(3.232.129.123) 您好!臺灣時間:2021/03/04 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴奕辰
研究生(外文):Yi-Chen Lai
論文名稱:電漿子奈米結構及紋理結構矽基板之製作於表面增強拉曼散射之應用
論文名稱(外文):Fabrication of Plasmonic Nanostructure and Silicon Textured Substrate for Surface-enhanced Raman Scattering Applications
指導教授:薛承輝
指導教授(外文):Chun-Hway Hsueh
口試日期:2017-03-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:117
中文關鍵詞:表面電漿子學時域有限差分法奈米環奈米管表面增強拉曼散射氧化鋅奈米線光降解
外文關鍵詞:PlamonicsFinite-Difference Time-Domain methodNanoringsNanotubesSurface-enhanced Raman scatteringZnO nanowiresPhotodegradation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在討論奈米金屬誘發表面電漿效應與紋理矽基板之複合結構於表面增強拉曼散射之應用。本論文分為二個主題。第一部分利用理論及實驗手法討論懸架式奈米環金屬結構與奈米管矽基板複合基板之表面電漿效應。透過有限時域分析法模擬不同內外徑比值的尺寸對於局域性表面共振行為,並利用電子束微影製程及反應性離子蝕刻技術製作,再以暗場顯微散射光譜及表面增強拉曼散射光譜測量其光學性質及近場增強效應,與模擬結果相互印證。模擬結果顯示,偶極及四偶極模態在內外徑比值上升過程中被激發,其可被表面電場增強分布及電荷密度分析其混層理論解釋。實驗方面,藉由調整內外徑比值可有效調整其暗場顏色影像,顯示其應用於顏色顯示器之潛力;於拉曼光譜測量,實驗結果與模擬結果顯示良好之相依性,其驗證了表面電漿模態的演變,亦提供了拉曼光譜分子檢測之最佳指導方針。
本論文第二部分,利用水熱法成長銀奈米粒子/氧化鋅奈米線異質結構於奈米管矽基板,有效提升光光能捕獲及增加表面積,並利用異質接面引起之載子傳遞進一步提升表面增強拉曼散射,其增強機制可由異質結構能帶圖解釋。除此之外,利用紫外光誘發氧化鋅奈米線光觸媒效應,便可有效地降解待測分子,提供此表面增強拉曼基板重複利用之可能性。
The system consisting of metallic nanostructure and textured silicon substrate with enhanced light harvesting and strong electromagnetic field enhancements was studied in the present work. The thesis is divided into two topics. In the first topic, the effects of plasmonic behavior on a composite system consisting of suspended gold nanoring and silicon nanotube substrate were studied both theoretically and experimentally. The dependence of plasmonic behaviors on outer/inner diameter ratio (D/d ratio) of the gold nanoring and silicon nanotube was systematically studied using finite-difference time-domain method. On the other hand, the composite systems with different D/d ratios were fabricated using electron beam lithography followed by reactive ion etching and studied by both dark-field microscopy as well as Raman microscopy. In addition to the dipole-like resonance modes, the quadrupole-like resonance mode was also excited with the increasing D/d ratio, and both electric field profile and resonant surface charge distribution were studied to characterize the resonance configuration and to clarify the coupling phenomenon. Experimentally, by tailoring the D/d ratio, the dark-field image showed tunable colors and the potential for the color display application. Raman spectra were also obtained and showed good agreement with simulated enhancement factor which, in turn, provided the evidence of the evolution of resonance modes. This work provides the concept and guideline for designing the system consisting of metallic nanostructures and textured substrates for surface-enhanced Raman scattering application.
In the second topic, the ZnO nanowires were grown on silicon nanotube substrate through hydrothermal process and the Ag nanoparticles were loaded on the ZnO branched nanowires. With the help of ZnO nanowires, the light harvesting effect could be enhanced and the surface area could be increased. Also, additional electric field enhancements would be induced due to the charge transfer between the heterojunction, which could further enhance the Raman signals. The mechanism behind the additional enhancements was elucidated by the band structure of the heterojunction. In addition, the photocatalyst properties of Ag/ZnO heterostructure were exploited to reuse the substrate through the degradation of probed molecules upon UV-irradiation.
