跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠宇
研究生(外文):Kuna-Yu Chen
論文名稱:混合都市固態廢棄物氣化及合成氣催化重整反應之應用在固態燃料電池研究
論文名稱(外文):Co-gasification and Syngas Reforming of Municipal Solid Waste for Solid Oxide Fuel Cells
指導教授:韋文誠韋文誠引用關係
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:95
中文關鍵詞:氣化都市廢棄物催化重整合成氣3D積層列印除硫
外文關鍵詞:gasificationMSWcatalystreformingsyngas3DPdesulfurization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用廢紙及塑膠的混合物,進行800oC高溫氣化,產製合成氣(syngas),提供SOFC使用。為了避免毒化電池氧化物電極或腐蝕金屬電極,須要對此碳氫燃料執行純化及重整。研究利用陶瓷/高分子配料技術,選擇三種陶瓷粉體,包括氧化鋅、θ相氧化鋁粉、碳酸鈣,經雙滾筒捏練、擠出後,製造出可以直接餵料之線材,用於 3D 積層列印機,製造型塑後之陶瓷催化載體。陶瓷載體經過高分子燒除和特定堆疊方式不同,而擁有兩種孔洞分布及螺旋錐狀形體。三種陶瓷載體均勻鍍上鎳參雜氧化鈰奈米顆粒之複合型催化劑,進行生質燃料之氣化重整。因合成燃氣內會含有甲烷及硫化氫,本研究之催化載體用於重整反應後,甲烷在合成氣中含量可降至5%以下,氫氣與一氧化碳分別提升至50%和20%,硫化氫濃度從初始38.5ppm降至1ppm以下。
Removal sulfur in biofuel is important for the use of renewable energy in solid oxide fuel cells (SOFCs). The purification and reforming of hydrocarbon fuels are currently conducted to prevent poisoning of the oxide electrodes. This research reports previous formulation technique of ceramic/polymer kneading of several polymers with ceramic powders (ZnO, θ-Al2O3, and CaCO3), and extruding to produce feedstock of wire shape (filaments) in order to form catalytic ceramic supports. The pore size of ceramic supports shows two different distributions, due to polymer burnt-out and its stacking configuration. The effects of three Ni+CeO2 catalyst are investigated on simultaneously remove of H2S and hard particles, and reform CH4 at 800 °C. After reforming by the catalysts, the composition of fuel gas was changed as following: Concentration of CH4 decreasing to a lower level of <5%. Both concentrations of H2 and CO increase to more than 50% and 20%, respectively. The concentrations of hydrogen sulfide changed from 38.5 ppm to a level of 1 ppm.
致謝 II
摘要 IV
Abstract V
List of Figures VII
List of Tables XIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 9
2.1 Fused deposition modeling (FDM) 9
2.1.1 FDM for ceramic products 9
2.1.2 Composition and function of ceramic feedstock 10
2.2 Sintering behavior 13
2.2.1 Al2O3 phase transition 13
2.2.2 Sintering of ZnO 14
2.3 Gasification of MSW 20
2.3.1 Gasification of biomass 20
2.3.2 Reforming of syngas 20
2.4 Removal of H2S from biosyngas 25
Chapter 3 Experimental 28
3.1 Experimental materials 28
3.1.1 Municipal Solid Oxide (MSW) samples 28
3.1.2 Feedstock of θ-Al2O3, ZnO and CaCO3 28
3.2 Preparation of ceramic sorbents 28
3.3 Co-gasification of waste plastics and waste paper 29
3.4 Preparation of reforming catalyst 30
3.5 Syngas reforming and removal of H2S 31
3.6 Property characterization 32
3.6.1 Basic analysis of species 32
3.6.2 SEM analysis 32
3.6.3 Gas chromatography 33
3.6.4 Mechanical property 33
3.6.5 Density Measurement 34
3.6.6 BET of H2S absorbents 34
Chapter 4 Results and Discussions 40
4.1 Feedstocks of Al2O3 40
4.1.1 Homogeneity of feedstocks of Al2O3 40
4.1.2 Sintering behaviors of alumina feedstocks 46
4.2 Thermal process of ZnO feedstocks 49
4.2.1 Sintering behaviors of ZnO 49
4.2.2 Feedstock of ZnO 55
4.3 Gasification in batch-type gasifier 60
4.3.1 Effect of air flow rate 60
4.3.2 Effect of moisture 63
4.3.3 Co-gasification of plastics and paper 68
4.4 Removal of H2S and reforming by 3DP ceramic sorbents 77
4.4.1 Microstructures of 3DP ceramic sorbents 77
4.4.2 Sintering behaviors of 3DP ceramic sorbents 77
4.4.3 Removal of H2S and Reforming Effect 84
4.4.4 Environmental assessment for gasifier with clean-up process 88
Chapter 5 Conclusions 90
References 92
[1]http://www.ndc.gov.tw/Content_List.aspx?n=9D024A4424DC36B9&upn=6E972F5C30BF198F
[2]D. Sánchez, R. Chacartegui, M. Torres, T. Sánchez, Journal of Power Sources 192 (2009) 84–93.
