxide with positive charges, modified reduced graphene oxide, and exfoliated montmorillonite). In addition, the “Al-Ni(OH)2 composite hybrid” as a final product is made by mixing with two composites: graphene-based materials/Al-Ni(OH)2 and exMMT/Al-Ni(OH)2, and it provides new properties and high performance.
The 2D supporting additives are prepared by the following methods. The graphene oxide (GO) is prepared by modified Hummers method and then reduces it with hydrazine as reducing agent to obtain reduced graphene oxide (rGO). The functionalized GO and rGO with positive charges (GO+ and rGO+, respectively) was made by chemical modification with ethylenediamine. Furthermore, the exfoliated montmorillonite (exMMT) is fabricated through soap-free emulsion polymerization of methyl methacrylate (MMA) in the presence of montmorillonite. The Al-Ni(OH)2 based composites are fabricated by controlling the additives mass ratio with 0.8%, 1.59%, 3.13%, and 6.09%.
XRD, TEM, SEM, Raman, and electrochemical measurements including GCD, CV, and EIS are used to characterize the Al-Ni(OH)2 based materials. The surface morphology of those composites with negatively charged substrates (GO, rGO, and exMMT) were a 3D open-porous nanostructure constructed by randomly decorated Al-Ni(OH)2 nanosheets as building blocks. Whereas, for those with positively charged substrates (GO+ and rGO+), the relatively flat structure was observed. Among these composites, the best one was 1.59% GO/Al-Ni(OH)2 (GO accounts for 1.59wt% of this composite) with 2759.32 F/g at 1A/g and 1279.94 F/g at 20A/g with a capacitance retention of about 46%. The specific capacitance at 1 A/g and 20 A/g were 30% and 70% higher than that of pure Al-Ni(OH)2, respectively. This improved capacitance could be explained by both the increasing effective redox areas related to 3D porous morphology and enhanced conductivity by incorporating graphitic sheet.
In the hybrid system, the exMMT/Al-Ni(OH)2 and rGO+/Al-Ni(OH)2 hybridized in 1:1 mass ratio showed the highest specific capacitance with 2498.81 F/g at 1A/g and retained 1760.76 F/g at 20A/g with a significantly improved capacitance retention of about 70%. Note that after the hybrid process, Rct dramatically decreased and almost equaled to the Rct of 1.59% GO/Al-Ni(OH)2. It is presumable that exMMT nanosheets would raise ionic transportability and rGO+ sheets enhanced electrical conductivity. Therefore, such Al-Ni(OH)2 hybrid is an excellent choice for high-performance supercapacitor electrode.
口試委員會審定書 #
誌謝 I
中文摘要 II
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XVIII
Chapter 1 Motivation and Research Outline 1
1.1 Motivation 1
1.2 Research Outline 4
Chapter 2 Literature Review 6
2.1 Introduction to Supercapacitor 6
2.1.1 Electrostatic Double-Layer Capacitors (EDLCs) 8
2.1.2 Pseudocapacitor 10
2.2 Measurement Methods of Supercapacitor 11
2.2.1 Cyclic Voltammetry Method 12
2.2.2 Galvanostatic Charge/Discharge Measurement 13
2.2.3 Electrical Impedance Spectroscopy 15
2.2.4 Specific Energy and Specific Power 22
2.3 Nickel Hydroxide Materials 23
2.3.1 Introduction to Nickel Hydroxide 23
2.3.2 β-Ni(OH)2 24
2.3.3 α-Ni(OH)2 26
2.3.4 Transformation Mechanism of α-phase to β-phase in Alkaline Medium 28
2.3.5 Layer Double Hydroxyl Structure 29
2.4 Graphene 32
2.4.1 Introduction to Graphene 32
2.4.2 Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) 33
