跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳承翰
研究生(外文):Cheng-Han Wu
論文名稱:高品質石墨烯成長及Cu2O在其轉印及光電化學上之應用
論文名稱(外文):Growth of High Quality Graphene and the Role of Cu2O on its Transfer and Photoelectrochemical Application
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
口試委員:溫政彥黃炳照蘇威年
口試委員(外文):Cheng-Yen WenBing Joe HwangWei-Nien Su
口試日期:2016-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:石墨烯化學氣相沈積氧化亞銅光電化學電化學
外文關鍵詞:GapheneCVDCopperCopper oxidePhotoelectrochemical Cellelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯是近年來最熱門的新穎材料,其是由碳原子之間以sp2鍵結而形成的六角形二維結構,因為石墨這樣特殊的結構使得其有著許多極優良的物理性質,這些特性使得科學家們相信能應用到現今的科技上,並且大大改善人類的生活品質。但是,透過機械剝離法所得到的石墨烯尺寸相當不固定,也無法用於大面積的製造,所以這在未來工業化將大大受到限制,因此,科學家們開始尋找不同的方法來製造出高品質且大面積的石墨烯,綜觀所有方法當中,就屬化學氣相沉積法最吸引人,透過過鍍金屬跟碳源還有氫氣的催化,在高溫下自行排列出石墨烯的六角二維結構,這樣方法下所得到的石墨烯不但品質好,又可以大量製造,所以近年來科學家們爭先恐後投入心力在這領域,希望能為未來石墨烯工業化鋪路。
既然石墨烯的製造如此重要,本論文在第四章就開始討論如何透過化學氣相沉積法成長出高品質的石墨烯,因為不同的參數或基板,會使長出來的品質大不相同,因此我們參考文獻後,評估用銅基板並且搭配甲烷當碳源來做我們石墨烯成長的材料,透過成長基板的前處理、溫度還有氫氣跟甲烷的比例的研究討論,我們試圖找到長出高品質石墨烯的條件與參數,來為我們實驗室後續的元件應用打下良好的基礎。
成長後的石墨烯會貼附在過鍍金屬上,必須經過「轉印」的步驟才能將石墨烯應用到我們所希望的基板上,因此,轉印方法的好壞也會大大影響未來元件應用時石墨烯的品質與效果,所以在本論文的第五章,我們透過Cu2O的引入,改善了靜電轉印法的效果,讓大面積的石墨烯能完整地轉印出來,我們發現銅箔需放置兩天進行氧化,其所產生的氧化亞銅才能完全幫助完整的石墨烯靜電轉印,也讓電阻值下降了五倍。我們也透過研究分析來解釋了這層氧化亞銅在靜電轉印法當中所扮演的角色,完美解釋了整個靜電轉印法的機制。
最後第六章,我們應用了前面第四章和第五章的技術與發現,將石墨烯/氧化亞銅/銅這樣的異質接面結構應用到能源元件上面來解決現今的能源危機。第五章所發現的氧化亞銅已被科學家認為是極優良的光觸媒材料,我們想再利用第四章成長石墨烯的方法,將其優越的電學性質跟氧化亞銅做結合,應用於光電化學水分解當中,進行產生氫氣的研究。首先使用自然氧化法,將石墨烯/銅箔放置在大氣當中一個月進行自然氧化,但是電流值不高且相當耗時,因此,設計了一個直接成長的方式來得到我們的光電化學水分解元件,透過這樣直接成長的方法,我們可以一步驟的得到石墨烯跟氧化亞銅,經過簡單的封裝就可以進行量測,在水分解的量測上不但成功產生較高的電流,也可以看到石墨烯在整個元件當中所扮演的角色,最後我們分析這樣方法所得到的能源元件的優缺點,以及討論未來可改進或發展的方向,期待未來能將在解決能源危機這議題上有所貢獻。
Graphene, a two-dimensional material formed of a honeycomb lattice structure of sp2 carbon atoms, has been attracting wide attention owing to its remarkable thermal, mechanical and electronic properties. Scientists believe that these attractive properties can be applied to nowadays technology and make human’s life better. However, the size of graphene produced by mechanical exfoliation is not stable and large-sized. It will definitely limit the development of graphene in industry. Therefore, Scientists start to find a new way that can produce graphene with the quality that can be industrialized. Among all the methods, chemical vapor deposition (CVD) is the best way. With the catalyst of transition metal and carbon source, graphene can be synthesized in perfect sp2 bonding and large-sized. That is why there are more and more scientists involved in this area and working on paving the way for graphene industrialization.