口試委員會審定書 i
ACKNOWLEDGEMENT ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Introduction to Plasmonics 1
1.1.1 Propagating Surface Plasmon Resonance (PSPR) 3
1.1.2 Localized Surface Plasmon Resonance (LSPR) 7
1.2 Surface-enhanced Raman scattering 13
1.2.1 Raman spectroscopy 13
1.2.2 Surface-enhanced Raman scattering (SERS) 17
1.2.3 Selection rule 22
1.3 Textured silicon substrate 23
1.4 Nanofabrication technology 26
1.4.1 Electron beam lithography 28
1.4.2 Reactive ion etching 33
1.5 Zinc oxide 35
1.5.1 Brief introduction to Zinc oxide 36
1.5.2 Charge transfer in ZnO-based system 38
1.5.3 Hydrothermal process 43
1.6 References 46
Chapter 2 Motivation 61
Chapter 3 Color Manipulation and Molecular Sensing Based on Size-controlled Plasmon-enhanced Silicon Nanotube SERS Substrate 63
3.1 Abstract 63
3.2 Introduction 64
3.3 Experimental and Theoretical Methods 65
3.3.1 FDTD Simulations 65
3.3.2 Fabrication of Au-SiNT 68
3.3.3 Dark-field optical property measurement 70
3.3.4 Raman spectroscopy measurement 71
3.4 Results and Discussion 71
3.4.1 Effects of the D/d ratio on surface plasmon coupling 71
3.4.2 Surface morphology 76
3.4.3 Dark-field optical properties and color manipulation 78
3.4.4 Effects of D/d ratio on Raman spectroscopy 81
3.5 Conclusions 84
3.6 References 85
Chapter 4 High Performance and Reusable SERS Substrates Using Ag/ZnO Heterostructure on Silicon Nanotube Substrate 92
4.1 Abstract 92
4.2 Introduction 93
4.3 Experimental methods 95
4.3.1 Fabrication of SiNT 95
4.3.2 Fabrication of Ag@ZnO@SiNT 96
4.3.3 Reflectance and Raman spectroscopy measurements 97
4.3.4 Photocatalytic properties characterization 98
4.4 Results and Discussions 100
4.4.1 Fabrication and surface morphology 100
4.4.2 Optical properties 102
4.4.3 Raman spectroscopy measurements 104
4.4.4 Photocatalytic properties and Reusability 109
4.4 Conclusions 111
4.5 References 112
1.6 References
1.Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824.
2.Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267.
3.Estevez, M. C.; Otte, M. A.; Sepulveda, B.; Lechuga, L. M., Trends and Challenges of Refractometric Nanoplasmonic Biosensors: A Review. Anal. Chim. Acta. 2014, 806, 55.
4.Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with Plasmonic Nanosensors. Nat. Mater. 2008, 7, 442.
5.Choi, I.; Choi, Y., Plasmonic Nanosensors: Review and Prospect. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1110.
6.Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96.
7.Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J., Plasmonic Enhancement of Molecular Fluorescence. Nano Lett. 2007, 7, 496.
8.Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mullen, K.; Moerner, W. E., Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna. Nat. Photonics 2009, 3, 654.
9.Shalaev, V. M.; Cai, W.; Chettiar, U. K.; Yuan, H. K.; Sarychev, A. K.; Drachev, V. P.; Kildishev, A. V., Negative Index of Refraction in Optical Metamaterials. Opt. Lett. 2005, 30, 3356.
10.Catchpole, K. R.; Polman, A., Plasmonic Solar Cells. Opt. Express 2008, 16, 21793.
11.Atwater, H. A.; Polman, A., Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205.
12.Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P., Nanoantenna-Enhanced Gas Sensing in a Single Tailored Nanofocus. Nat. Mater. 2011, 10, 631.
13.Bingham, J. M.; Anker, J. N.; Kreno, L. E.; Van Duyne, R. P., Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc. 2010, 132, 17358.
14.Brongersma, M. L.; Halas, N. J.; Nordlander, P., Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10, 25.
15.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. R., Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601.
16.Kretschmann, E.; Raether, H., Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A 1968, 23, 2135.
17.Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A., Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408, 131.
18.Gruenke, N. L.; Cardinal, M. F.; McAnally, M. O.; Frontiera, R. R.; Schatza, G. C.; Van Duyne, R. P., Ultrafast and Nonlinear Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2016, 45, 2263.
19.Mie, G., Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377.
20.Jackson, J. D., Classical Electrodynamics. 3rd Wiley: New York, 1999.
21.C. Bohren, D. R. H., Absorption and Scattering of Light by Small Particles Wiley & Sons, Inc.: New York, 1983.
22.Kreibig, U.; Vollmer, M., Optical Properties of Metal Clusters Springer Berlin: Heidelberg, 1995.
23.Lee, K. C.; Lin, S. J.; Lin, C. H.; Tsai, C. S.; Lu, Y. J., Size Effect of Ag Nanoparticles on Surface Plasmon Resonance. Sur.f Coat. Tech. 2008, 202, 5339.
24.Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. J. Chem. Phys. 2002, 116, 6755.
25.Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C., Nonlinear Optical Response from Arrays of Au Bowtie Nanoantennas. Nano Lett. 2011, 11, 61.
26.Chien, M. H.; Nien, L. W.; Chao, B. K.; Li, J. H.; Hsueh, C. H., Effects of the Rotation Angle on Surface Plasmon Coupling of Nanoprisms. Nanoscale 2016, 8, 3660.
27.Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z. Y.; Gu, B. H., Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4952.
28.Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyne, R. P., Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Sliver Nanoparticles. J. Phys. Chem. B 1999, 103, 9846.
29.Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668.
30.Hsueh, C. H.; Lin, C. H.; Li, J. H.; Hatab, N. A.; Gu, B., Resonance Modes, Cavity Field Enhancements, and Long-Range Collective Photonic Effects in Periodic Bowtie Nanostructures. Opt. Express 2011, 19, 19660.
31.Tsai, C. Y.; Lin, J. W.; Wu, C. Y.; Lin, P. T.; Lu, T. W.; Lee, P. T., Plasmonic Coupling in Gold Nanoring Dimers: Observation of Coupled Bonding Mode. Nano Lett. 2012, 12, 1648-1654.
32.Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; de Abajo, F. J. G., Optical Properties of Gold Nanorings. Phys. Rev. Lett. 2003, 90.
33.Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P., A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419.
