|
1.Zhang, F., D. Zhu, X. Chen, X. Xu, Z. Yang, C. Zou, K. Yang and S. Huang, A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Phys Chem Chem Phys, 2014. 16(9): p. 4186-92. 2.Wang, H., H.S. Casalongue, Y. Liang and H. Dai, Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 2010. 132(21): p. 7472-7477. 3.Xu, Y., X. Huang, Z. Lin, X. Zhong, Y. Huang and X. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Research, 2012. 6(1): p. 65-76. 4.Yang, S., X. Wu, C. Chen, H. Dong, W. Hu and X. Wang, Spherical alpha-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun (Camb), 2012. 48(22): p. 2773-5. 5.Yan, J., W. Sun, T. Wei, Q. Zhang, Z. Fan and F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012. 22(23): p. 11494. 6.Yan, J., Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012. 22(12): p. 2632-2641. 7.Lee, J.W., T. Ahn, D. Soundararajan, J.M. Ko and J.D. Kim, Non-aqueous approach to the preparation of reduced graphene oxide/alpha-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun (Camb), 2011. 47(22): p. 6305-7. 8.Chen, S., J. Duan, Y. Tang and S. Zhang Qiao, Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chemistry, 2013. 19(22): p. 7118-24. 9.Arico, A.S., P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005. 4(5): p. 366-377. 10.Conway, B.E., Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society, 1991. 138(6): p. 1539-1548. 11.Wang, G., L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828. 12.Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15–16): p. 2483-2498. 13.Dubal, D.P., O. Ayyad, V. Ruiz and P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev., 2015. 44(7): p. 1777-1790. 14.Abrun~a, H.c.D., Y. Kiya and J.C. Henderson, Batteries and electrochemical capacitors. Physics Today, 2008. 61(12): p. 43-47. 15.Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media. 16.Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): p. 845-854. 17.Chen, G.Z., K.C. Ng and J.H. Chae, Nanostructured materials for the construction of asymmetrical supercapacitors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010. 224(4): p. 479-503. 18.Tilak, B.V., C.G. Rader and S.K. Rangarajan, Techniques for Characterizing Porous Electrodes: I : Determination of the Double Layer Capacity. Journal of The Electrochemical Society, 1977. 124(12): p. 1879-1886. 19.Pillay, B. and J. Newman, The Influence of Side Reactions on the Performance of Electrochemical Double‐Layer Capacitors. Journal of The Electrochemical Society, 1996. 143(6): p. 1806-1814. 20.Halper, M.S. and J.C. Ellenbogen, Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA, 2006: p. 1-34. 21.Namisnyk, A.M., A survey of electrochemical supercapacitor technology. 2003, University of Technology, Sydney. 22.Peng, C., S. Zhang, D. Jewell and G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science, 2008. 18(7): p. 777-788. 23.Zhang, J.T., S. Liu, G.L. Pan, G.R. Li and X.P. Gao, A 3D hierarchical porous a-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J. Mater. Chem. A, 2014. 2(5): p. 1524-1529. 24.Subramanian, V., H. Zhu and B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochemistry Communications, 2006. 8(5): p. 827-832. 25.Basics of Electrochemical Impedance Spectroscopy. Available from: http://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/. 26.Su, P.-H., 聚苯胺/石墨烯量子點複材之製備, 性質及在膠態超級電容之應用. 臺灣大學材料科學與工程學研究所學位論文, 2015: p. 1-141. 27.Lang, J.-W., L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo and L. Kang, A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 2008. 13(2): p. 333-340. 28.Linden, D. Handbook of batteries. in Fuel and Energy Abstracts. 1995. 29.Bode, H., K. Dehmelt and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat. Electrochimica Acta, 1966. 11(8): p. 1079-IN1. 30.Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci., 2010. 3(2): p. 174-189. 31.Wu, Q.D., X.P. Gao, G.R. Li, G.L. Pan, T.Y. Yan and H.Y. Zhu, Microstructure and Electrochemical Properties of Al-Substituted Nickel Hydroxides Modified with CoOOH Nanoparticles. The Journal of Physical Chemistry C, 2007. 111(45): p. 17082-17087. 