跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹中亞
研究生(外文):Chung-Ya Tsao
論文名稱:以固相法製備介電Ba5Nb4O15及其燒結行為與微波電性
論文名稱(外文):Sintering Behavior and Microwave Property of Ba5Nb4O15 Dielectric Material and its Preparation
指導教授:段維新段維新引用關係
口試日期:2017-07-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:146
中文關鍵詞:微波Ba5Nb4O15層狀鈣鈦礦相異方性晶粒成長晶體結構化學機械性優選方向液相燒結
外文關鍵詞:microwaveBa5Nb4O15layered perovskiteanisotropic grain growthstructuremechanochemicalpreferred orientationliquid phase sintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
固相反應製程技術是目前製造介電陶瓷材料的生產方法之一。在眾多微波介電質材料中, Ba5Nb4O15具有高電介質以及低損失特性,可用於低溫共燒陶瓷技術(Low Temperature Cofiring Ceramic Technology)的選擇材料之一。本研究將分三種方向探討Ba5Nb4O15材料與固相反應製程之關聯及影響。
第一階段是探討陽離子空缺型Ba5Nb4O15材料的高溫燒結行為,在無施加壓力的條件下,最高燒結密度僅能達到理論值的93%,當燒結溫度高於1250°C,密度將隨燒結溫度提升而逐漸下降,此去燒結現象來自於燒結溫度高於1250°C晶粒開始異常成長以及溫度高於1350°C後,鈮離子還原反應所造成。雖然微波特性的介質常數下降,但是品質因子卻可以提高到40,000以上,其原因與鈣鈦礦結構中陽離子晶格有序化程度有強烈的關聯性。
第二階段是探討Ba5Nb4O15粉末在研磨過程中的機械化學行為。在無球磨粉碎條件下,品質因子可以提高至40,000以上,但是研磨後鋇離子溶出晶格體,產生的BaCO3結晶物質析出於水系漿料中,燒結後密度以及品質因子明顯下降。由於微觀結構的燒結晶粒成長具有優選方向,利用X-ray繞射極圖分析以及EBSD方法確認(0 0 5)為優選結晶面,與前次實驗相同,米勒指數 (0 1 13)平面的有序化程度與品質因子有強烈的關聯性。
最後階段則是研究少量添加物質CuO以及B2O3的低溫助燒結行為,大幅度地降低燒結溫度達400°C以上,可以將此組成用於與銀共燒結的積層陶瓷結構中,並且無銀擴散反應的現象,由微觀結構分析確認經過研磨製程也會產生BaCO3析出物質。
Solid state reaction technique is one of the methods to prepare dielectric ceramic materials. A potential microwave ceramic, Ba5Nb4O15, is the potential candidate of LTCC material. Its microwave dielectric exhibits high permittivity and low loss characteristics. The present study investigates three aspects of this microwave ceramic.
The sintering behavior of the cation-deficient perovskite, Ba5Nb4O15, is investigated in the first part. The highest density can be achieved through pressureless sintering is only 93%. The low sintered density is related to a density decrease, de-sintering, at a sintering temperature above 1250°C. Such de-sintering is contributed by the formation of abnormal grains (>1250°C) and the reduction of niobium ions (>1350°C). Though the permittivity of sintered Ba5Nb4O15 is lower after sintering at a temperature higher than 1400°C, its quality factor is higher than 40,000. The increase in quality factor shows a strong dependence on the cation ordering in the perovskite structure.
The mechanochemical behavior during the milling of Ba5Nb4O15 powder is investigated in the second part. Maximum quality factor >40,000 can be achieved without ball milling. After milling, the precipitated BaCO3 from water base slurry reduces the sintered density, degrades the quality factor. Such precipitate is formed due to the leaching of barium ion from lattice structure. Through the pole figure analysis, the Ba5Nb4O15 (0 0 5) plane is the preferred oriented growth plane. The ordering of plane (0 1 13) shows a strong influence on the quality factor of Ba5Nb4O15 after mechanical treatment.
The last part focus on the effect of a small amount of additives CuO and B2O3 on the sintering behavior. The sintering temperature is reduced by almost 400oC. The cofiring with silver metal to form multilayered structure is then possible. No silver migration is observed when cofire with silver metal. The microstructure analysis confirms the BaCO3 is also formed as resulted from the use of milling process.