In the first section, we introduced the procedure for growing high quality graphene. Because of different parameters and conditions leading to different morphology of graphene, it is greatly important to study the effect of factor. Therefore, we discuss three factors that highly influence CVD graphene quality- growing substrate, temperature and the ratio of H2/CH4. With the paper survey and our study, we successfully find out the parameters to grow high quality CVD graphene. These techniques give a good foundation for graphene-based device.
After growing graphene on transition metal, it is also important to transfer it. We consider how to transfer it without causing any damage during the process, which is always the key point to get better performance in our graphene-based device. Therefore, in the next section, we optimize the electrostatic force transfer method by introduce copper oxide. With this kind of semiconductor between graphene and copper foil, we can greatly improve the quality of transferred graphene to our target substrate. The resistance is getting lower while the uniformity becomes better. We not only optimize the transfer quality of graphene but also explain the role of Cu2O in electrostatic force transfer.
Finally, we combine the technique in chapter4 and chapter5 to make a graphene-based energy device. In literature review, we know that Cu2O has been widely applied in photoelectrochemical (PEC) cells because of its physical properties. However, the main problem is its stability in solution. It will self-reduce while PEC measurement. To overcome this issue, we combine the CVD growth of graphene by direct growth method. By this method, we can automatically get the graphene and Cu2O in the same time. After simple encapsulation, we can transfer solar energy and water into hydrogen energy. Most importantly, with the presence of graphene, the photocurrent density increase over 70% compared to the device without graphene.
致謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 xi
表目錄 xvii
Chapter 1 介紹 1
1.1 石墨烯介紹 1
1.1.1 歷史發展 1
1.1.2 石墨烯的機械特性 3
1.1.3 石墨烯的化學特性 4
1.1.4 石墨烯的電性 5
1.2 水分解介紹 7
1.2.1 全球能源供給與需求 7
1.2.2 替代性能源 8
1.2.3 能量儲存於可再生化學能 9
1.2.4 水分解 9
1.3 氧化亞銅介紹 11
1.3.1 氧化亞銅的物理性質 11
1.3.2 氧化亞銅的晶體結構 12
1.3.3 氧化亞銅在光電化學水分解的優勢與留意議題 13
1.4 動機 13
Chapter 2 文獻回顧 15
2.1 石墨烯之製備 15
2.1.1 機械剝離法 15
2.1.2 化學溶液法 16
2.1.3 磊晶成長法 17
2.1.4 化學氣相沉積法 18
2.2 石墨烯之轉印 22
2.2.1 傳統轉印方法 22
2.2.2 氣泡轉印方法 24
2.2.3 靜電轉印方法 24
2.2.4 其他新穎轉印方法 25
2.3 氧化亞銅水分解之發展 27
2.3.1 氧化亞銅在水分解的困境 27
2.3.2 與碳材形成複合物 28
2.3.3 沉積保護氧化層 29
2.3.4 共觸媒 30
Chapter 3 實驗分析與量測 32
3.1 石墨烯品質鑑定 32
3.1.1 光學顯微鏡 32
3.1.2 拉曼光譜儀 34
3.1.3 原子力顯微鏡 36
3.1.4 四點探針 37
3.2 氧化亞銅品質鑑定 39
3.2.1 歐傑電子能譜儀 39
3.2.2 拉曼光譜儀 40
3.3 光電化學水分解之量測 41
3.3.1 線性掃描伏特安培法 41
3.3.2 交流阻抗分析法 41
Chapter 4 化學氣相沉積法成長高品質石墨烯 44
4.1 動機 44
4.2 成長石墨烯流程 44
4.3 影響石墨烯品質因子 46
4.3.1 成長基板前處理效應 46
4.3.2 成長溫度效應 50
4.3.3 成長氫氣與甲烷比例效應 52
4.4 結論 55
Chapter 5 優化石墨烯靜電轉印法 56
5.1 動機 56
5.2 氧化銅幫助石墨烯之轉印 57
5.2.1 氧化亞銅的形成 57
5.2.2 氧化亞銅在石墨烯靜電轉印法中角色 58
5.2.3 銅氧化程度的效應 59
5.3 結論 61
Chapter 6 直接成長高品質石墨烯/氧化亞銅異質結構作為能量轉換元件應用 62
6.1 動機 62
6.2 自然氧化方式形成異質結構作為水分解應用 63
6.2.1 元件之製備與封裝 63
6.2.2 元件表面分析 64
6.2.3 光電化學水分解表現 65
6.3 直接成長法優化水分解元件 66
6.3.1 直接成長法製程設計 66
6.3.2 溫度效應對水分解表現影響 69
6.3.3 研究石墨烯存在之元件表現差異 72
6.3.4 元件之穩定度量測 74
6.4 結論 76
Chapter 7 總結與未來展望 78
參考文獻 80
參考文獻

[1]Robert J. Young, Ian A. Kinloch, Lei Gong, Kostya S. Novoselov, "The mechanics of graphene nanocomposites: A review," Composites Science and Technology, 72, (2012), 1459-1476.