34.Hao, F.; Larsson, E. M.; Ali, T. A.; Sutherland, D. S.; Nordlander, P., Shedding Light on Dark Plasmons in Gold Nanorings. Chem. Phys. Lett. 2008, 458, 262.
35.Ye, J.; Van Dorpe, P.; Lagae, L.; Maes, G.; Borghs, G., Observation of Plasmonic Dipolar Anti-Bonding Mode in Silver Nanoring Structures. Nanotechnology 2009, 20, 465203.
36.Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T., High Sensitivity Plasmonic Index Sensor Using Slablike Gold Nanoring Arrays. Appl. Phys. Lett. 2011, 98.
37.Smekal, A., Zur Quantentheorie Der Dispersion. Naturwissenschaften 1923, 11, 873.
38.Raman, C. V., A New Radiation. Indian J. Phys. 1928, 2, 387.
39.Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121, 501.
40.McCreery, R. L., Raman Spectroscopy for Chemical Analysis Wiley: Canada, 2000.
41.Landsberg, G.; Mandelstam, L., Eine Neue Erscheinung Bei Der Lichtzerstreuung in Krystallen. Naturwissenschaften 1928, 16, 557.
42.Placzek, G., Rayleigh-Streuung Und Raman-Effekt Akademische Verlagsgesellschaft: Leipzig, 1934.
43.Hollas, J. M., Modern Spectroscopy, 4th Wiley: England, 2004.
44.Menzel, E. R., Interaction of Light with Molecules - an Overview Appl. Spectrosc. Rev. 1999, 34, 209.
45.Fleischmann, M.; Hendra, P. J.; Mcquilla.Aj, Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163.
46.Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1.
47.Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P., Sers: Materials, Applications, and the Future. Mater. Today 2012, 15, 16.
48.Campion, A.; Kambhampati, P., Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241.
49.Jeanmaire, D. L.; Vanduyne, R. P., Surface Raman Spectroelectrochemistry .1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1.
50.Albrecht, M. G.; Creighton, J. A., Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215.
51.Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-Enhanced Raman Scattering and Biophysics. J. Phys.: Condens. Matter 2002, 14, R59.
52.Etchegoin, P.; Maher, R. C.; Cohen, L. F.; Hartigan, H.; Brown, R. J. C.; Milton, M. J. T.; Gallop, J. C., New Limits in Ultrasensitive Trace Detection by Surface Enhanced Raman Scattering (SERS). Chem. Phys. Lett. 2003, 375, 84.
53.Moskovits, M., Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57, 783.
54.Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-Enhanced Raman-Scattering. J. Phys.: Condens. Matter 1992, 4, 1143.
55.Campion, A.; Ivanecky, J. E.; Child, C. M.; Foster, M., On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman-Scattering. J. Am. Chem. Soc. 1995, 117, 11807.
56.Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M., Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Lett. 2008, 8, 1923.
57.Nishijima, Y.; Hashimoto, Y.; Rosa, L.; Khurgin, J. B.; Juodkazis, S., Scaling Rules of Sers Intensity. Adv. Opt. Mater. 2014, 2, 382.
58.Banaee, M. G.; Crozier, K. B., Gold Nanorings as Substrates for Surface-Enhanced Raman Scattering. Opt. Lett. 2010, 35, 760.
59.Weitz, D. A.; Garoff, S.; Gersten, J. I.; Nitzan, A., The Enhancement of Raman-Scattering, Resonance Raman-Scattering, and Fluorescence from Molecules Adsorbed on a Rough Silver Surface. J. Chem. Phys. 1983, 78, 5324.
60.Yokota, Y.; Ueno, K.; Misawa, H., Essential Nanogap Effects on Surface-Enhanced Raman Scattering Signals from Closely Spaced Gold Nanoparticles. Chem. Commun. 2011, 47, 3505.
61.Kerker, M.; Wang, D. S.; Chew, H., Surface Enhanced Raman-Scattering (Sers) by Molecules Adsorbed at Spherical-Particles. Appl. Opt. 1980, 19, 3373-3388.
62.Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-Enhanced Raman Scattering. J. Phys.: Condens. Matter 1992, 4, 1143.
63.Brolo, A. G.; Irish, D. E.; Smith, B. D., Applications of Surface Enhanced Raman Scattering to the Study of Metal-Adsorbate Interactions. J. Mol. Struct. 1997, 405, 29.
64.Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M., Broadband Optical Absorption by Tunable Mie Resonances in Silicon Nanocone Arrays. Sci. Rep. 2015, 5.
65.Spinelli, P.; Verschuuren, M. A.; Polman, A., Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators. Nat. Commun. 2012, 3.
66.Chao, B. K.; Cheng, H. H.; Nien, L. W.; Chen, M. J.; Nagao, T.; Li, J. H.; Hsueh, C. H., Anti-Reflection Textured Structures by Wet Etching and Island Lithography for Surface-Enhanced Raman Spectroscopy. Appl. Surf. Sci. 2015, 357, 615.
67.Jeong, H.; Song, H.; Pak, Y.; Kwon, I. K.; Jo, K.; Lee, H.; Jung, G. Y., Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells. Adv. Mater. 2014, 26, 3445.
68.Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y., Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Lett. 2008, 9, 279.
