跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴世雯
研究生(外文):Shih-Wen Lai
論文名稱:Fe-0.7C-13Cr合金鋼透鏡狀麻田散鐵之顯微結構及晶體結構分析
論文名稱(外文):Crystallographic Analysis and Microstructure Characterization of Lenticular Martensite in Fe-0.7C-13Cr Steel
指導教授:楊哲人楊哲人引用關係
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:透鏡狀麻田散鐵變體選擇變體對晶癖面plate group晶癖面EBSDTKD
外文關鍵詞:lenticular martensitevariant selectionvariant pairplate grouphabit planeEBSDTKD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以Fe-0.7C-13Cr合金鋼所生成的透鏡狀麻田散鐵為研究對象,分析其顯微結構與晶體結構。施以1200℃下72小時的熱處理,將碳化物完全溶回基地中,再施以不同的深冷溫度,得到不同的麻田散鐵相比例,來進行方位關係和變體選擇的研究。經過均質化和深冷處理後,此合金成分下會生成透鏡狀麻田散鐵,利用穿透式電子顯微鏡(TEM)觀察到透鏡狀麻田散鐵內部分成三個區域,分別為中脊區(midrib)、雙晶擴展區(twinned region)和非雙晶區(untwinned region)。利用電子背向散射繞射(EBSD)得知此透鏡狀麻田散鐵和沃斯田鐵之間為Kurdjumov-Sachs (K-S)方位關係,並且可以利用多個不同的麻田散鐵variant中midrib的方位可以計算出晶癖面(habit plane)的方位。透鏡狀麻田散鐵生長初期會由任意一個的plate group和其雙晶主導,其他的plate group可能佔據沃斯田鐵晶界附近自成一個系統的plate group或是在殘留沃斯田鐵區域中生長。麻田散鐵variant pair如:V1-V6、V1-V16、V1-V17 variant pair會展現特定形貌:V1-V16會從M/A界面生長出來,V1-V6和V1-V17麻田散鐵大多在端點接觸,夾角會因切面和形貌不同而有變化。
最後,利用穿透式電子顯微鏡(TEM)和穿透菊池繞射(TKD)的結果,說明在電子背向散射繞射(EBSD)中觀察到的一支透鏡狀麻田散鐵內基地和雙晶的variant在發生互換,還有midrib兩側分別為麻田散鐵基地的variant和雙晶的variant,這種非典型的透鏡狀麻田散鐵是確實存在的,但其生成機制仍尚待釐清。
The crystallography and microstructure of lenticular martensite in Fe-0.7C-13r stainless steel has been studied by EBSD, TKD, and TEM in this research. In Fe-0.7C-13r stainless steel, after austenization treatment at temperatures 1200°C for three days, austenite was stable at room temperature and would transform to lenticular martensite after subzero treatment. That lenticular martensite consisting of three regions: the midrib, the twinned region, and the untwinned region was observed by TEM. EBSD analysis shows that the orientation relationship between austenite and martensite is Kurdjumov-Sachs orientation relationship and the traces of midrib of many martensite variants can be used to calculate the normal of habit plane. At initial stage of the formation of lenticular martensite, one random plate group and twin variants of this plate group will be dominant. Other plate groups can only form in retained austenite and the area near grain boundaries. Specific variant selections of lenticular martensite show particular morphologies. Generally, V1-V16 coupling mostly forms from M/A interface while V1-V6 and V1-V17 coupling usually form from the endpoint of lenticular martensite. In this case, the angle between V1 and V6 is about 38° while the angle between V1 and V17 is about 72°; however, different cross-section and morphology will make the angles change.
