跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸
研究生(外文):Yi Chen
論文名稱:電磁鋼片表面分析與塗膜特性研究
論文名稱(外文):Surface Morphology and Coating Property of Electrical Steel
指導教授:林招松林招松引用關係
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:電磁鋼片絕緣塗膜銻元素氧化層附著性
外文關鍵詞:Electrical steelinsulating coatingantimonyoxidation layeradhesion property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電磁鋼片主要應用於提供發電機、馬達或變壓器等產品的磁迴路,進而進行能量轉換,鋼片上的絕緣塗膜則具有提供堆疊時的絕緣特性與抗蝕能力的功能,故塗膜的特性亦是左右鋼片特性的一大重點。本研究主要目的在於研究鋼片及塗膜的表面特性與塗膜附著性間的關聯,找出影響附著性的原因並加以解決,使目前使用的絕緣塗膜在性質上有更全面的表現。
本研究首先針對電磁鋼片表面反應性做分析,透過微結構觀察及電化學檢測發現,各型號鋼片表面的氧化層結構有所差異,此差異推測來自合金元素中銻元素的添加,未添加銻元素的鋼片表面為氧化鋁及氧化鐵混合層,平均厚度約為25nm,結構較為疏鬆;而添加銻元素的鋼片表面則只有氧化鋁層,平均厚度約為10nm,結構較為緻密。氧化層結構差異會影響底材與塗料的反應性,進而改變界面鍵結強度,影響後續塗膜的附著性。除了鋼片表面結構外,也針對塗膜在應力消除退火(SRA)前後的特性做分析,不同附著性的塗膜有退火前表面高低起伏及退火後裂紋大小的差異。表面高低起伏為塗膜厚度不均所造成;而裂紋的產生,主要是因為退火時樹脂裂解,塗膜體積收縮量所造成。實驗結果顯示,塗膜退火後的裂紋大小與塗膜厚度及樹脂含量有關,降低塗膜厚度及樹脂含量,可以有效抑制退火後裂紋產生。而塗膜的附著性與退火後裂紋大小有關;實驗發現,當塗膜平均裂紋寬度為350nm,在退火後有較佳的附著性;而平均裂紋寬度為450nm,塗膜退火後附著性較差。
Electrical steel is a functional material, also known as silicon steel, mainly used in the core of generators, motors or transformers. The insulating coating, coated the electrical steel, has the function of providing the insulating property and the corrosion resistance. In addition to the insulating property and corrosion resistance, the adhesion property of the coating is also the element that determining the quality of the coating. China Steel Corporation is currently developing a trivalent chromium coating (C628). This coating has a good adhesion property on some specific grades of electrical steels, but some are not. According to experimental observation, different alloying elements or annealing temperature will seriously affect the adhesion property of the coating. Therefore, the main purpose of this study is to understand the relationship between the surface properties of the electrical steel and the adhesion property of the coating. Hoping to make the current use of the insulating coating more comprehensive by solving the problem that affect the adhesion property.
In this study, the surface reactivity of the electrical steels with different alloying elements is analyzed. The microstructural observation showed that the structure and the composition of the oxidation layer on the surface of each type of steels are different. For example, the surface of the 35CS250 electrical steel was a mixed layer with alumina and iron oxide, the average thickness of the layer is about 25nm; the surface of the 35CS250H electrical steel is only an alumina layer, the average thickness of the layer is about 10nm. The difference of the structure affects the reactivity of the coating process, resulting in the difference in the bonding strength of the coating-substrate interface, which affects the adhesion property of the insulating coating.
In addition to the surface structure, the property of the coating, with or without passing the stress relief annealing (SRA) process, were also studied. By microstructure observation, found that there were several major differences on the different adhesion property of coating. That is the thickness of the insulating coating and the size of the crack after annealing. The phenomenon of crack formation is mainly due to the crack of resin, resulting in the volume shrinkage of the coating during annealing. It is found that the adhesion property of the coating is related to the size of the crack after annealing. The average crack size of the coating on the 35CS250 electrical steel is about 350nm, having better adhesion property after annealing. The average crack size of the coating on the 35CS250H electrical steel is about 450nm, having poor adhesion property after annealing.