69.Bezares, F. J.; Long, J. P.; Glembocki, O. J.; Guo, J. P.; Rendell, R. W.; Kasica, R.; Shirey, L.; Owrutsky, J. C.; Caldwell, J. D., Mie Resonance-Enhanced Light Absorption in Periodic Silicon Nanopillar Arrays. Opt. Express 2013, 21, 27587.
70.Tsao, C.-W.; Yang, Z.-J., High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis. ACS Appl. Mater. Interfaces 2015, 7, 22630.
71.Chen, J. H.; Li, Y. Y.; Huang, K.; Wang, P. X.; He, L. L.; Carter, K. R.; Nugen, S. R., Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications. ACS Appl. Mater. Interfaces 2015, 7, 22106.
72.Bai, F.; Li, M. C.; Fu, P. F.; Li, R. K.; Gu, T. S.; Huang, R.; Chen, Z.; Jiang, B.; Li, Y. F., Silicon Nanowire Arrays Coated with Electroless Ag for Increased Surface-Enhanced Raman Scattering. Apl. Mater. 2015, 3.
73.Chen, C. Y.; Hsu, L. J.; Hsiao, P. H.; Yu, C. T. R., Sers Detection and Antibacterial Activity from Uniform Incorporation of Ag Nanoparticles with Aligned Si Nanowires. Appl. Surf. Sci. 2015, 355, 197.
74.Li, Z. X.; Dao, T. D.; Nagao, T.; Terano, M.; Yoshino, M., Fabrication of Plasmonic Nanopillar Arrays Based on Nanoforming. Microelectron. Eng. 2015, 139, 7.
75.Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C., Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors. ACS Nano 2011, 5, 4046.
76.Schmidt, M. S.; Hubner, J.; Boisen, A., Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 2012, 24, Op11.
77.Chan, S.; Kwon, S.; Koo, T. W.; Lee, L. P.; Berlin, A. A., Surface‐Enhanced Raman Scattering of Small Molecules from Silver‐Coated Silicon Nanopores. Adv. Mater. 2003, 15, 1595.
78.Huang, J. A.; Zhao, Y. Q.; Zhang, X. J.; He, L. F.; Wong, T. L.; Chui, Y. S.; Zhang, W. J.; Lee, S. T., Ordered Ag/Si Nanowires Array: Wide-Range Surface-Enhanced Raman Spectroscopy for Reproducible Biomolecule Detection. Nano Lett. 2013, 13, 5039.
79.Chen, C. Y.; Hsu, L. J.; Hsiao, P. H.; Yu, C. T. R., Sers Detection and Antibacterial Activity from Uniform Incorporation of Ag Nanoparticles with Aligned Si Nanowires. Appl. Surf. Sci. 2015, 355, 197.
80.Bjorkholm, J. E., Euv Lithography—the Successor to Optical Lithography? Intel Technical Journal 1998, Q3, 1.
81.Tandon, U. S., An Overview of Ion-Beam Lithography for Nanofabrication. Vacuum 1992, 43, 241.
82.Chang, T. H. P.; Mankos, M.; Lee, K. Y.; Muray, L. P., Multiple Electron-Beam Lithography. Microelectron. Eng. 2001, 57-8, 117.
83.Wang, M., Lithography InTech, 2010.
84.Broers, A. N.; Hoole, A. C. F.; Ryan, J. M., Electron Beam Lithography - Resolution Limits. Microelectron. Eng. 1996, 32, 131.
85.Broers, A. N., Resolution Limits for Electron-Beam Lithography. IBM J. Res. Dev. 1988, 32, 502.
86.Lee, K. W.; Yoon, S. M.; Lee, S. C.; Lee, W.; Kim, I. M.; Lee, C. E.; Kim, D. H., Secondary Electron Generation in Electron-Beam-Irradiated Solids: Resolution Limits to Nanolithography. J. Korean Phys. Soc. 2009, 55, 1720.
87.Anderson, E.; Chao, W., Double Exposure Makes Dense High-Resolution Diffractive Optics. SPIE Newsroom 2007.
88.Ivin, V. V.; Silakov, M. V.; Kozlov, D. S.; Nordquist, K. J.; Lu, B.; Resnick, D. J., The Inclusion of Secondary Electrons and Bremsstrahlung X-Rays in an Electron Beam Resist Model. Microelectron. Eng. 2002, 61-2, 343.
89.Yamazaki, K.; Kurihara, K.; Yamaguchi, T.; Namatsu, H.; Nagase, M., Novel Proximity Effect Including Pattern-Dependent Resist Development in Electron Beam Nanolithography. Jpn. J. Appl. Phys. 1997, 36, 7552.
90.Pease, R. F. W., Electron-Beam Lithography. Contemp. Phys. 1981, 22, 265.
91.Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H., Electron Beam Lithography: Resolution Limits and Applications. Appl. Surf. Sci. 2000, 164, 111.
92.Koynov, S.; Brandt, M. S.; Stutzmann, M., Black Nonreflecting Silicon Surfaces for Solar Cells. Appl. Phys. Lett. 2006, 88.
93.Yoo, J. S.; Parm, I. O.; Gangopadhyay, U.; Kim, K.; Dhungel, S. K.; Mangalaraj, D.; Yi, J. S., Black Silicon Layer Formation for Application in Solar Cells. Sol. Energ. Mat. Sol. C 2006, 90, 3085.