Content
口試委員審定書 ……………………………………………………………………………………i
誌謝…….………………………………………………………………………………………….... ii
中文摘要………………………………………………………………………………………….iii
Abstract……………………………………………………………………………………………iv
List of Figures……………………………………………………………………………………viii
List of Tables………………………………………………………………………………………xiii
Chapter 1: Introduction…………………………………………………………………………… 1
Chapter 2: Literary survey…………………………………………………………………………2
2.1 Ba5Nb4O15 crystal structure…………………………………………………………..3
2.2 Homogenization of chemical composition with synthesis technology………………6
2.3 Densification by liquid phase sintering………………………………………………9
2.4 Polarization of Ba5Nb4O15 dielectric properties under microwave frequency……….14
2.4.1 Hakki-Coleman method…………………………………………………………18
2.4.2 Cavity resonate method…………………………………………………………20
2.4.3 Mathematical calculation of permittivity and quality factor………………........23
2.5 Ordering Structure of high quality factor…………………………………………….26
Chapter 3: Sintering Behavior and Microwave Properties of Ba5Nb4O15.........................................27
3.1 Introduction………………………………………………………………………….27
3.2 Experimental method………………………………………………………………..30
3.2.1 Raw material preparation…………………………………………….31
3.2.2 Experimental flow chart and procedure…………………………..… 32
3.3 Result…………………………………………………………………………….… 35
3.3.1 Weight loss characteristic……………………………………….……35
3.3.2 Sintering density degradation……………………………………..… 39
3.3.3 Microstructure and X-ray diffraction……………………………..… 41
3.3.4 XPS analysis………………………………………………………….52
3.3.5 Microwave characteristic: permittivity and quality factor……………55
3.4 Discussion……………………………………………………………………………57
3.4.1 De-sintering phenomena………………………………………………57
3.4.2 Reduction of Ba5Nb4O15………………………………………………59
3.4.3 Sintering density vs. microwave characteristic………………………..62
3.4.4 Ordering of cation and quality factor…………………………………63
3.5 Conclusion……………………………………………………………………………67
Chapter 4: Mechanochemical Property of Ba5Nb4O15………………………………………………68
4.1 Introduction……………………………………………………………………………68
4.2 Experimental method………………………………………………………………….69
4.2.1 Raw material preparation………………………………………………...69
4.2.2 Experimental flow chart and procedure……………………………… …70
4.3 Result…………………………………………………………………………………..73
4.3.1 Milling ability of Ba5Nb4O15 powder……………………………………73
4.3.2 Leaching phenomena…………………………………………………….77
4.3.3 Interaction with water of milled Ba5Nb4O15 ……………………………79
4.3.4 Anisotropic grain growth……………………………………………..…82
4.3.5 Weight loss of sintered Ba5Nb4O14……………………………………..86
4.3.6 Microwave characteristic……………………………………………….87
4.4 Discussion……………………………………………………………………………..91
4.4.1 Barium dissociation from lattice site……………………………………91
4.4.2 Microstructure vs. Composition………………………….……………..93
4.4.3 Preferred orientation plane by XRD pole figure identification…………96
4.4.4 TEM lattice plane identification………………………………………..99
4.4.5 Preferred orientation plane by EBSD identification…………………..106
4.4.6 Microwave characteristic of milled Ba5Nb4O15……………………….108
4.5 Conclusion…………………………………………………………………………..110
Chapter 5: Liquid Phase Sintering of Ba5Nb4O15…………………………………………………111
5.1 Introduction…………………………………………………………………………..111
5.2 Experimental method…………………………………………………………………113
5.2.1 Raw material preparation………………………………………………113
5.2.2 Experimental flow chart and procedure………………………………...113
5.3 Result and Discussion………………………………………………………………...116
5.3.1 CuO and B2O3 sintering additives……………………………………..116
5.3.2 Influence of milling process……………………….........……………...118
5.3.3 Co-firing with silver metal and microstructure………………………..122
5.3.4 Electrical properties of low firing Ba5Nb4O15…………………………129
5.4 Conclusion……………………………………………………………………………131
Chapter 6: Conclusion…………………………………………………………………………….132
Chapter 7: Future Work……………………………………………………………………………134
Appendix…………………………………………………………………………………………..135
Reference…………………………………………………………………………………………..136
Reference:

1.K. Wakino, “Recent development of dielectric resonator materials and filters in Japan” Ferroelectrics., 91,69-86 (1989).
2.Y. Higuchi, H. Tamura, “Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies” J. Eur. Ceram. Soc., 23 2683-88 (2003).