[2]Wallace, Philip Richard. "The band theory of graphite." Physical Review 71.9 (1947): 622.
[3]Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nature materials 6.3 (2007): 183-191.
[4]Bolotin, Kirill I., et al. "Ultrahigh electron mobility in suspended graphene." Solid State Communications 146.9 (2008): 351-355
[5]Nair, R. R., et al. "Fine structure constant defines visual transparency of graphene." Science 320.5881 (2008): 1308-1308.
[6]Hanns-Peter Boehm, Ralph Setton, and Eberhard Stumpp, "Nomenclature and terminology of graphite intercalation compounds," (1994).
[7]Nathan P. Guisinger and Michael S. Arnold, "beyond silicon carbon-based nanotechnology," MRS BULLETIN, VOLUME 35, April, 2010
[8]F. Schwierz, Proceedings of the Ieee, 2013, 101, 1567-1584.
[9]S. Bae, S. J. Kim, D. Shin, J.-H. Ahn and B. H. Hong, Physica Scripta, 2012, T146.
[10]W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen and S.-S. Pei, Sensors and Actuators B-Chemical, 2010, 150, 296-300.
[11]Fang Liu, Pingbing Ming, Ju Li, "Ab initio calculation of ideal strength and phonon instability of graphene under tension," PHYSICAL REVIEW B, 76, 064120 , 2007, 064120.
[12]Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," SCIENCE, VOL 321, 18, JULY, 2008.
[13]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," nature materials, VOL 6, SEPTEMBER, 2007.
[14]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, Volume 81, JANUARY–MARCH 2009.
[15]A. K. Geim, "Graphene: Status and Prospects," Science, VOL 324, 19 JUNE, 2009.
[16]Zhang, Yuanbo, et al. "Experimental observation of the quantum Hall effect and Berry''s phase in graphene." Nature 438.7065 (2005): 201-204.
[17]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Vol 438, 10 November, 2005.
[18]Korzhavyi, Pavel A., and Börje Johansson. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation. Swedish Nuclear Fuel and Waste Management Company, 2011.
[19]Han, Kunhee. "Electrodeposited Cuprous Oxide Solar Cells." (2010).
[20]Golden, Teresa D., et al. "Electrochemical deposition of copper (I) oxide films."Chemistry of Materials 8.10 (1996): 2499-2504.
[21]Marabelli, F., G. B. Parravicini, and F. Salghetti-Drioli. "Optical gap of CuO."Physical Review B 52.3 (1995): 1433.
[22]Jeong, SeongHo. Thin zinc oxide and cuprous oxide films for photovoltaic applications. Diss. UNIVERSITY OF MINNESOTA, 2010.
[23]Dodoo-Arhin, David. Nanostructured Copper Oxides: Production and Applications. Diss. University of Trento, 2010.
[24]Siripala, Withana, et al. "A Cu 2 O/TiO 2 heterojunction thin film cathode for photoelectrocatalysis." Solar Energy Materials and Solar Cells 77.3 (2003): 229-237.
[25]Akimoto, K., et al. "Thin film deposition of Cu 2 O and application for solar cells." Solar energy 80.6 (2006): 715-722.
[26]Shahrestani, Seyed Mohammad. Electro Deposition of Cuprous Oxide for Thin Films Solar Cell Applications. Diss. École Polytechnique de Montréal, 2013.
[27]Wood, Bernard J., Henry Wise, and Robert S. Yolles. "Selectivity and stoichiometry of copper oxide in propylene oxidation." Journal of Catalysis 15.4 (1969): 355-362.
[28]Du, Pingwu, and Richard Eisenberg. "Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges." Energy & Environmental Science 5.3 (2012): 6012-6021.
[29]Kibria, Md Golam. "Solar Water Splitting: A Step Towards Carbon-Free Energy and Environment."