32.Wang, C.Y., S. Zhong, K. Konstantinov, G. Walter and H.K. Liu, Structural study of Al-substituted nickel hydroxide. Solid State Ionics, 2002. 148(3–4): p. 503-508. 33.Kamath, P.V., M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar and N. Munichandraiah, Stabilized α ‐ Ni ( OH ) 2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 1994. 141(11): p. 2956-2959. 34.Tessier, C., L. Guerlou-Demourgues, C. Faure, A. Demourgues and C. Delmas, Structural study of zinc-substituted nickel hydroxides. Journal of Materials Chemistry, 2000. 10(5): p. 1185-1193. 35.Vidotti, M., R. Torresi and S.I. TORRESI, Eletrodos modificados por hidróxido de níquel: um estudo de revisão sobre suas propriedades estruturais e eletroquímicas visando suas aplicações em eletrocatálise, eletrocromismo e baterias secundárias. Química Nova, 2010. 33(10): p. 2176-2186. 36.McEwen, R., Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 1971. 75(12): p. 1782-1789. 37.Oliva, P., J. Leonardi, J. Laurent, C. Delmas, J. Braconnier, M. Figlarz, F. Fievet and A. De Guibert, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 1982. 8(2): p. 229-255. 38.Casas-Cabanas, M., J. Rodríguez-Carvajal, J. Canales-Vázquez, Y. Laligant, P. Lacorre and M.R. Palacín, Microstructural characterisation of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches. Journal of Power Sources, 2007. 174(2): p. 414-420. 39.Dai, J., S.F.Y. Li, T.D. Xiao, D.M. Wang and D.E. Reisner, Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries. Journal of Power Sources, 2000. 89(1): p. 40-45. 40.Provazi, K., M.J. Giz, L.H. Dall’Antonia and S.I. Córdoba de Torresi, The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. Journal of Power Sources, 2001. 102(1–2): p. 224-232. 41.Barnard, R., C. Randell and F. Tye, Studies concerning the ageing of α and β-Ni (OH) 2 in relation to nickel–cadmium cells. Power Sources, 1981. 8: p. 401-425. 42.Faure, C., C. Delmas and M. Fouassier, Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Journal of Power Sources, 1991. 35(3): p. 279-290. 43.Hall, D.S., D.J. Lockwood, C. Bock and B.R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc Math Phys Eng Sci, 2015. 471(2174): p. 20140792. 44.Corrigan, D.A. and S.L. Knight, Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction. Journal of The Electrochemical Society, 1989. 136(3): p. 613-619. 45.Daniel, C. and J.O. Besenhard, Handbook of battery materials. 2012: John Wiley & Sons. 46.Barnard, R., C. Randell and F. Tye, Studies concerning charged nickel hydroxide electrodes I. Measurement of reversible potentials. Journal of Applied Electrochemistry, 1980. 10(1): p. 109-125. 47.Béléké, A.B., E. Higuchi, H. Inoue and M. Mizuhata, Durability of nickel–metal hydride (Ni–MH) battery cathode using nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite. Journal of Power Sources, 2014. 247: p. 572-578. 48.Khan, A.I. and D. O’Hare, Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater. Chem., 2002. 12(11): p. 3191-3198. 49.Li, Y.W., J.H. Yao, C.J. Liu, W.M. Zhao, W.X. Deng and S.K. Zhong, Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 2010. 35(6): p. 2539-2545. 50.Benício, L.P.F., R.A. Silva, J.A. Lopes, D. Eulálio, R.M.M.d. Santos, L.A.d. Aquino, L. Vergütz, R.F. Novais, L.M.d. Costa and F.G. Pinto, Layered double hydroxides: nanomaterials for applications in agriculture. Revista Brasileira de Ciência do Solo, 2015. 39(1): p. 1-13. 51.Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669. 52.Chen, D., H. Feng and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 2012. 112(11): p. 6027-53. 53.AlexanderAlUS. Graphene. 2010; Available from: https://en.wikipedia.org/wiki/Graphene. 54.Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339. 55.Stankovich, S., D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565. 56.Wakeland, S., R. Martinez, J.K. Grey and C.C. Luhrs, Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon, 2010. 48(12): p. 3463-3470. 57.Lee, D.W., T.-K. Hong, D. Kang, J. Lee, M. Heo, J.Y. Kim, B.-S. Kim and H.S. Shin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J. Mater. Chem., 2011. 21(10): p. 3438-3442. 58.Tu, Q., L. Pang, Y. Chen, Y. Zhang, R. Zhang, B. Lu and J. Wang, Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst, 2014. 