3.I.M. Reaney, D. Iddles, “Microwave dielectric ceramics for resonators and filters in mobile phone networks” J. Am. Ceram. Soc., 89 [7] 2063–2072 (2006).
4.A.M. Srivastava and J.F. Ackerman, “On the Luminescence of Ba5M4O15 (M=Ta+5, Nb+5)” J. Solid State Chem., 134 [1] 187–91 (1997).
5.D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong, “Microwave dielectric properties of low-fired Ba5Nb4O15” J. Am. Ceram. Soc., 85 [11] 2759-62 (2002).
6.C.Y. Tsao, W.H. Tuan, K.C. Feng, “De-sintering of Ba5Nb4O15 ceramic and its influence on microwave characteristics” J. Eur. Ceram. Soc., 37,1517–1521 (2017).
7.R. J. Cava, “Dielectric materials for applications in microwave communications” J. Mater. Chem., 11, 54-62 (2001).
8.M. Weiden, A. Grauel, J. Norwig, S. Horn, F. Steglich, “Crystalline structure of the strontium niobates Sr4Nb2O9 and Sr5Nb4O15” J. Alloys and Comp., 218,13-16 (1995).
9.F. Galasso and L. Katz, “Preparation and structure of Ba5Ta4O15 and related compounds” Acta Cryst., 14, 647-650 (1961).
10.Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry and K. Zhu, “Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys” Chem. Mater., 28, 284−292 (2016).
11.S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vane, P. Kuzˇel, I. N. Jawahar, M.T. Sebastian and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics”, J. Appl. Phys., 89[7] 3900-3906 (2001)
12.H. Sreemoolanadhan, J. Isaac, S. Solomon, M.T Sebastian, K.A Jose and P. Mohanan, “Dielectric properties of Ba5Nb4O15 ceramics. Phys. Stat. Sol., 143, K45-48 (1994).
13.D.W Kim, H.J Youn, K.S Hong, C.K Kim, “Microwave dielectric properties of (1-x)Ba5Nb4O15-xBaNb2O6 mixtures” Jpn. J. Appl. Phys. 41,3812-3816 (2002).
14.D.W Kim, B.K Kim, H.J Je, and J.G Park, “Degradation mechanism of dielectric loss in barium niobate under a reducing atmosphere” J. Am. Ceram. Soc., 89 [10] 3302–3304 (2006).
15.Richard C. Ropp, “Encyclopedia of the Alkaline Earth Compounds”, P753, 2013
16.D.W Kim, K.S Hong, C.S. Yoon, C.K Kim, “Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15–BaNb2O6 mixtures for LTCC applications” J. Eur. Ceram. Soc., 23, 2597–2601 (2003).
17.G.H Chen, B. Qi, “Barium niobate formation from mechanically activated BaCO3-Nb2O5 mixtures” J. Alloys Compd., 425, 395-398 (2006).
18.C.A Kumar, D. Pamu, S. Josephine, “Impedance spectroscopy, broadband, and microwave dielectric properties of mechanically alloyed Ba5Nb4O15 ceramics” Int. J. Appl. Ceram. Technol., 13 [3], 554-563 (2016).
19.Suk-Joong L. Kang “Sintering: densification, grain growth, and microstructure” Elsevier Ltd. (2005) ISBN 978-0-7506-6385-4.
20.W. D. Kingery, “Densification during sintering in the presence of a liquid phase. I. Theory” J. Appl. Phys., 30 [3] 301-306 (1959)
21.R.M German, P. Suri and S.J Park, “Review: liquid phase sintering” J. Mater. Sci., 44, 1–39 (2009).
22.J. Svoboda, H. Riedel and R. Gaebel, “A model for liquid phase sintering” Acta mater., 44 [8] 3215-3226 (1996).
23.M. Kahlweit, “Ostwald ripening of precipitated” Adv. Colloid Interface Sci., 5, 1-35 (1975).
24.I. M. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions” J. Phys. Chem. Solids, 19 [1/2] 35-50 (1961).
25.M. Hillert, O. Hunderi, N. Ryum and T.O. Satre, “A comment on the Lifshitz-Slyozov-Wagner (L-S-W) theory of particle coarsening” Scripta Metallurgica., 23, 1979-1982 (1989).
26.H. Zhuang, Z.X Yue, F. Zhao and L.T Li, “Low-Temperature sintering and microwave dielectric properties of Ba5Nb4O15–BaWO4 composite ceramics for LTCC applications” J. Am. Ceram. Soc., 91 [1] 1–5 (2008).