[30]Lewis, Nathan S., and Daniel G. Nocera. "Powering the planet: Chemical challenges in solar energy utilization." Proceedings of the National Academy of Sciences 103.43 (2006): 15729-15735.
[31]Ran, Jingrun, et al. "Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting." Chemical Society Reviews 43.22 (2014): 7787-7812.
[32]Johnston, Brenda, Michael C. Mayo, and Anshuman Khare. "Hydrogen: the energy source for the 21st century." Technovation 25.6 (2005): 569-585.
[33]Nozik, A. J. "Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion." Inorganic chemistry 44.20 (2005): 6893-6899.
[34]Barber, James. "Photosynthetic energy conversion: natural and artificial."Chemical Society Reviews 38.1 (2009): 185-196.
[35]Eisenberg, Richard, and Daniel G. Nocera. "Preface: Overview of the forum on solar and renewable energy." Inorganic chemistry 44.20 (2005): 6799-6801.
[36]Faber, Matthew S., and Song Jin. "Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications." Energy & Environmental Science 7.11 (2014): 3519-3542.
[37]Liao, Chi-Hung, Chao-Wei Huang, and Jeffrey Wu. "Hydrogen production from semiconductor-based photocatalysis via water splitting." Catalysts 2.4 (2012): 490-516.
[38]Blankenship, Robert E., et al. "Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement." science 332.6031 (2011): 805-809.
[39]Abdi, Fatwa Firdaus. Towards highly efficient bias-free solar water splitting. TU Delft, Delft University of Technology, 2013.
[40]Sukang Bae1, Sang Jin Kim1, Dolly Shin, Jong-Hyun Ahn and Byung Hee Hong. "Towards industrial applications of graphene electrodes," Phys. Scr. T146 (2012) 014024 (8pp)C. D. Jones, A. B. Smith, and E.F. Roberts, Book Title, Publisher, Location, Date.
[41]Brodie, B. C. "Sur le poids atomique du graphite." Ann. Chim. Phys 59.466 (1860): e472.
[42]Staudenmaier, L. "Verfahren zur darstellung der graphitsäure." Berichte der deutschen chemischen Gesellschaft 31.2 (1898): 1481-1487.
[43]Hummers Jr, William S., and Richard E. Offeman. "Preparation of graphitic oxide." Journal of the American Chemical Society 80.6 (1958): 1339-1339.
[44]Compton, Owen C., and SonBinh T. Nguyen. "Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials." small 6.6 (2010): 711-723.
[45]Schniepp, Hannes C., et al. "Functionalized single graphene sheets derived from splitting graphite oxide." The Journal of Physical Chemistry B 110.17 (2006): 8535-8539.
[46]McAllister, Michael J., et al. "Single sheet functionalized graphene by oxidation and thermal expansion of graphite." Chemistry of materials 19.18 (2007): 4396-4404.
[47]Shin, Hyeon‐Jin, et al. "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance." Advanced Functional Materials 19.12 (2009): 1987-1992.
[48]Pei, Songfeng, and Hui-Ming Cheng. "The reduction of graphene oxide." Carbon50.9 (2012): 3210-3228.
[49]Forbeaux, I., J-M. Themlin, and J-M. Debever. "High-temperature graphitization of the 6H-SiC (0001) face." Surface science 442.1 (1999): 9-18.
[50]Johansson, L. I., Fredrik Owman, and Per Mårtensson. "High-resolution core-level study of 6H-SiC (0001)." Physical Review B 53.20 (1996): 13793.
[51]Avouris, Phaedon, and Christos Dimitrakopoulos. "Graphene: synthesis and applications." Materials today 15.3 (2012): 86-97.
[52]Gaskill, D. Kurt, et al. "Epitaxial graphene growth on SiC wafers." ECS Transactions 19.5 (2009): 117-124.
[53]Bhaviripudi, Sreekar, et al. "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst." Nano letters10.10 (2010): 4128-4133.
[54]Yu, Qingkai, et al. "Graphene segregated on Ni surfaces and transferred to insulators." Applied Physics Letters 93.11 (2008): 113103.
[55]Li, Xuesong, et al. "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324.5932 (2009): 1312-1314.
[56]Wang, Kai. "Laser Based Fabrication of Graphene, Advances in Graphene Science, Dr. M. Aliofkhazraei (Ed.), ISBN: 978-953-51-1182-5." InTech, DOI 10 (2013): 55821.