139(1): p. 105-15. 59.Hong, T.-K., D.W. Lee, H.J. Choi, H.S. Shin and B.-S. Kim, Transparent, Flexible Conducting Hybrid Multilayer Thin Films of Multiwalled Carbon Nanotubes with Graphene Nanosheets. ACS Nano, 2010. 4(7): p. 3861-3868. 60.Bai, H., C. Li and G. Shi, Functional composite materials based on chemically converted graphene. Adv Mater, 2011. 23(9): p. 1089-115. 61.Alexandre, M. and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 2000. 28(1–2): p. 1-63. 62.Ke, Y. and P. Stroeve, Polymer-layered silicate and silica nanocomposites. 2005: Elsevier. 63.Van Olphen, H., An Introduction to Clay Colloid Chemistry. Soil Science, 1964. 97(4): p. 290. 64.Lin, K.-F., S.-C. Lin, A.-T. Chien, C.-C. Hsieh, M.-H. Yen, C.-H. Lee, C.-S. Lin, W.-Y. Chiu and Y.-H. Lee, Exfoliation of montmorillonite by the insertion of disklike micelles via the soap-free emulsion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(19): p. 5572-5579. 65.Bhattacharyya, K.G. and S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci, 2008. 140(2): p. 114-31. 66.Zhao, Z., T. Tang, Y. Qin and B. Huang, Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants. Langmuir, 2003. 19(22): p. 9260-9265. 67.Lin, K.-J., T.H. Weng, C.-H. Lee and K.-F. Lin, Grafting of polymer matrix to exfoliated montmorillonite nanoplatelets in nanocomposite film cast from soap-free emulsion polymerized latex and its fortified mechanical properties. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(21): p. 5891-5897. 68.Lin, K.-J., C.-A. Dai and K.-F. Lin, Revisit to the formation mechanism of exfoliated montmorillonite/PMMA nanocomposite latex through soap-free emulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(2): p. 459-466. 69.Kovtyukhova, N.I., P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials, 1999. 11(3): p. 771-778. 70.Li, D., M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008. 3(2): p. 101-5. 71.Wu, H., J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay and Y. Lin, Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta, 2009. 80(1): p. 403-6. 72.Lee, C.-H., A.-T. Chien, M.-H. Yen and K.-F. Lin, Poly(methyl acrylate-co-methyl methacrylate)/montmorillonite nanocomposites fabricated by soap-free emulsion polymerization. Journal of Polymer Research, 2008. 15(4): p. 331-336. 73.Lee, C.-H., Novel Applications of the Exfoliated Montmorillonite on nanocomposites. Graduate Institute of Materials Science and Engineering College of Engineering, National Taiwan University, 2009. Master Thesis. 74.Jiang, H., T. Zhao, C. Li and J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry, 2011. 21(11): p. 3818. 75.Yang, L.-X., Y.-J. Zhu, H. Tong, Z.-H. Liang and W.-W. Wang, Hierarchical β-Ni(OH)2 and NiO Carnations Assembled from Nanosheet Building Blocks. Crystal Growth & Design, 2007. 7(12): p. 2716-2719. 76.Meher, S.K., P. Justin and G.R. Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces, 2011. 3(6): p. 2063-73. 77.Zhang, L., K.N. Hui, K.S. Hui, X. Chen, R. Chen and H. Lee, Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. International Journal of Hydrogen Energy, 2016. 41(22): p. 9443-9453. 78.Pell, W.G. and B.E. Conway, Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. Journal of Electroanalytical Chemistry, 2001. 500(1–2): p. 121-133. 79.Wang, H., J.T. Robinson, G. Diankov and H. Dai, Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc, 2010. 132(10): p. 3270-1. 80.Dong, B., H. Zhou, J. Liang, L. Zhang, G. Gao and S. Ding, One-step synthesis of free-standing alpha-Ni(OH)(2) nanosheets on reduced graphene oxide for high-performance supercapacitors. Nanotechnology, 2014. 25(43): p. 435403. 81.Xie, J., X. Sun, N. Zhang, K. Xu, M. Zhou and Y. Xie, Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013. 2(1): p. 65-74. 82.Yuan, C., X. Zhang, L. Su, B. Gao and L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 2009. 19(32): p. 5772. 83.Yin, H., D. Wang, H. Zhu, W. Xiao and F. Gan, Growing highly capacitive nano-Ni(OH)2 on freshly cut graphite electrode by electrochemically enhanced self-assembly. Electrochimica Acta, 2013. 99: p. 198-203.
|