27.H. Zhou, H. Wang, M.H Zhang and H.B Yang, “Microwave dielectric properties and compatibility with silver of low-fired Ba5Nb4O15 ceramics by BaCu(B2O5) addition” J. Mater. Res., 25 [9] 1793-1798 (2010).
28.C.A Kumar and D. Pamu, “Microwave dielectric properties of low temperature fired Ba5Nb4O15 - BaWO4 ceramics supplemented with their own nanoparticles for LTCC applications” Int. J Appl. Ceram. Technol., 14, 191–199 (2017).
29.M.M. Seabaugh, I.H. Kerscht and G.L. Messing, “Texture development by templated grain growth in liquid-phase-sintered α-Alumina” J. Am. Ceram. Soc., 80 [5] 1181–88 (1997).
30.E. A. Holm, G. N. Hassold and M. A. Miodownik, “On misorientation distribution evolution during anisotropic grain growth” Acta mater., 49, 2981–2991 (20010).
31.L.F Chen, V.V. Varadan, C.K. Ong and C.P Neo, "Microwave theory and techniques for materials characterization". Microwave electronics. Wiley. (2004) ISBN 0-470-84492-2.
32.L.Z Cao and D.M Cao, “A modified formula for microwave measurement of dielectric loss using a closed cylindrical cavity dielectric resonator” Progress in Electromagnetics Research Letters, 49, 39–44 (2014).
33.Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method” IEEE Tran Microwave Theory Tech. MTT-33, 586-592 (1985).
34.Y. Kobayashi and S. Tanaka, “Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates” IEEE Tran Microwave Theory Tech. MTT-28, 1077-1085 (1980).
35.B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range” IRE Tran Microwave Theory Tech., MTT-8, 403-410 (1960).
36.J. Sheen, “Comparisons of microwave dielectric property measurements by transmission /reflection techniques and resonance techniques” Meas. Sci. Technol., 20, 042001-12 (2009).
37.小林禧夫 銅張りプリント配線基板のマイクロ波/ミリ波特性と実測例, RFワーヅレド No.12, 57-69.
38.JIS R1627:1996 “Testing method for dielectric properties of fine ceramics at microwave frequency”
39.IEC 61338-1-3:1999 “Waveguide type dielectric resonators - Part 1-3: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency”
40.J. Krupka, “Frequency domain complex permittivity measurements at microwave frequencies” Meas. Sci. Technol. 17, R55–R70 (2006).
41.H. Tamura, K. Konoike, Y. Sakabe and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure” Communication Am. Ceram. Soc., 67 [4] C59-61 (1984).
42.M.W. Lufaso and P.M. Woodward, “Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites” Acta Cryst., B60, 10-20 (2006).
43.P.M. Woodward, “Octahedral tilting in perovskites. I. Geometrical considerations” Acta Cryst., B53, 32-43 (1997).
44.P.M. Woodward, “Octahedral tilting in perovskites. II. Structure stabilizing forces” Acta Cryst., B53, 44-46 (1997).
45.A.M. Glazer, “The Classification of tilted octahedra in perovskites” Acta Cryst., B28, 3384 -3392 (1972).
46.R. J. Cernik, M. Barwick, F. Azough and R. Freer, “A synchrotron X-ray study of structural ordering in the microwave dielectric ceramic system: Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3” J. Appl. Cryst., 40, 749–755 (2007).
47.J.L. Hutchison, A.J. Jacobson, “Electron microscopy of the perovskite-related phases 4H Ba0.1Sr0.9MnO2.96 5H Ba5Nb4O15 and 6H BaFeO2.79” J. Solid State Chem., 20, 417-422 (1977).
48.G. Trolliard, N. Teneze, Ph. Boullay, M. Manier and D. Mercurio, “HRTEM study of cation-deficient perovskite-related AnBn-δO3n (n>=4δ) microphases in the Ba5Nb4O15–BaTiO3 system” J. Solid State Chem., 173, 91-100 (2003).
49.M. Grundner, J. Halbritter, “XPS and AES studies on oxide growth and oxide coatings on niobium” J. App. Phys., 51, 397-405 (1981).
50.P.P Ma, H. Gu and X.M Chen, “Determination of 1:2 ordered domain boundaries in Ba[(Co, Zn, Mg)1/3Nb2/3]O3 dielectric ceramics” J. Am. Ceram. Soc., 99 [4] 1299-1304 (2016).
