|
[1] Y. Chang, P. Chen, Y. Tsai, J. Yang, Crystallographic analysis of lenticular martensite in Fe–1.0 C–17Cr stainless steel by electron backscatter diffraction, Materials Characterization 113 (2016) 17-25. [2] H. Bhadeshia, Worked examples in the Geometry of crystals, Institute of Materials, London (2001). [3] G. Krauss, A. Marder, The morphology of martensite in iron alloys, Metallurgical and Materials Transactions B 2(9) (1971) 2343-2357. [4] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press (2009). [5] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica 7(1) (1959) 59-60. [6] H.K.D.H. Bhadeshia, S.R. Honeycombe, 1 - Iron and its Interstitial Solid Solutions, Steels (Third Edition), Butterworth-Heinemann, Oxford, (2006) 1-16. [7] E. Pereloma, D.V. Edmonds, Phase Transformations in Steels: Diffusionless transformations, high strength steels, modelling and advanced analytical techniques, Elsevier (2012). [8] T. Maki, Microstructure and mechanical behaviour of ferrous martensite, Materials Science Forum, Trans Tech Publ, (1990) 157-168. [9] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia 51(6) (2003) 1789-1799. [10] M. Umemoto, E. Yoshitake, I. Tamura, The morphology of martensite in Fe-C, Fe-Ni-C and Fe-Cr-C alloys, Journal of materials science 18(10) (1983) 2893-2904. [11] T. Kakeshita, K. Shimizu, T. Maki, I. Tamura, Growth behavior of lenticular and thin plate martensites in ferrous alloys and steels, Scripta Metallurgica 14(10) (1980) 1067-1070. [12] T. Maki, K. Kobayashi, I. Tamura, Effect of Ausaging on the Morphology of Martensite in Fe-Ni-Ti-Co Alloys, Le Journal de Physique Colloques 43(C4) (1982) 541-546. [13] K. Taylor, G. Olson, M. Cohen, J. Vander Sande, {011} Twinning in Fe-Ni-C martensites, Metallurgical Transactions A 20(12) (1989) 2739-2747. [14] R.L. Patterson, G. Wayman, The crystallography and growth of partially-twinned martensite plates in Fe-Ni alloys, Acta Metallurgica 14(3) (1966) 347-369. [15] A. Shibata, T. Murakami, S. Morito, T. Furuhara, T. Maki, The origin of midrib in lenticular martensite, Materials transactions 49(6) (2008) 1242-1248. [16] A. Shibata, S. Morito, T. Furuhara, T. Maki, Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys, Acta Materialia 57(2) (2009) 483-492. [17] G. Krauss, Martensite in steel: strength and structure, Materials Science and Engineering: A 273 (1999) 40-57. [18] A. Shibata, S. Morito, T. Furuhara, T. Maki, Local orientation change inside lenticular martensite plate in Fe–33Ni alloy, Scripta materialia 53(5) (2005) 597-602. [19] T. Chiba, G. Miyamoto, T. Furuhara, Comparison of variant selection between lenticular and lath martensite transformed from deformed austenite, ISIJ international 53(5) (2013) 915-919. [20] M. Umemoto, C. Wayman, Crystallography and morphology studies of Fe-Pt martensites: Lenticular to thin plate transition and thin plate morphologies, Acta Metallurgica 26(10) (1978) 1529-1549. [21] H. Okamoto, M. Oka, I. Tamura, Couplings of Thin-plate Martensites in an Fe–Ni–C Alloy, Transactions of the Japan Institute of Metals 19(12) (1978) 674-684. [22] J. Bokros, E. Parker, The mechanism of the martensite burst transformation in Fe-Ni single crystals, Acta Metallurgica 11(12) (1963) 1291-1301. [23] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, Effect of carbon content on variant pairing of martensite in Fe–C alloys, Acta Materialia 60(20) (2012) 7265-7274. [24] G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Quantitative analysis of variant selection in ausformed lath martensite, Acta Materialia 60(3) (2012) 1139-1148. [25] http://www.calphad.com/AEB-L.html. [26] G. Olson, M. Cohen, A perspective on martensitic nucleation, Annual Review of Materials Science 11(1) (1981) 1-32. [27] K.i. Shimizu, M. Oka, C. Wayman, Transmission electron microscopy studies of {225} f martensite in an Fe-8% Cr-1% C alloy, Acta Metallurgica 19(1) (1971) 1-6. [28] H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minamino, Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD, Materials Characterization 54(4) (2005) 378-386. [29] T. Chiba, G. Miyamoto, T. Furuhara, Variant selection of lenticular martensite by ausforming, Scripta Materialia 67(4) (2012) 324-327. [30] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia 54(5) (2006) 1279-1288. [31] A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction in materials science, Springer (2009). [32] R. Wood, A. Entwisle, Martensite habit planes in Fe-Mn-C alloys, Metal Science 10(2) (1976) 72-76. [33] S. Hoekstra, H. Van Der Lelie, C. Verbraak, A general method of habit plane determination in bainitic steels—II. Habit plane determination of the bainite, Acta Metallurgica 26(10) (1978) 1517-1527. [34] M.-X. Zhang, P. Kelly, J. Gates, Determination of habit planes using trace widths in TEM, Materials characterization 43(1) (1999) 11-20. [35] D. Qiu, M. Zhang, A simple and inclusive method to determine the habit plane in transmission electron microscope based on accurate measurement of foil thickness, Materials Characterization 94 (2014) 1-6. [36] Q. Liu, A new method for determining the normals to planar structures and their trace directions in transmission electron microscopy, Journal of applied crystallography 27(5) (1994) 762-766. [37] Y. Zhang, C. Esling, X. Zhao, L. Zuo, Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals, Journal of Applied Crystallography 40(3) (2007) 436-440. [38] R. Serret Aracil, Investigation of heavily deformed and dual phase materials by means of Transmission Kikuchi Diffraction (2013). [39] E. Fearon, M. Bevis, The macromorphology, micromorphology, habit planes and orientation relationships associated with martensite crystals formed in a range of iron 30–34 per cent nickel alloys, Acta Metallurgica 22(8) (1974) 991-1002. [40] S. Suzuki, Features of transmission EBSD and its application, Jom 65(9) (2013) 1254-1263.
|