2.4.3 Positively Charged Graphene-based Materials (GO+ and rGO+) 34
2.5 Montmorillonite 35
2.5.1 Classification of Layered Silicates 35
2.5.2 Introduction to Montmorillonite 36
2.5.3 Exfoliated Montmorillonite (exMMT) 38
Chapter 3 Experimental Methods 40
3.1 List of Chemicals 40
3.2 List of Instruments 42
3.3 Materials Preparation and Characterization 43
3.3.1 Fabrication of GO and rGO 43
3.3.2 Fabrication of GO+ and rGO+ 44
3.3.3 Fabrication of exMMT 45
3.3.4 Fabrication of Al-Ni(OH)2 and Its Composites 46
3.3.5 Fabrication of Al-Ni(OH)2 Composite Hybrids 47
3.3.6 Characterization 48
3.4 Electrode Preparation and Electrochemical Measurement 50
3.4.1 Cleaning of Nickel Foam 50
3.4.2 Fabrication of Electrode with Al-Ni(OH)2 and its Composites 50
3.4.3 Electrochemical Measurement 51
Chapter 4 Results and Discussion 52
4.1 Characteristics of the Graphene System 52
4.1.1 XRD Patterns of Graphite Based Materials 52
4.1.2 Raman Spectroscopy of Graphite Based Materials 53
4.1.3 TEM Investigation of Graphite Based Materials 54
4.2 Characteristics of Exfoliated Montmorillonite 56
4.2.1 XRD Patterns of Exfoliated Montmorillonite 56
4.2.2 TEM Investigation of Exfoliated Montmorillonite 57
4.2.3 TGA of Exfoliated Montmorillonite 58
4.3 Characteristics of the Nickel Foam Electrode 59
4.4 Characteristics and Electrochemical Measurements of Al-Ni(OH)2 60
4.4.1 XRD Patterns of Al-Ni(OH)2 60
4.4.2 SEM and TEM Images of Al-Ni(OH)2 61
4.4.3 CV of Al-Ni(OH)2 on Nickel Foam Electrode 63
4.4.4 GCD performance of Al-Ni(OH)2 on nickel foam electrode 65
4.4.5 EIS of Al-Ni(OH)2 on nickel foam electrode 66
4.5 Characteristics and Electrochemical Measurements of Al-Ni(OH)2 Composites 68
4.5.1 XRD Patterns of Al-Ni(OH)2 composites 68
4.5.2 Raman Spectroscopy of Al-Ni(OH)2 Composites 71
4.5.3 SEM and TEM Images with EDX Element Analysis of Al-Ni(OH)2 Composites 72
4.5.4 CV of Al-Ni(OH)2 Composites on Nickel Foam Electrode 85
4.5.5 GCD Performance of Al-Ni(OH)2 Composites on Nickel Foam Electrode 91
4.5.6 EIS of Selected Al-Ni(OH)2 Composites on Nickel Foam Electrode 109
4.6 Characteristics and Electrochemical Measurements of exMMT/Al-Ni(OH)2 Hybrid with Graphene Derivatives/Al-Ni(OH)2 111
4.6.1 CV of Al-Ni(OH)2 Composite Hybrids on Nickel Foam Electrode 111
4.6.2 GCD Performance of Al-Ni(OH)2 Composite Hybrids on Nickel Foam Electrode 113
4.6.3 EIS of exMMT/Ni and rGO+/Ni (1:1) on Nickel Foam Electrode 119
4.6.4 SEM and TEM Images of exMMT/Ni and rGO+/Ni (1:1) Hybrid 121
4.6.5 Ragone Plot and Cycle Stability 122
Chapter 5 Conclusion 125
Chapter 6 Appendices 128
6.1 Preparation of exMMT/rGO+ Composite by Layer-by-Layer Assembly 128
6.2 Characteristics of exMMT/rGO+ Composite 129
6.2.1 Photographs of Samples 129
6.2.2 TEM Investigation of exMMT/rGO+ Composite 130
REFERENCE 131
1.Zhang, F., D. Zhu, X. Chen, X. Xu, Z. Yang, C. Zou, K. Yang and S. Huang, A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Phys Chem Chem Phys, 2014. 16(9): p. 4186-92.
2.Wang, H., H.S. Casalongue, Y. Liang and H. Dai, Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 2010. 132(21): p. 7472-7477.
3.Xu, Y., X. Huang, Z. Lin, X. Zhong, Y. Huang and X. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Research, 2012. 6(1): p. 65-76.
4.Yang, S., X. Wu, C. Chen, H. Dong, W. Hu and X. Wang, Spherical alpha-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun (Camb), 2012. 48(22): p. 2773-5.