51.P.K. Davies and J.Z Tong, “Effect of ordering-Induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics” J. Am. Ceram. Soc., 80 [7] 1727-1740 (1997).
52.F. Azough, R. Freer, D. Iddles, T. Shimada, B. Schafferd, “The effect of cation ordering and domain boundaries on low loss Ba(BI1/3BII2/3)O3 perovskite dielectrics revealed by high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM)” J. Eur. Ceram. Soc., 34, 2285–2297 (2014).
53.Qi. Ma, P. Ryan, J. W. Freeland and R. A. Rosenberg, “Thermal effect on the oxides on Nb (100) studied by synchrotron-radiation x-ray photoelectron spectroscopy” J. Appl. Phys., 96[12] 7675-7680 (2004).
54.B.A. Sexton, A.E. Hughes and K. Foger, “XPS investigation of strong metal-support interactions on group Illa-Va oxides” J. Catal., 77, 85-93 (1982).
55.S. Kimura, “Phase equilibria in the system NbO2-Nb2O5 : Phase relations at 1300 and 1400oC and related thermodynamic treatment” J. Sol. Stat. Chem., 6, 438-449 (1973).
56.C.T Lee, C.C Ou, Y.C Lin, C.Y Huang, C.Y Su, “Structure and microwave dielectric property relations in (Ba1−xSrx)5Nb4O15 system” J. Eur. Ceram. Soc., 27, 2273–2280 (2007).
57.Y.C Liou, W.H Shiu, C.Y Shih, “Microwave ceramics Ba5Nb4O15 and Sr5Nb4O15 prepared by a reaction-sintering process” Mater. Sci. Eng., B131, 142–146 (2006).
58.W.D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction of ceramics - 2nd edition” Wiley Co., ISBN: 978-0-471-47860-7
59.S.C. Hansen and D.S. Phillips, “Grain boundary microstructures in a liquid-phase sintered alumina (α-Al2O3)” Philos. Mag., A47 [2] 209-234 (1983).
60.S. Stemmer, G. Roebben and O. van der Biest, “Evolution of grain boundary films in liquid phase sintered silicon nitride during high-temperature testing” Acta mater., 46[15] 5599-5606 (1998).
61.W. Rheinheimer and M.J. Hoffmann, “Grain growth in perovskites: What is the impact of boundary transitions?” Curr. Opin. Solid State Mater. Sci., 20, 286–298 (2016).
62.E.Z. Kurmaev, A. Moewes, O.G. Bureev, I.A. Nekrasov, V.M. Cherkashenko, M.A. Korotin, D.L. Edererd, “Electronic structure of niobium oxides” J. Alloys and Comp., 347, 213–218 (2002).
63.C. Vineis, P.K Davies, T. Negas, S. Bell, “Microwave dielectric of hexagonal perovskites” Mater. Res. Bull., 131[5] 431-37 (1996).
64.I.N Jawahar, M.T Sebastian, P. Mohanan, “Microwave dielectric properties of Ba5-xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4−xO15 ceramics” Mater. Sci. Eng., B106, 207–212 (2006).
65.I.T Kim, Y.H Kim, S.J Chung, “Order-disorder transition and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics” Jpn. J. Appl. Phys., 34[8] 4096-4103 (1995).
66.C.T Lee, Y.C Lin and C.Y Huang, “Cation ordering and dielectric characteristics in barium zinc niobate” J. Am. Ceram. Soc., 90 [2] 483–489 (2007).
67.S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, “Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies” J. Am. Ceram. Soc., 66[6] 421-423 (1983).
68.E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, H. Ohsato, “Order-disorder transition and its effect on microwave quality factor Q in Ba(Zn1/3Nb2/3)O3 system” J. Electroceram., 17, 375–379 (2006).
69.R. J. Cernik, M. Barwick, F. Azough and R. Freer, “A synchrotron X-ray study of structural ordering in the microwave dielectric ceramic system: Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3” J. Appl. Cryst., 40, 749–755 (2007).
70.D. Grebennikov,O. Ovchar, A. Belous and P. Mascher, “Application of positron annihilation and Raman spectroscopies to the study of perovskite structure” J. Appl. Phys., 108, 114109 (2010).
71.G. Trolliard, N. Te´ne`ze, Ph. Boullay, and D. Mercurio, “TEM study of cation-deficient-perovskite related AnBn-1O3n compounds: the twin-shift option” J. Solid State Chem., 177, 1188–1196 (2004).