[57]Lee, Youngbin, et al. "Wafer-scale synthesis and transfer of graphene films."Nano letters 10.2 (2010): 490-493.
[58]Li, Xuesong, et al. "Transfer of large-area graphene films for high-performance transparent conductive electrodes." Nano letters 9.12 (2009): 4359-4363.
[59]Suk, Ji Won, et al. "Transfer of CVD-grown monolayer graphene onto arbitrary substrates." ACS nano 5.9 (2011): 6916-6924.
[60]Bae, Sukang, et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotechnology 5.8 (2010): 574-578.
[61]Wang, Yu, et al. "Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst." ACS nano 5.12 (2011): 9927-9933.
[62]de la Rosa, César J. Lockhart, et al. "Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu." Applied Physics Letters 102.2 (2013): 022101.
[63]Wang, Di‐Yan, et al. "Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films." Advanced Materials 25.32 (2013): 4521-4526.
[64]Gupta, Priti, et al. "A facile process for soak-and-peel delamination of CVD graphene from substrates using water." Scientific reports 4 (2014).
[65]Cherian, Christie Thomas, et al. "‘Bubble‐Free’Electrochemical Delamination of CVD Graphene Films." Small 11.2 (2015): 189-194.
[66]Liu, Rui, et al. "Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers." Energy & Environmental Science 7.8 (2014): 2504-2517.
[67]Bard, Allen J., and Mark S. Wrighton. "Thermodynamic Potential for the Anodic Dissolution of n‐Type Semiconductors A Crucial Factor Controlling Durability and Efficiency in Photoelectrochemical Cells and an Important Criterion in the Selection of New Electrode/Electrolyte Systems." Journal of the Electrochemical Society 124.11 (1977): 1706-1710.
[68]Gerischer, H. "On the stability of semiconductor electrodes against photodecomposition." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 82.1 (1977): 133-143.
[69]Chen, Shiyou, and Lin-Wang Wang. "Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution." Chemistry of Materials 24.18 (2012): 3659-3666.
[70]Zhang, Zhonghai, et al. "Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction." Acs Nano 7.2 (2013): 1709-1717.
[71]Tran, Phong D., et al. "A cuprous oxide–reduced graphene oxide (Cu 2 O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu 2 O." Nanoscale 4.13 (2012): 3875-3878.
[72]Paracchino, Adriana, et al. "Highly active oxide photocathode for photoelectrochemical water reduction." Nature materials 10.6 (2011): 456-461.
[73]Morales-Guio, Carlos G., et al. "Hydrogen evolution from a copper (I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst."Nature communications 5 (2014).
[74]Ran, Jingrun, et al. "Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting." Chemical Society Reviews 43.22 (2014): 7787-7812.
[75]Zhao, Yu-Fei, et al. "Cu2O decorated with cocatalyst MoS2 for solar hydrogen production with enhanced efficiency under visible light." The Journal of Physical Chemistry C 118.26 (2014): 14238-14245.
[76]Ni, Z. H., et al. "Graphene thickness determination using reflection and contrast spectroscopy." Nano letters 7.9 (2007): 2758-2763.
[77]Blake, P., et al. "Making graphene visible." Applied Physics Letters 91.6 (2007): 063124.
[78]Tang, Bo, Hu Guoxin, and Hanyang Gao. "Raman spectroscopic characterization of graphene." Applied Spectroscopy Reviews 45.5 (2010): 369-407.
[79]Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers."Physical review letters 97.18 (2006): 187401.
[80]Li, Xuesong, et al. "Evolution of graphene growth on Ni and Cu by carbon isotope labeling." Nano letters 9.12 (2009): 4268-4272.
[81]Bertolazzi, Simone, et al. "Exploring flatland: AFM of mechanical and electrical properties of graphene, MoS2 and other low-dimensional materials." Microsc. Anal 27 (2013): 21-24.
[82]Lasia, Andrzej. "Electrochemical impedance spectroscopy and its applications." Modern aspects of electrochemistry. Springer US, 2002. 143-248.
[83]Luo, Zhengtang, et al. "Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure."Chemistry of Materials 23.6 (2011): 1441-1447.
[84]Van Gils, S., et al. "Electropolishing of copper in H3PO4 ex situ and in situ optical characterization." Journal of The Electrochemical Society 154.3 (2007): C175-C180.
[85]Kidambi, Piran R., et al. "The parameter space of graphene chemical vapor deposition on polycrystalline Cu." The Journal of Physical Chemistry C 116.42 (2012): 22492-22501.