5.Yan, J., W. Sun, T. Wei, Q. Zhang, Z. Fan and F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012. 22(23): p. 11494.
6.Yan, J., Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012. 22(12): p. 2632-2641.
7.Lee, J.W., T. Ahn, D. Soundararajan, J.M. Ko and J.D. Kim, Non-aqueous approach to the preparation of reduced graphene oxide/alpha-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun (Camb), 2011. 47(22): p. 6305-7.
8.Chen, S., J. Duan, Y. Tang and S. Zhang Qiao, Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chemistry, 2013. 19(22): p. 7118-24.
9.Arico, A.S., P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005. 4(5): p. 366-377.
10.Conway, B.E., Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society, 1991. 138(6): p. 1539-1548.
11.Wang, G., L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
12.Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15–16): p. 2483-2498.
13.Dubal, D.P., O. Ayyad, V. Ruiz and P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev., 2015. 44(7): p. 1777-1790.
14.Abrun~a, H.c.D., Y. Kiya and J.C. Henderson, Batteries and electrochemical capacitors. Physics Today, 2008. 61(12): p. 43-47.
15.Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
16.Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): p. 845-854.
17.Chen, G.Z., K.C. Ng and J.H. Chae, Nanostructured materials for the construction of asymmetrical supercapacitors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010. 224(4): p. 479-503.
18.Tilak, B.V., C.G. Rader and S.K. Rangarajan, Techniques for Characterizing Porous Electrodes: I : Determination of the Double Layer Capacity. Journal of The Electrochemical Society, 1977. 124(12): p. 1879-1886.
19.Pillay, B. and J. Newman, The Influence of Side Reactions on the Performance of Electrochemical Double‐Layer Capacitors. Journal of The Electrochemical Society, 1996. 143(6): p. 1806-1814.
20.Halper, M.S. and J.C. Ellenbogen, Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA, 2006: p. 1-34.
21.Namisnyk, A.M., A survey of electrochemical supercapacitor technology. 2003, University of Technology, Sydney.
22.Peng, C., S. Zhang, D. Jewell and G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science, 2008. 18(7): p. 777-788.
23.Zhang, J.T., S. Liu, G.L. Pan, G.R. Li and X.P. Gao, A 3D hierarchical porous a-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J. Mater. Chem. A, 2014. 2(5): p. 1524-1529.
24.Subramanian, V., H. Zhu and B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochemistry Communications, 2006. 8(5): p. 827-832.
25.Basics of Electrochemical Impedance Spectroscopy. Available from: http://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/.
26.Su, P.-H., 聚苯胺/石墨烯量子點複材之製備, 性質及在膠態超級電容之應用. 臺灣大學材料科學與工程學研究所學位論文, 2015: p. 1-141.
27.Lang, J.-W., L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo and L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 2008. 13(2): p. 333-340.
28.Linden, D. Handbook of batteries. in Fuel and Energy Abstracts. 1995.
29.Bode, H., K. Dehmelt and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat. Electrochimica Acta, 1966. 11(8): p. 1079-IN1.
30.Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci., 2010. 3(2): p. 174-189.
31.Wu, Q.D., X.P. Gao, G.R. Li, G.L. Pan, T.Y. Yan and H.Y. Zhu, Microstructure and Electrochemical Properties of Al-Substituted Nickel Hydroxides Modified with CoOOH Nanoparticles. The Journal of Physical Chemistry C, 2007. 111(45): p. 17082-17087.
32.Wang, C.Y., S. Zhong, K. Konstantinov, G. Walter and H.K. Liu, Structural study of Al-substituted nickel hydroxide. Solid State Ionics, 2002. 148(3–4): p. 503-508.
33.Kamath, P.V., M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar and N. Munichandraiah, Stabilized α ‐ Ni (  OH  ) 2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 1994. 141(11): p. 2956-2959.
34.Tessier, C., L. Guerlou-Demourgues, C. Faure, A. Demourgues and C. Delmas, Structural study of zinc-substituted nickel hydroxides. Journal of Materials Chemistry, 2000. 10(5): p. 1185-1193.