94.Yoo, J.; Yu, G.; Yi, J., Large-Area Multicrystalline Silicon Solar Cell Fabrication Using Reactive Ion Etching (RIE). Sol. Energ. Mat. Sol. C 2011, 95, 2.
95.Huang, Y. F., et al., Improved Broadband and Quasi-Omnidirectional Anti-Reflection Properties with Biomimetic Silicon Nanostructures. Nat. Nanotechnol. 2007, 2, 770.
96.Huang, Z. H.; Carey, J. E.; Liu, M. G.; Guo, X. Y.; Mazur, E.; Campbell, J. C., Microstructured Silicon Photodetector. Appl. Phys. Lett. 2006, 89.
97.Mulfinger, L.; Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C., Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322.
98.Alessandri, I.; Lombardi, J. R., Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016. 116, 14921.
99.Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J., Multifunctional Au‐Coated Tio2 Nanotube Arrays as Recyclable Sers Substrates for Multifold Organic Pollutants Detection. Advanced Functional Materials 2010, 20, 2815.
100.Ji, R.; Sun, W.; Chu, Y., One-Step Hydrothermal Synthesis of Ag/Cu2O Heterogeneous Nanostructures over Cu Foil and Their Sers Applications. RSC Adv. 2014, 4, 6055.
101.Zhang, P.; Wang, Y.; He, T.; Zhang, B.; Wang, X.; Xin, H.; Liu, F.-c., Sers of Pyridine, 1, 4-Dioxane and 1-Ethyl-3''-Methyl-2-Thiacyanine Iodide Adsorbed on α-Fe2O3 Colloids. Chem. Phys. Lett. 1988, 153, 215.
102.Ko, H.; Tsukruk, V. V., Nanoparticle-Decorated Nanocanals for Surface-Enhanced Raman Scattering. Small 2008, 4, 1980.
103.Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J., Fabrication and Sers Performance of Silver-Nanoparticle-Decorated Si/Zno Nanotrees in Ordered Arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824.
104.Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H., A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98.
105.Norton, D. P.; Heo, Y. W.; Ivill, M. P.; Ip, K.; Pearton, S. J.; Chisholm, M. F.; Steiner, T., Zno: Growth, Doping & Processing. Mater. Today 2004, 7, 34.
106.Reeber, R. R., Lattice Parameters of Zno from 4.2 to 296 K. J. appl. phys. 1970, 41, 5063.
107.Dal Corso, A.; Posternak, M.; Resta, R.; Baldereschi, A., Ab Initio Study of Piezoelectricity and Spontaneous Polarization in ZnO. Phys. Rev. B 1994, 50, 10715.
108.Kutty, T.; Ezhilvalavan, S., Zinc Oxide Ceramic Varistors Formulated with Barium Orthosilicate for Operation in the 3–15 V Battery Range. Mater. Lett. 1996, 27, 355.
109.Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R., Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sens. Actuators, B 2016, 229, 664.
110.Wang, Z. L., Zinc Oxide Nanostructures: Growth, Properties and Applications. J. Phys.: Condens. Matter 2004, 16, R829.
111.Turkevich, J.; Stevenson, P. C.; Hillier, J., A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55.
112.Han, H.; Theodore, N. D.; Alford, T. L., Improved Conductivity and Mechanism of Carrier Transport in Zinc Oxide with Embedded Silver Layer. J. Appl. Phys. 2008, 103.
113.Sun, Z. H.; Wang, C. X.; Yang, J. X.; Zhao, B.; Lombardi, J. R., Nanoparticle Metal - Semiconductor Charge Transfer in ZnP/pAtp/Ag Assemblies by Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112, 6093.
114.Wang, X.; She, G.; Xu, H.; Mu, L.; Shi, W., The Surface-Enhanced Raman Scattering from Zno Nanorod Arrays and Its Application for Chemosensors. Sens. Actuators, B 2014, 193, 745.
115.Byrappa, K.; Yoshimura, M., Handbook of Hydrothermal Technology William Andrew, 2012.
116.Yoshimura, M.; Byrappa, K., Hydrothermal Processing of Materials: Past, Present and Future. J. Mater. Sci. 2008, 43, 2085.
117.Baruah, S.; Dutta, J., Hydrothermal Growth of Zno Nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001.
118.Laudise, R.; Ballman, A., Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide. J. Phys. Chem. 1960, 64, 688.
119.Tong, Y.; Liu, Y.; Dong, L.; Zhao, D.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X., Growth of Zno Nanostructures with Different Morphologies by Using Hydrothermal Technique. J. Phys. Chem. B 2006, 110, 20263.

3.6 References
1.Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L., Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9, 193.
2.Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267.
3.Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. J. Chem. Phys. 2002, 116, 6755.
4.Lee, K. C.; Lin, S. J.; Lin, C. H.; Tsai, C. S.; Lu, Y. J., Size Effect of Ag Nanoparticles on Surface Plasmon Resonance. Surf. Coat. Technol. 2008, 202, 5339.
5.Zhang, X. Y.; Hicks, E. M.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P., Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2005, 5, 1503.
6.Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z. Y.; Gu, B. H., Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4952.
7.Dao, T. D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T., Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al-Al2o3-Al Trilayers. ACS Photonics 2015, 2, 964.