During analyzing of EBSD results of lenticular martensite, some peculiar microstructures of lenticular martensite were observed. Because of the large interaction volume and the limited resolution of EBSD, TKD and TEM were used to confirm that those microstructures were actual microstructures rather than misleading results due to EBSD limitations. In Fe-0.7C-13r stainless steel, those microstructures could be considered atypical lenticular martensite but the mechanism is not clear.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 前言 1
Chapter 2 文獻回顧 2
2.1 麻田散鐵相變態 2
2.1.1 麻田散鐵的晶體結構 3
2.1.2 麻田散鐵結晶學 3
2.2 麻田散鐵之型態學 9
2.2.1 板條狀麻田散鐵(lath martensite) 9
2.2.2 板片狀麻田散鐵(thin plate martensite) 10
2.2.3 透鏡狀麻田散鐵(lenticular martensite) 10
2.3 麻田散鐵之方位關係 21
2.3.1 麻田散鐵間之變體選擇 22
Chapter 3 研究方法 31
3.1 實驗材料 31
3.2 熱處理設計與實驗流程 31
3.3 實驗使用儀器和試片準備 33
示差掃描量熱儀(DSC) 33
金相製備 (Optical Microscopy) 33
電子背向散射繞射(EBSD)試片製作及觀察 34
穿透式電子顯微鏡(TEM)試片製作及觀察 34
穿透菊池繞射(TKD)試片製作及觀察 34
Chapter 4 結果與討論 35
4.1 Fe-0.7C-13Cr合金鋼透鏡狀麻田散鐵之顯微結構分析 35
4.1.1 金相組織分析 35
4.1.2 穿透式電子顯微組織分析 39
4.2 Fe-0.7C-13Cr合金鋼之晶體結構和方位關係分析 43
4.2.1 電子背向散射繞射之分析 43
4.2.2 透鏡狀麻田散鐵晶癖面之方位計算 54
4.2.3 沃斯田鐵雙晶晶界兩側麻田散鐵之方位探討 58
4.3 不同深冷溫度對透鏡狀麻田散鐵變體選擇之探討 64
4.4 非典型透鏡狀麻田散鐵顯微組織分析 81
4.4.1 穿透菊池繞射和穿透式電子顯微組織分析與比較 81
Chapter 5 結論 88
REFERENCE 89
[1] Y. Chang, P. Chen, Y. Tsai, J. Yang, Crystallographic analysis of lenticular martensite in Fe–1.0 C–17Cr stainless steel by electron backscatter diffraction, Materials Characterization 113 (2016) 17-25.
[2] H. Bhadeshia, Worked examples in the Geometry of crystals, Institute of Materials, London (2001).
[3] G. Krauss, A. Marder, The morphology of martensite in iron alloys, Metallurgical and Materials Transactions B 2(9) (1971) 2343-2357.
[4] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press (2009).
[5] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica 7(1) (1959) 59-60.
[6] H.K.D.H. Bhadeshia, S.R. Honeycombe, 1 - Iron and its Interstitial Solid Solutions, Steels (Third Edition), Butterworth-Heinemann, Oxford, (2006) 1-16.
[7] E. Pereloma, D.V. Edmonds, Phase Transformations in Steels: Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, Elsevier (2012).
[8] T. Maki, Microstructure and mechanical behaviour of ferrous martensite, Materials Science Forum, Trans Tech Publ, (1990) 157-168.
[9] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia 51(6) (2003) 1789-1799.
[10] M. Umemoto, E. Yoshitake, I. Tamura, The morphology of martensite in Fe-C, Fe-Ni-C and Fe-Cr-C alloys, Journal of materials science 18(10) (1983) 2893-2904.
[11] T. Kakeshita, K. Shimizu, T. Maki, I. Tamura, Growth behavior of lenticular and thin plate martensites in ferrous alloys and steels, Scripta Metallurgica 14(10) (1980) 1067-1070.
[12] T. Maki, K. Kobayashi, I. Tamura, Effect of Ausaging on the Morphology of Martensite in Fe-Ni-Ti-Co Alloys, Le Journal de Physique Colloques 43(C4) (1982) 541-546.
[13] K. Taylor, G. Olson, M. Cohen, J. Vander Sande, {011} Twinning in Fe-Ni-C martensites, Metallurgical Transactions A 20(12) (1989) 2739-2747.
[14] R.L. Patterson, G. Wayman, The crystallography and growth of partially-twinned martensite plates in Fe-Ni alloys, Acta Metallurgica 14(3) (1966) 347-369.