35.Vidotti, M., R. Torresi and S.I. TORRESI, Eletrodos modificados por hidróxido de níquel: um estudo de revisão sobre suas propriedades estruturais e eletroquímicas visando suas aplicações em eletrocatálise, eletrocromismo e baterias secundárias. Química Nova, 2010. 33(10): p. 2176-2186.
36.McEwen, R., Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 1971. 75(12): p. 1782-1789.
37.Oliva, P., J. Leonardi, J. Laurent, C. Delmas, J. Braconnier, M. Figlarz, F. Fievet and A. De Guibert, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 1982. 8(2): p. 229-255.
38.Casas-Cabanas, M., J. Rodríguez-Carvajal, J. Canales-Vázquez, Y. Laligant, P. Lacorre and M.R. Palacín, Microstructural characterisation of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches. Journal of Power Sources, 2007. 174(2): p. 414-420.
39.Dai, J., S.F.Y. Li, T.D. Xiao, D.M. Wang and D.E. Reisner, Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries. Journal of Power Sources, 2000. 89(1): p. 40-45.
40.Provazi, K., M.J. Giz, L.H. Dall’Antonia and S.I. Córdoba de Torresi, The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. Journal of Power Sources, 2001. 102(1–2): p. 224-232.
41.Barnard, R., C. Randell and F. Tye, Studies concerning the ageing of α and β-Ni (OH) 2 in relation to nickel–cadmium cells. Power Sources, 1981. 8: p. 401-425.
42.Faure, C., C. Delmas and M. Fouassier, Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Journal of Power Sources, 1991. 35(3): p. 279-290.
43.Hall, D.S., D.J. Lockwood, C. Bock and B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc Math Phys Eng Sci, 2015. 471(2174): p. 20140792.
44.Corrigan, D.A. and S.L. Knight, Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction. Journal of The Electrochemical Society, 1989. 136(3): p. 613-619.
45.Daniel, C. and J.O. Besenhard, Handbook of battery materials. 2012: John Wiley & Sons.
46.Barnard, R., C. Randell and F. Tye, Studies concerning charged nickel hydroxide electrodes I. Measurement of reversible potentials. Journal of Applied Electrochemistry, 1980. 10(1): p. 109-125.
47.Béléké, A.B., E. Higuchi, H. Inoue and M. Mizuhata, Durability of nickel–metal hydride (Ni–MH) battery cathode using nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite. Journal of Power Sources, 2014. 247: p. 572-578.
48.Khan, A.I. and D. O’Hare, Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater. Chem., 2002. 12(11): p. 3191-3198.
49.Li, Y.W., J.H. Yao, C.J. Liu, W.M. Zhao, W.X. Deng and S.K. Zhong, Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 2010. 35(6): p. 2539-2545.
50.Benício, L.P.F., R.A. Silva, J.A. Lopes, D. Eulálio, R.M.M.d. Santos, L.A.d. Aquino, L. Vergütz, R.F. Novais, L.M.d. Costa and F.G. Pinto, Layered double hydroxides: nanomaterials for applications in agriculture. Revista Brasileira de Ciência do Solo, 2015. 39(1): p. 1-13.
51.Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
52.Chen, D., H. Feng and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 2012. 112(11): p. 6027-53.
53.AlexanderAlUS. Graphene. 2010; Available from: https://en.wikipedia.org/wiki/Graphene.
54.Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
55.Stankovich, S., D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
56.Wakeland, S., R. Martinez, J.K. Grey and C.C. Luhrs, Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon, 2010. 48(12): p. 3463-3470.
57.Lee, D.W., T.-K. Hong, D. Kang, J. Lee, M. Heo, J.Y. Kim, B.-S. Kim and H.S. Shin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J. Mater. Chem., 2011. 21(10): p. 3438-3442.
58.Tu, Q., L. Pang, Y. Chen, Y. Zhang, R. Zhang, B. Lu and J. Wang, Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst, 2014. 139(1): p. 105-15.
59.Hong, T.-K., D.W. Lee, H.J. Choi, H.S. Shin and B.-S. Kim, Transparent, Flexible Conducting Hybrid Multilayer Thin Films of Multiwalled Carbon Nanotubes with Graphene Nanosheets. ACS Nano, 2010. 4(7): p. 3861-3868.