8.Jensen T. R., Duval M. L., Kelly K. L., Lazarides A. A., Schatz G. C., Van Duyne R. P., Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 1999, 103, 9846.
9.Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyne, R. P., Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Sliver Nanoparticles. J. Phys. Chem. B 1999, 103, 9846.
10.Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. N., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett. 2005, 5, 2034.
11.Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M., Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Lett. 2008, 8, 1923.
12.Nishijima, Y.; Hashimoto, Y.; Rosa, L.; Khurgin, J. B.; Juodkazis, S., Scaling Rules of Sers Intensity. Adv. Opt. Mater. 2014, 2, 382.
13.Banaee, M. G.; Crozier, K. B., Gold Nanorings as Substrates for Surface-Enhanced Raman Scattering. Opt. Lett. 2010, 35, 760.
14. Gouadec G., Colomban P., Raman spectroscopy of nanostructures and nanosized materials. J. Raman Spectrosc. 2007, 38, 598.
15.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. R., Surface-Enhanced Raman Spectroscopy. Annu Rev Anal Chem 2008, 1, 601-626.
16.Campion, A.; Kambhampati, P., Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241.
17.Tsai, C. Y.; Lin, J. W.; Wu, C. Y.; Lin, P. T.; Lu, T. W.; Lee, P. T., Plasmonic Coupling in Gold Nanoring Dimers: Observation of Coupled Bonding Mode. Nano Lett. 2012, 12, 1648.
18.Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; de Abajo, F. J. G., Optical Properties of Gold Nanorings. Phys. Rev. Lett. 2003, 90.
19.Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P., A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419.
20.Hao, F.; Larsson, E. M.; Ali, T. A.; Sutherland, D. S.; Nordlander, P., Shedding Light on Dark Plasmons in Gold Nanorings. Chem Phys Lett 2008, 458, 262-266.
21.Ye, J.; Van Dorpe, P.; Lagae, L.; Maes, G.; Borghs, G., Observation of Plasmonic Dipolar Anti-Bonding Mode in Silver Nanoring Structures. Nanotechnology 2009, 20, 465203.
22.Nien, L. W.; Lin, S. C.; Chao, B. K.; Chen, M. J.; Li, J. H.; Hsueh, C. H., Giant Electric Field Enhancement and Localized Surface Plasmon Resonance by Optimizing Contour Bowtie Nanoantennas. J. Phys. Chem. C 2013, 117, 25004.
23.Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T., High Sensitivity Plasmonic Index Sensor Using Slablike Gold Nanoring Arrays. Appl. Phys. Lett. 2011, 98.
24.Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M., Broadband Optical Absorption by Tunable Mie Resonances in Silicon Nanocone Arrays. Sci. Rep. 2015, 5.
25.Spinelli, P.; Verschuuren, M. A.; Polman, A., Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators. Nat. Commun. 2012, 3.
26.Chao, B. K.; Cheng, H. H.; Nien, L. W.; Chen, M. J.; Nagao, T.; Li, J. H.; Hsueh, C. H., Anti-Reflection Textured Structures by Wet Etching and Island Lithography for Surface-Enhanced Raman Spectroscopy. Appl Surf Sci 2015, 357, 615-621.
27.Jeong, H.; Song, H.; Pak, Y.; Kwon, I. K.; Jo, K.; Lee, H.; Jung, G. Y., Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells. Adv. Mater. 2014, 26, 3445.
28.Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y., Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Lett. 2008, 9, 279.
29.Bezares, F. J.; Long, J. P.; Glembocki, O. J.; Guo, J. P.; Rendell, R. W.; Kasica, R.; Shirey, L.; Owrutsky, J. C.; Caldwell, J. D., Mie Resonance-Enhanced Light Absorption in Periodic Silicon Nanopillar Arrays. Opt. Express 2013, 21, 27587.
30.Tsao, C.-W.; Yang, Z.-J., High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis. ACS Appl. Mater. Interfaces 2015, 7, 22630.
31.Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C., Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors. ACS Nano 2011, 5, 4046.
32.Schmidt, M. S.; Hubner, J.; Boisen, A., Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy. Adv. Mater. 2012, 24, Op11.
33.Chan, S.; Kwon, S.; Koo, T. W.; Lee, L. P.; Berlin, A. A., Surface‐Enhanced Raman Scattering of Small Molecules from Silver‐Coated Silicon Nanopores. Adv. Mater. 2003, 15, 1595-1598.
34.Huang, J. A.; Zhao, Y. Q.; Zhang, X. J.; He, L. F.; Wong, T. L.; Chui, Y. S.; Zhang, W. J.; Lee, S. T., Ordered Ag/Si Nanowires Array: Wide-Range Surface-Enhanced Raman Spectroscopy for Reproducible Biomolecule Detection. Nano Lett. 2013, 13, 5039.
35.Chen, C. Y.; Hsu, L. J.; Hsiao, P. H.; Yu, C. T. R., SERS Detection and Antibacterial Activity from Uniform Incorporation of Ag Nanoparticles with Aligned Si Nanowires. Appl. Surf. Sci. 2015, 355, 197.
36.Nien, L. W.; Chien, M. H.; Chao, B. K.; Chen, M. J.; Li, J. H.; Hsueh, C. H., 3d Nanostructures of Silver Nanoparticle-Decorated Suspended Graphene for Sers Detection. J. Phys. Chem. C 2016, 120, 3448.