[15] A. Shibata, T. Murakami, S. Morito, T. Furuhara, T. Maki, The origin of midrib in lenticular martensite, Materials transactions 49(6) (2008) 1242-1248.
[16] A. Shibata, S. Morito, T. Furuhara, T. Maki, Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys, Acta Materialia 57(2) (2009) 483-492.
[17] G. Krauss, Martensite in steel: strength and structure, Materials Science and Engineering: A 273 (1999) 40-57.
[18] A. Shibata, S. Morito, T. Furuhara, T. Maki, Local orientation change inside lenticular martensite plate in Fe–33Ni alloy, Scripta materialia 53(5) (2005) 597-602.
[19] T. Chiba, G. Miyamoto, T. Furuhara, Comparison of variant selection between lenticular and lath martensite transformed from deformed austenite, ISIJ international 53(5) (2013) 915-919.
[20] M. Umemoto, C. Wayman, Crystallography and morphology studies of Fe-Pt martensites: Lenticular to thin plate transition and thin plate morphologies, Acta Metallurgica 26(10) (1978) 1529-1549.
[21] H. Okamoto, M. Oka, I. Tamura, Couplings of Thin-plate Martensites in an Fe–Ni–C Alloy, Transactions of the Japan Institute of Metals 19(12) (1978) 674-684.
[22] J. Bokros, E. Parker, The mechanism of the martensite burst transformation in Fe-Ni single crystals, Acta Metallurgica 11(12) (1963) 1291-1301.
[23] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, Effect of carbon content on variant pairing of martensite in Fe–C alloys, Acta Materialia 60(20) (2012) 7265-7274.
[24] G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Quantitative analysis of variant selection in ausformed lath martensite, Acta Materialia 60(3) (2012) 1139-1148.
[25] http://www.calphad.com/AEB-L.html.
[26] G. Olson, M. Cohen, A perspective on martensitic nucleation, Annual Review of Materials Science 11(1) (1981) 1-32.
[27] K.i. Shimizu, M. Oka, C. Wayman, Transmission electron microscopy studies of {225} f martensite in an Fe-8% Cr-1% C alloy, Acta Metallurgica 19(1) (1971) 1-6.
[28] H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minamino, Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD, Materials Characterization 54(4) (2005) 378-386.
[29] T. Chiba, G. Miyamoto, T. Furuhara, Variant selection of lenticular martensite by ausforming, Scripta Materialia 67(4) (2012) 324-327.
[30] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia 54(5) (2006) 1279-1288.
[31] A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction in materials science, Springer (2009).
[32] R. Wood, A. Entwisle, Martensite habit planes in Fe-Mn-C alloys, Metal Science 10(2) (1976) 72-76.
[33] S. Hoekstra, H. Van Der Lelie, C. Verbraak, A general method of habit plane determination in bainitic steels—II. Habit plane determination of the bainite, Acta Metallurgica 26(10) (1978) 1517-1527.
[34] M.-X. Zhang, P. Kelly, J. Gates, Determination of habit planes using trace widths in TEM, Materials characterization 43(1) (1999) 11-20.
[35] D. Qiu, M. Zhang, A simple and inclusive method to determine the habit plane in transmission electron microscope based on accurate measurement of foil thickness, Materials Characterization 94 (2014) 1-6.
[36] Q. Liu, A new method for determining the normals to planar structures and their trace directions in transmission electron microscopy, Journal of applied crystallography 27(5) (1994) 762-766.
[37] Y. Zhang, C. Esling, X. Zhao, L. Zuo, Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals, Journal of Applied Crystallography 40(3) (2007) 436-440.
[38] R. Serret Aracil, Investigation of heavily deformed and dual phase materials by means of Transmission Kikuchi Diffraction (2013).
[39] E. Fearon, M. Bevis, The macromorphology, micromorphology, habit planes and orientation relationships associated with martensite crystals formed in a range of iron 30–34 per cent nickel alloys, Acta Metallurgica 22(8) (1974) 991-1002.
[40] S. Suzuki, Features of transmission EBSD and its application, Jom 65(9) (2013) 1254-1263.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top