摘要 i
Abstract ii
總目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
第二章 文獻回顧 3
2.1 電磁鋼片特性 3
2.1.1 鐵損值 3
2.1.2 合金元素比例與晶粒大小 5
2.2 銻的效益 9
2.2.1 提升電磁特性 9
2.2.2 表面氧化層改變 12
2.3 電磁鋼片絕緣塗膜 14
2.3.1 塗膜目的 14
2.3.2 塗膜組成 16
2.3.3 塗膜特性 20
第三章 實驗方法與步驟 23
3.1 實驗方法與流程 23
3.1.1 實驗方法 23
3.1.2 實驗流程 24
3.2 塗膜製程 25
3.3 塗膜高溫退火 25
3.4 塗膜結構分析 26
3.4.1 表面形貌觀察 26
3.4.2 橫截面結構觀察 26
3.4.3 聚焦離子束顯微系統試片製備 27
3.5 塗膜特性檢測 27
3.5.1 附著性檢測 27
3.5.2 鹽霧試驗 27
3.5.3 動電位極化曲線分析 28
3.5.4 交流阻抗法 28
第四章 結果與討論 29
4.1 底材反應性分析 29
4.1.1 表面色澤分析 29
4.1.2 氧化層結構分析 31
4.1.3 氧化層緻密性分析 36
4.1.4 氧化層緻密性與塗料反應性 43
4.2 添加銻元素的影響 47
4.2.1 銻元素的添加 47
4.2.2 銻元素對氧化層結構影響 50
4.3 塗膜附著性比較 52
4.4 塗膜的結構分析 53
4.4.1 塗膜橫結構觀察 54
4.4.2 退火後裂紋的成因 60
4.4.3 表面形貌差異分析 63
4.4.4 實驗室塗膜觀察分析 74
4.5 抗蝕能力分析 77
4.5.1 鹽霧試驗 77
4.5.2 極化曲線分析 79
第五章 結論 80
第六章 未來展望 82
第七章 參考文獻 83
1.蕭一清, 綠色鋼材—電磁鋼片的發展與應用. 永續產業發展季刊. 2012.
2.WU, J.-C., P.-C. SUN, and P. CHEN, The Application of Phosphate Treatment for Chromium-Free Insulating Coating on Electrical Steel.
3.Jenko, M., et al., AES studies of antimony surface segregation in non-oriented silicon steel. Journal of magnetism and magnetic materials, 1994. 133(1-3): p. 229-232.
4.Littmann, M., Iron and silicon-iron alloys. IEEE Transactions on Magnetics, 1971. 7(1): p. 48-60.
5.Shimanaka, H., et al., Recent development of non-oriented electrical steel sheets. Journal of Magnetism and Magnetic Materials, 1982. 26(1): p. 57-64.
6.黃振賢, 修訂二版 機械材料. 新文京開發出版股份有限公司, 民國 92 年, 2003. 6: p. 233.
7.Coombs, A., et al., Review of the types, properties, advantages, and latest developments in insulating coatings on nonoriented electrical steels. IEEE transactions on magnetics, 2001. 37(1): p. 544-557.
8.Takashima, M., et al., Nonoriented electrical steel sheet with low iron loss for high-efficiency motor cores. IEEE transactions on magnetics, 1999. 35(1): p. 557-561.
9.Petrovic, D.S., Non-oriented electrical steel sheets. Materiali in tehnologije, 2010. 44(6): p. 317-325.
10.Haiji, H., et al., Magnetic properties and workability of 6.5% Si steel sheet. Journal of Magnetism and Magnetic Materials, 1996. 160: p. 109-114.
11.Takada, Y., et al., Commercial scale production of Fe‐6.5 wt.% Si sheet and its magnetic properties. Journal of Applied Physics, 1988. 64(10): p. 5367-5369.
12.Nakayama, T. and N. Honjou, Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet. Journal of Magnetism and Magnetic Materials, 2000. 213(1): p. 87-94.