37.Li, Z. X.; Dao, T. D.; Nagao, T.; Terano, M.; Yoshino, M., Fabrication of Plasmonic Nanopillar Arrays Based on Nanoforming. Microelectron. Eng. 2015, 139, 7.
38.Ho H. C., Nien L. W., Li J. H., Hsueh C. H., Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications. Appl. Phys. Lett. 2017, 110, 171111.
39.Lumerical Solution.
40.Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370.
41.Palik, E. D., Handbook of Optical Constants of Solids, Academic press, 1998, 3.
42.Chien, M. H.; Nien, L. W.; Chao, B. K.; Li, J. H.; Hsueh, C. H., Effects of the Rotation Angle on Surface Plasmon Coupling of Nanoprisms. Nanoscale 2016, 8, 3660.
43.Kotkowiak, M.; Grześkiewicz, B.; Robak, E. b.; Wolarz, E., Interaction between Nanoprisms with Different Coupling Strength. J. Phys. Chem. C 2015, 119, 6195.
44.Chen, K.; Dao, T. D.; Ishii, S.; Aono, M.; Nagao, T., Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy. Adv. Func. Mater. 2015, 25, 6637.
45.Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669.
46.Dmitriev, A.; Hägglund, C.; Chen, S.; Fredriksson, H.; Pakizeh, T.; Käll, M.; Sutherland, D. S., Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect. Nano Lett. 2008, 8, 3893.
47.Otte, M. A.; Estévez, M.-C.; Carrascosa, L. G.; González-Guerrero, A. B.; Lechuga, L. M.; Sepúlveda, B., Improved Biosensing Capability with Novel Suspended Nanodisks. J. Phys. Chem. C 2011, 115, 5344.
48.Wang, B.; Leu, P. W., Tunable and Selective Resonant Absorption in Vertical Nanowires. Opt. Lett. 2012, 37, 3756.
49.Fountaine, K. T.; Whitney, W. S.; Atwater, H. A., Resonant Absorption in Semiconductor Nanowires and Nanowire Arrays: Relating Leaky Waveguide Modes to Bloch Photonic Crystal Modes. J. Appl. Phys. 2014, 116, 153106.

4.6 References
1.Choi, I.; Choi, Y. Plasmonic Nanosensors: Review and Prospect. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1110.
2.Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. R. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601.
3.Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267.
4.Gruenke, N. L.; Cardinal, M. F.; McAnally, M. O.; Frontiera, R. R.; Schatza, G. C.; Van Duyne, R. P. Ultrafast and Nonlinear Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2016, 45, 2263.
5.Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z. Y.; Gu, B. H. Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 4952.
6.Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Lett. 2008, 8, 1923.
7.Nishijima, Y.; Hashimoto, Y.; Rosa, L.; Khurgin, J. B.; Juodkazis, S. Scaling Rules of Sers Intensity. Adv. Opt. Mater. 2014, 2, 382.
8.Banaee, M. G.; Crozier, K. B. Gold Nanorings as Substrates for Surface-Enhanced Raman Scattering. Opt. Lett. 2010, 35, 760.
9.Chao, B. K.; Cheng, H. H.; Nien, L. W.; Chen, M. J.; Nagao, T.; Li, J. H.; Hsueh, C. H. Anti-Reflection Textured Structures by Wet Etching and Island Lithography for Surface-Enhanced Raman Spectroscopy. Appl. Surf. Sci. 2015, 357, 615.
10.Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M. Broadband Optical Absorption by Tunable Mie Resonances in Silicon Nanocone Arrays. Sci. Rep. 2015, 5.
11.Spinelli, P.; Verschuuren, M. A.; Polman, A. Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators. Nat. Commun. 2012, 3.
12.Jeong, H.; Song, H.; Pak, Y.; Kwon, I. K.; Jo, K.; Lee, H.; Jung, G. Y. Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells. Adv. Mater. 2014, 26, 3445.
13.Chen, J. H.; Li, Y. Y.; Huang, K.; Wang, P. X.; He, L. L.; Carter, K. R.; Nugen, S. R. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications. ACS Appl. Mater. Interfaces 2015, 7, 22106.
14.Bai, F.; Li, M. C.; Fu, P. F.; Li, R. K.; Gu, T. S.; Huang, R.; Chen, Z.; Jiang, B.; Li, Y. F. Silicon Nanowire Arrays Coated with Electroless Ag for Increased Surface-Enhanced Raman Scattering. APL Mater. 2015, 3.
15.Chen, C. Y.; Hsu, L. J.; Hsiao, P. H.; Yu, C. T. R. SERS Detection and Antibacterial Activity from Uniform Incorporation of Ag Nanoparticles with Aligned Si Nanowires. Appl. Surf. Sci. 2015, 355, 197.
16.Tsao, C.W.; Yang, Z.J. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis. ACS Appl. Mater. Interfaces 2015, 7, 22630.
17.Zhang, P.; Wang, Y.; He, T.; Zhang, B.; Wang, X.; Xin, H.; Liu, F. SERS of pyridine, 1,4-dioxane and 1-ethyl-3''-methyl-2-thiacyanine iodide adsorbed on -Fe2O3 colloids. Chem. Phys. Lett. 1988, 153, 215.