[3]郭哲佑、胡憲倫 (2004):南師學報,頁41-59。
[4]Taiwan EPA, 2016. Yearbook of environmental protection statistics. Taiwan EPA, Taipei.
[5]F. Pinto, R. N. Andre, C. Franco, H. Lopes, I. Gulyurtlu, I. Cabrita, Fuel, 88 (2009), 2392–2402.
[6]I. I. Ahmed, N. Nipattummakul, A. K. Gupta, Applied Energy 88 (2011), 165–174.
[7]柯欣怡,應用在固態燃料電池的都市廢棄物連續氣化及燃氣重整研究,國立台灣大學,碩士論文,2015
[8]C. Ofori-Boateng, K. T. Lee a, M. Mensah, Fuel Processing Technology 110 (2013) 94–102.
[9]F. Calisea, M. D. d’Accadiaa, A. Palomboa, L. Vanolib, Energy 31 (2006) 3278–3299.
[10]M. Koike, C. Ishikawa, D. Li, L. Wang, Y. Nakagawa, K. Tomishige, Fuel 103 (2013) 122–129.
[11]S. Zha, Z. Cheng, M. Liu, Journal of The Electrochemical Society, 154 (2007) 201-206.
[12]A. van der Drift, J. van Doorn, J. W. Vermeulen, Biomass Bioenergy 20 (2001) 45-56.
[13]P. Lohsoontorn, D.J.L. Brett, N.P. Brandon, Journal of Power Sources 175 (2008) 60–67.
[14]B. Baufeld, O. V. d. Biest, R. Gault, Materials and Design 31 (2010) 106–111
[15]A. Zocca, P. Colombo, C. M. Gomes, J. Gunster, J. Am. Ceram. Soc., 98 (2015) 1983–2001.
[16]H. J. Yen. Biomedical microdevices 11 (2009) 615-624.
[17]張源開,碳酸鹽對生質料氣化之影響和合成氣催化重整後應用於固態燃料電池上之研究,國立台灣大學,碩士論文,2014
[18]E. J. McCullough, K. Y. Vamsi. Journal of Materials Processing Technology 213 (2013) 947-954.
[19]R. German, Powder Injection Molding. MPIF, USA, 1990.
[20]C. I. Chung, B. O. Rhee, M. Y. Cao, C. X. Liu. Requirements of binder for powder injection molding. In Advances in Powder Metallurgy Proceeding, Powder Metallurgy Conference Exhibition. MPIF, Princeton,NJ, USA, 1989, 67–78.
[21]G. M.V. Lous, I. A. Cornejo, T. F. McNulty, A. Safari, S. C. Danforth, Journal of the American Ceramic Society 83 (2000) 124-28.
[22]R. Y. Wu, W. C. J. Wei. J. Eur. Ceram. Soc., 20 (2000) 67–75.
[23]W. W. Yang, K. Y. Yang, M. H. Hon, Mater. Chem. Phys., 78 (2002) 416–424.
[24]范乃中,積層製造使用之陶瓷胚料合成及應用研究,國立台灣大學,碩士論文,2015
[25]M. Dubus, H. Burlet, Rheological behaviour of a polymer ceramic blend. J. Eur. Ceram. Soc., 17 (1997) 191–196.
[26]T. Zhang, J. R. G.Evans.bJ. Eur. Ceram. Soc., 12 (1993) 51–59.
[27]K. Okada, Y.Nagase, J. Chem. Eng. Japan, 2000, 33(6), 927–929.
[28]G. Wen, P. Cao, B. Gabbitas, D. Zhang, N. Edmonds. Metall. Mater. Trans. A, 44 (2013) 1530-1547.
[29]A. J. Millan, R. Moreno, M. I. Nieto, Mater. Lett. (2001) 47, 324-328.
[30]L. Nyborg, E. Carlstrom, H Bertilsson. Powder Metallurgy (1998) 41–44.
[31]K. L. Johnson, K. Kendall, A. D. Roberts. Pro Roy Soc Lond. A, 324 (1971) 301.
[32]M. N. Rahaman, Sintering of ceramics. CRC press, 2007.
[33]K. Wefers, M. Chanakya, Aluminum Company of America, 92 (1987) 1987.