13.Beckley, P. and G. Sujan, Steels, Silicon Iron-Based: Magnetic Properties$. Encyclopedia of Materials: Science and Technology (Second Edition). Oxford: Elsevier, 2001: p. 8847-51.
14.Matsuo, M., Texture control in the production of grain oriented silicon steels. ISIJ international, 1989. 29(10): p. 809-827.
15.Li, M., et al., Effect of annealing parameter on microstructure and magnetic properties of cold rolled non-oriented electrical steel. Transactions of nonferrous metals society of China, 2007. 17(s1A): p. s74-s78.
16.Lyudkovsky, G., Method for suppressing internal oxidation in steel with antimony addition. 1983, Google Patents.
17.Lyudkovsky, G., Steel with antimony addition. 1984, Google Patents.
18.Lyudkovsky, G. and P.K. Rastogi, Effect of Antimony on Recrystallization Behavior and Magnetic Properties of a Nonoriented Silicon Steel. Metallurgical transactions A, 1984. 15(2): p. 257-260.
19.Lyudkovsky, G., The effect of antimony on internal oxidation and magnetic properties of Si-Al electrical steels. IEEE transactions on magnetics, 1986. 22(5): p. 508-510.
20.Nakayama, T., et al., Effect of antimony surface treatment on nitrogen absorption during batch annealing of an electrical steel sheet. Journal of materials science, 1997. 32(1): p. 119-122.
21.Takashima, M., T. Obara, and T. Kan, Texture improvement in high-permeability nonoriented electrical steel by antimony addition. Journal of materials engineering and performance, 1993. 2(2): p. 249-254.
22.Vodopivec, F., et al., Effect of antimony of energy losses in non-oriented 1.8 Si, 0.3 Al electrical sheets. Journal of magnetism and magnetic materials, 1991. 97(1-3): p. 281-285.
23.Jenko, M., et al., Influence of antimony on the texture and properties of 2% Si, 0.3% Al steel for non-oriented sheet. Le Journal de Physique IV, 1995. 5(C7): p. C7-225-C7-231.
24.Rodrigues, M.F., et al., Texture and magnetic properties improvement of a 3% Si non-oriented electrical steel by Sb addition. Journal of Magnetism and Magnetic Materials, 2013. 331: p. 24-27.
25.Lyudkovsky, G., A. Preban, and J. Shapiro, The influence of annealing conditions on the internal oxidation and magnetic properties of silicon‐aluminum bearing electrical steels. Journal of Applied Physics, 1982. 53(3): p. 2419-2421.
26.PENG, K.-Y., et al., High-Performance Chromium-Free Coatings for Electrical Steels.
27.Hanejko, F.G., G.W. Ellis, and T.J. Hale, APPUCATION OF HIGH PERFORMANCE MATERIAL PROCESSING-ELECTROMAGNETIC PRODUCTS. 1998.
28.Beckley, P., et al., Impact of surface coating insulation on small motor performance. IEE Proceedings-Electric Power Applications, 1998. 145(5): p. 409-413.
29.Lindenmo, M., A. Coombs, and D. Snell, Advantages, properties and types of coatings on non-oriented electrical steels. Journal of Magnetism and Magnetic Materials, 2000. 215: p. 79-82.
30.Kendig, M., et al., Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys. Surface and Coatings Technology, 2001. 140(1): p. 58-66.
31.Akanuma, K., H. Koshiishi, and N. Urushiyama, Insulation coating for electrical steel sheet and method of application. 1972, Google Patents.
32.Haselkorn, M.H., Insulative coating composition for electrical steels. 1985, Google Patents.
33.KUO, C.-K. and J.-C. WU, Analysis of Microstructure for Insulating Coating on Non-Oriented Electrical Steel.
34.Ding, Y., et al., Coating induced residual stress in nonoriented electrical steel laminations. Journal of Materials Research, 2014. 29(16): p. 1737.
35.Mott, N., The theory of the formation of protective oxide films on metals, II. Transactions of the faraday society, 1940. 35: p. 472-483.
36.Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 1974: National Association of Corrosion.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top