18Teguh, J. S.; Liu, F.; Xing, B.; Yeow, E. K. Surface‐Enhanced Raman Scattering (SERS) of Nitrothiophenol Isomers Chemisorbed on TiO2. Chem. - Asian J. 2012, 7, 975.
19.Wang, Y.; Ruan, W.; Zhang, J.; Yang, B.; Xu, W.; Zhao, B.; Lombardi, J. R. Direct Observation of Surface‐Enhanced Raman Scattering in Zno Nanocrystals. J. Raman Spectrosc. 2009, 40, 1072.
20.Shin, H. Y.; Shim, E. L.; Choi, Y. J.; Park, J. H.; Yoon, S. Giant Enhancement of the Raman Response Due to One-Dimensional Zno Nanostructures. Nanoscale 2014, 6, 14622.
21.Wang, Z. L. Zinc Oxide Nanostructures: Growth, Properties and Applications. J. Phys.: Condens. Matter 2004, 16, R829.
22.Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A Comprehensive Review of Zno Materials and Devices. J. Appl. Phys. 2005, 98.
23.Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical Biosensors Based on Zno Nanostructures: Advantages and Perspectives. A Review. Sens. Actuators, B 2016, 229, 664.
24.Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Arrays of Cone-Shaped Zno Nanorods Decorated with Ag Nanoparticles as 3d Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv. Funct. Mater. 2012, 22, 218.
25.Deng, S.; Fan, H.; Zhang, X.; Loh, K. P.; Cheng, C.; Sow, C.; Foo, Y. An Effective Surface-Enhanced Raman Scattering Template Based on a Ag Nanocluster–Zno Nanowire Array. Nanotechnology 2009, 20, 175705.
26.Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/Zno Nanotrees in Ordered Arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824.
27.He, X.; Yue, C.; Zang, Y. S.; Yin, J.; Sun, S. B.; Li, J.; Kang, J. Y. Multi-Hot Spot Configuration on Urchin-Like Ag Nanoparticle/Zno Hollow Nanosphere Arrays for Highly Sensitive SERS. J. Mater. Chem. A 2013, 1, 15010.
28.Tao, Q.; Li, S.; Zhang, Q. Y.; Kang, D. W.; Yang, J. S.; Qiu, W. W.; Liu, K. Controlled Growth of Zno Nanorods on Textured Silicon Wafer and the Application for Highly Effective and Recyclable SERS Substrate by Decorating Ag Nanoparticles. Mater. Res. Bull. 2014, 54, 6.
29.Huang, J.; Chen, F.; Zhang, Q.; Zhan, Y. H.; Ma, D. Y.; Xu, K. W.; Zhao, Y. X. 3D Silver Nanoparticles Decorated Zinc Oxide/Silicon Heterostructured Nanomace Arrays as High-Performance Surface-Enhanced Raman Scattering Substrates. ACS Appl. Mater. Interfaces 2015, 7, 5725.
30.Tao, Q.; Li, S.; Ma, C. Y.; Liu, K.; Zhang, Q. Y. A Highly Sensitive and Recyclable Sers Substrate Based on Ag-Nanoparticle-Decorated Zno Nanoflowers in Ordered Arrays. Dalton Trans. 2015, 44, 3447.
31.Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. General Route to Vertical ZnO Nanowire Arrays Using Textured Zno Seeds. Nano Lett. 2005, 5, 1231.
32.Alessandri, I.; Lombardi, J. R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921.
33.Huang, Y. F.; Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.; Ren, B.; Tian, Z. Q. Surface-Enhanced Raman Spectroscopic Study of p-Aminothiophenol. Phys. Chem. Chem. Phys. 2012, 14, 8485.
34.Nien, L. W.; Chien, M. H.; Chao, B. K.; Chen, M. J.; Li, J. H.; Hsueh, C. H. 3D Nanostructures of Silver Nanoparticle-Decorated Suspended Graphene for Sers Detection. J. Phys. Chem. C 2016, 120, 3448.
35.Tang, H.; Meng, G.; Huang, Q.; Zhang, Z.; Huang, Z.; Zhu, C. Arrays of Cone‐Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface‐Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv. Funct. Mater. 2012, 22, 218.
36.Chen, J.; Li, Y.; Huang, K.; Wang, P.; He, L.; Carter, K. R.; Nugen, S. R. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications. ACS Appl. Mater. Interfaces 2015, 7, 22106.
37Lee, T.; Chao, B. K.; Kuo, Y. L.; Hsueh, C. H. Improvement of Photocatalytic Activities of Ag/P25 Hybrid Systems by Controlled Morphology of Ag Nanoprisms. Mater. Chem. Phys. 2017, 192, 78.
38Kandjani, A. E.; Mohammadtaheri, M.; Thakkar, A.; Bhargava, S. K.; Bansal, V. Zinc Oxide/Silver Nanoarrays as Reusable Sers Substrates with Controllable ''Hot-Spots'' for Highly Reproducible Molecular Sensing. J. Colloid Interface Sci. 2014, 436, 251.
39.Huang, C. Y.; Xu, C. X.; Lu, J. F.; Li, Z. H.; Tian, Z. S. 3D Ag/ZnO Hybrids for Sensitive Surface-Enhanced Raman Scattering Detection. Appl. Surf. Sci. 2016, 365, 291.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