60.Bai, H., C. Li and G. Shi, Functional composite materials based on chemically converted graphene. Adv Mater, 2011. 23(9): p. 1089-115.
61.Alexandre, M. and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 2000. 28(1–2): p. 1-63.
62.Ke, Y. and P. Stroeve, Polymer-layered silicate and silica nanocomposites. 2005: Elsevier.
63.Van Olphen, H., An Introduction to Clay Colloid Chemistry. Soil Science, 1964. 97(4): p. 290.
64.Lin, K.-F., S.-C. Lin, A.-T. Chien, C.-C. Hsieh, M.-H. Yen, C.-H. Lee, C.-S. Lin, W.-Y. Chiu and Y.-H. Lee, Exfoliation of montmorillonite by the insertion of disklike micelles via the soap-free emulsion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(19): p. 5572-5579.
65.Bhattacharyya, K.G. and S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci, 2008. 140(2): p. 114-31.
66.Zhao, Z., T. Tang, Y. Qin and B. Huang, Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants. Langmuir, 2003. 19(22): p. 9260-9265.
67.Lin, K.-J., T.H. Weng, C.-H. Lee and K.-F. Lin, Grafting of polymer matrix to exfoliated montmorillonite nanoplatelets in nanocomposite film cast from soap-free emulsion polymerized latex and its fortified mechanical properties. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(21): p. 5891-5897.
68.Lin, K.-J., C.-A. Dai and K.-F. Lin, Revisit to the formation mechanism of exfoliated montmorillonite/PMMA nanocomposite latex through soap-free emulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(2): p. 459-466.
69.Kovtyukhova, N.I., P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials, 1999. 11(3): p. 771-778.
70.Li, D., M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008. 3(2): p. 101-5.
71.Wu, H., J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay and Y. Lin, Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta, 2009. 80(1): p. 403-6.
72.Lee, C.-H., A.-T. Chien, M.-H. Yen and K.-F. Lin, Poly(methyl acrylate-co-methyl methacrylate)/montmorillonite nanocomposites fabricated by soap-free emulsion polymerization. Journal of Polymer Research, 2008. 15(4): p. 331-336.
73.Lee, C.-H., Novel Applications of the Exfoliated Montmorillonite on nanocomposites. Graduate Institute of Materials Science and Engineering College of Engineering, National Taiwan University, 2009. Master Thesis.
74.Jiang, H., T. Zhao, C. Li and J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry, 2011. 21(11): p. 3818.
75.Yang, L.-X., Y.-J. Zhu, H. Tong, Z.-H. Liang and W.-W. Wang, Hierarchical β-Ni(OH)2 and NiO Carnations Assembled from Nanosheet Building Blocks. Crystal Growth & Design, 2007. 7(12): p. 2716-2719.
76.Meher, S.K., P. Justin and G.R. Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces, 2011. 3(6): p. 2063-73.
77.Zhang, L., K.N. Hui, K.S. Hui, X. Chen, R. Chen and H. Lee, Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. International Journal of Hydrogen Energy, 2016. 41(22): p. 9443-9453.
78.Pell, W.G. and B.E. Conway, Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. Journal of Electroanalytical Chemistry, 2001. 500(1–2): p. 121-133.
79.Wang, H., J.T. Robinson, G. Diankov and H. Dai, Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc, 2010. 132(10): p. 3270-1.
80.Dong, B., H. Zhou, J. Liang, L. Zhang, G. Gao and S. Ding, One-step synthesis of free-standing alpha-Ni(OH)(2) nanosheets on reduced graphene oxide for high-performance supercapacitors. Nanotechnology, 2014. 25(43): p. 435403.
81.Xie, J., X. Sun, N. Zhang, K. Xu, M. Zhou and Y. Xie, Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013. 2(1): p. 65-74.
82.Yuan, C., X. Zhang, L. Su, B. Gao and L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 2009. 19(32): p. 5772.
83.Yin, H., D. Wang, H. Zhu, W. Xiao and F. Gan, Growing highly capacitive nano-Ni(OH)2 on freshly cut graphite electrode by electrochemically enhanced self-assembly. Electrochimica Acta, 2013. 99: p. 198-203.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