[86]Regmi, Murari, Matthew F. Chisholm, and Gyula Eres. "The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu." Carbon 50.1 (2012): 134-141.
[87]Bhaviripudi, Sreekar, et al. "Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst." Nano letters10.10 (2010): 4128-4133.
[88]Chen, Shanshan, et al. "Oxidation resistance of graphene-coated Cu and Cu/Ni alloy." ACS nano 5.2 (2011): 1321-1327.
[89]Zhou, Feng, et al. "Enhanced room-temperature corrosion of copper in the presence of graphene." ACS nano 7.8 (2013): 6939-6947.
[90]Roy, Susmit Singha, and Michael S. Arnold. "Improving graphene diffusion barriers via stacking multiple layers and grain size engineering." Advanced Functional Materials 23.29 (2013): 3638-3644.
[91]Fujishima, Akira. "Electrochemical photolysis of water at a semiconductor electrode." nature 238 (1972): 37-38.
[92]Walter, Michael G., et al. "Solar water splitting cells." Chemical reviews 110.11 (2010): 6446-6473.
[93]Grätzel, Michael. "Photoelectrochemical cells." Nature 414.6861 (2001): 338-344.
[94]Eberle, Ulrich, Bernd Müller, and Rittmar von Helmolt. "Fuel cell electric vehicles and hydrogen infrastructure: status 2012." Energy & Environmental Science 5.10 (2012): 8780-8798.
[95]Xu, Shiping, et al. "Highly efficient TiO 2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water."International Journal of Hydrogen Energy 36.11 (2011): 6538-6545.
[96]Apte, Sanjay K., et al. "A Facile Template‐Free Approach for the Large‐Scale Solid‐Phase Synthesis of CdS Nanostructures and Their Excellent Photocatalytic Performance." Small 7.7 (2011): 957-964.
[97]Sivula, Kevin, Florian Le Formal, and Michael Grätzel. "WO3− Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach."Chemistry of Materials 21.13 (2009): 2862-2867.
[98]Xu, Shiping, et al. "Highly efficient CuO incorporated TiO 2 nanotube photocatalyst for hydrogen production from water." International Journal of Hydrogen Energy 36.11 (2011): 6560-6568.
[99]Li, Mingtao, Liang Zhao, and Liejin Guo. "Preparation and photoelectrochemical study of BiVO 4 thin films deposited by ultrasonic spray pyrolysis."international journal of hydrogen energy 35.13 (2010): 7127-7133.
[100]Zhang, Xiao-Yan, et al. "Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting." J. Mater. Chem. 20.14 (2010): 2801-2806.
[101]Radi, Abdullah, et al. "Nanoscale Shape and Size Control of Cubic, Cuboctahedral, and Octahedral Cu− Cu2O Core− Shell Nanoparticles on Si (100) by One-Step, Templateless, Capping-Agent-Free Electrodeposition." ACS nano 4.3 (2010): 1553-1560.
[102]De Jongh, P. E., D. Vanmaekelbergh, and J. J. D. Kelly. "Photoelectrochemistry of Electrodeposited Cu2 O." Journal of The Electrochemical Society 147.2 (2000): 486-489.
[103]Li, Benxia, et al. "A facile one-pot synthesis of Cu 2 O/RGO nanocomposite for removal of organic pollutant." Journal of Physics and Chemistry of Solids 74.4 (2013): 635-640.
[104]Shen, Bo, et al. "Cu2O immobilized on reduced graphene oxide for the photocatalytic treatment of red water produced from the manufacture of TNT."Desalination and Water Treatment 54.2 (2015): 540-546.
[105]Zhigang, Niu. "Reduced graphene oxide-cuprous oxide hybrid nanopowders: Hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation." Materials Science in Semiconductor Processing 23 (2014): 78-84.
[106]De Jongh, P. E., D. Vanmaekelbergh, and J. J. Kelly. "Cu2O: electrodeposition and characterization." Chemistry of materials 11.12 (1999): 3512-3517.
[107]Dubale, Amare Aregahegn, et al. "Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction." Journal of Materials Chemistry A 3.23 (2015): 12482-12499.
[108]Liu, Xun, et al. "Segregation growth of graphene on Cu–Ni alloy for precise layer control." The Journal of Physical Chemistry C 115.24 (2011): 11976-11982.
[109]Dubale, Amare Aregahegn, et al. "Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction." Journal of Materials Chemistry A 3.23 (2015): 12482-12499.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