[34]I. Rosso, C. Galletti, M.Bizzi, G. Saracco, and V. Specchia, Ind. Eng. Chem. Res., 42 (2003), 1688-97
[35]P. Q. Mantas, and J. L. Baptista, J. Eur. Ceram. Soc., 15 (1995), 605
[36]M. E. V. Costa, P. Q. Mantas, and J. L. Baptista, Sens. Activators B26-27 (1995), 312
[37]F. C. M. van de Pol, Ceram Bull., 69 (1990), 1959
[38]T. K. Gupta, and R. L. Coble, J. Am. Ceram. Soc., 51 (1970), 521-25
[39]J. Kim, T. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72 (1989), 1541-44
[40]J. Han, P. Q. Mantas, A. M. R. Senos, J. Master. Res., 16 (2001), 459-68
[41]G. F. Xu, I. K. Lloyd, Y. Camel, T. Olorunyolemi, and O. C. Wilson Jr., J. Mater. Res., 16 (2001), 2850-58
[42]A. P. Hynes, R. H. Doremus, and R. W. Siegel, J. Am. Ceram. Soc., 85 (2002), 1979-87
[43]M. N. Rahaman, L. C. De Jonghe, J. Mat. Sci., 22 (1987), 4326-30
[44]M. Ni, D. Y.C. Leung, M. K.H. Leung. Int. J. Hydrogen Energy 32 (2007) 3238-3247
[45]N. Edwards, S. R. Ellis, J. C. Frost, S. E. Golunski, A. N. J. Van Keulen, N G. Lindewald. J. Power Sources, 71 (1998) 123–128.
[46]S. Roychoudhury, M. Lyubovsky, D. Walsh, D. Chu, E. Kallio, J. Power Sources, 160 (2006) 510–513.
[47]K. Liu, C. Song, V. Subramani. Hydrogen and syngas production and purification technologies. 1st ed. New Jersey: John Wiley; 2010
[48]S. H. Seok, S. H. Choi, E. D. Park, S.H. Han, and J. S. Lee. J. Catal. 209 (2002) 6-15
[49]E. Nikolla, A. Holewinski, J. Schwank, and S. Linic. J. Am. Chem. Soc. 128 (2006) 11354-11355
[50]F. Aupretre, C. Descorme, D. Duprez. Catal. Commun. 3 (2002) 263-267
[51]S. Xu, and X. Wang. Fuel 84 (2005) 563-567
[52]C. J. Roos, Clean Heat and Power Using Biomass Gasification for Industrial and Agricultural Projects, CHP Northwest, Washington, MA, 2010, 8
[53]韋文誠,固態燃料電池技術,2013
[54]http://slideplayer.com/slide/6900848/
[55]S.Y. Jung, S.J. Lee, T.J. Lee, C. K. Ryu, J.C. Kim. Catal. Today, 111 (2006) 217– 222.
[56]Y. G. Pan, J. F. Perales, E. Velo, L. Puigjaner, Fuel 84 (2005) 1105–1109.
[57]R. B. Slimane, J. Abbasian, Ind. Eng. Chem. Res. 39 (2000) 1338– 1344.
[58]J. P. Wakker, A. W. Gerritsen, J. A. Moulijn, Ind. Eng. Chem. Res., 32 (1993) 139–149
[59]P. R. Westmoreland, D. P. Harrison, Environ. Sci. Technol., 10 (1976) 659–661.
[60]D. R. Mullins, T. S. McDonald, Surface Science, 601 (2007) 4931-4938.
[61]M. F. Stephanopoulos, S. Mann, W. Zheng. Science, 312 (2006) 1508–1510.
[62]I. Rosso. Industrial & Engineering Chemistry Research 42 (2003) 1688-1697.
[63]S. S. Chauk, R. Agnihotri, R. A. Jadhav, S. K. Misro, L. S. Fan, AIChE Journal, 46 (2000) 1157-1167.
[64]R.E. Ayala, D.W. Marsh, Ind. Eng. Chem. Res., 30 (1991) 55–60.
[65]R.V. Siriwardane, J.A. Poston. Appl. Surf. Sci., 68 (1993) 65–80.
[66]I. Maeda, T. Mizoguchi, Y. Miura, K. Yagi, N. Shioji, H. Miyasaka, Current microbiology, 40 (2000) 210-213.
[67]ASTM. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. American Society for Testing and Materials, D3173.
[68]ASTM. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. American Society for Testing and Materials, D3175.
[69]ASTM. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. American Society for Testing and Materials, D3174.
[70]ASTM. Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorimeter, D2015
[71]R. Y. Wu, and W. J. Wei, J. Euro. Ceram. Soc. 24 (2004) 3653–3662
[72]高鴻展,精密陶瓷股小球材料之高溫製程、表面機械加工及性質分析之研究國立台灣大學,碩士論文,1990
[73]W. P. Walawender, S. M. Chern, L. T. Fan. In: Klass DL, editor. Energy from biomass and wastes XI. Chicago: Institute of Gas Technology, 1987
[74]U. Arena, L. Zaccariello, M. L. Mastellone, Waste Management 29 (2009), 783–91
[75]J. Udomsirichakorn, P. A. Salam, Renewable and Sustainable Energy Reviews 30 (2014) 565–579
[76]http://www.taipower.com.tw/content/new_info/new_info-b32.aspx?LinkID=8
[77]http://125.227.255.111/book/10502-1-5/mobile/index.html#p=13
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