72.R. Freer, F. Azough, “Microstructural engineering of microwave dielectric ceramics” J. Eur. Ceram. Soc., 28, 1433–1441 (2008).
73.I.N Jawahar, P. Mohanan and M.T Sebastian, “A5B4O15 (A=Ba,Sr,Mg,Ca,Zn; B=Nb,Ta) microwave dielectric ceramics” Mater. Lett. 57, 4043-4048 (2003).
74.P. Ferrer, M. Alguer´o and A. Castro, “Influence of the mechanochemical conditions on the processing of Bi4SrTi4O15 ceramics from submicronic powdered precursors” J. Alloys and Comp., 464, 252–258 (2008).
75.B. Itaalit, M. Mouyanen, J. Bernard, J.M Reboul and D. Houivet, “Improvement of microwave dielectric properties of Ba(Co0.7Zn0.3)1/3Nb2/3O3 ceramics prepared by solid-state reaction” Ceram. Int., 41, 1937–1942 (2015).
76.T. Wang, X.D Fang, W.W Dong, R.H Tao, Z.H Deng, D.L Li, Y.P Zhao, G. Meng, S. Zhou, X.B Zhu, “Mechanochemical effects on microstructure and transport properties of nanocrystalline La0.8Na0.2MnO3 ceramics” J. Alloys and Comp., 458, 248–252 (2008).
77.M. Senna, T. Kinoshita, Y. Abe, H. Kishi, C. Ando, Y. Doshida, B. Stojanovic, “Smart soft-mechanochemical syntheses of well-crystallized pure phase fine particulates of mixed oxides for electroceramics” J. Eur. Ceram. Soc., 27, 4301–4306 (2007).
78.B. Psiuk, J. Szade, R. Wrzalik, M. Osadnik, T. Wala, “Milling-induced phenomena in SrTiO3” Ceram. Int., 40, 6957–6961 (2014).
79.S.Y Noh, M.J Yoo, S. Nahm, C.H Choi, H.M Park and H.J Lee, “Effect of structural changes on the microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics” Jpn. J. Appl. Phys., 41[5] 2978–2981 (2002).
80.B.D. Stojanovic, “Mechanochemical synthesis of ceramic powders with perovskite structure” J. Mater. Process. Technol., 143-144, 78–81(2003).
81.G. Chen, J. Chen, L.J Liu, C. Srinivasakannan and J.H Peng, “Synthesis and Characterization of BaCO3 nanoparticles with different morphologies by microwave homogenous precipitation” High Temp. Mater. Proc., 32[1] 47–50 (2013).
82.L.C Tien, C.C Chou and D.S Tsai, “Ordered structure and dielectric properties of lanthanum-substituted Ba(Mg1/3Ta2/3)O3” J. Am. Ceram. Soc., 83[8] 2074–2078 (2000).
83.F. Lichtenberg , A. Herrnberger and K. Wiedenmann, “Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2,A’Ak-1BkO3k+1 and AmBm-1O3m” Prog. Solid State Chem., 36, 253-387 (2008).
84.M.A. Akbas and P.K. Davies, “Ordering-induced microstructures and microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 system” J. Am. Ceram. Soc., 81[3] 670–76 (1998).
85.L.G. Austin, “A commentary on the Kick, Bond and Rittinger laws of grinding” Powder Technol., 7, 315-317 (1973).
86.E.T. Stamboliadis, “The energy distribution theory of comminution specific surface energy, mill efficiency and distribution mode” Miner. Eng., 20, 140–145 (2007).
87.José M.F. Ferreira, S.M. Olhero, A. Kaushal, “Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate?” J. Eur. Ceram. Soc., 33, 2509-2517 (2013).
88.H. Tanaka, “Shape changes of spheroidal and rectangular grains driven by excess free energy” J. Eur. Ceram. Soc., 24, 2763-2768 (2004).
89.P. Boullay, N. Te´ne`ze, G. Trolliard, D. Mercurio and J.M. Perez-Mato, “Superspace description of the hexagonal perovskites in the system Ba5Nb4O15–BaTiO3 as modulated layered structures” J. Solid State Chem., 174, 209–220 (2003).
90.F. Hofmann et. al., “3D lattice distortions and defect structures in ion-implanted nano-crystals” Scientific Reports., 7:45993 (2017).
91.T.Lowe, F. Azough, R. Freer, “ The microstructure and microwave dielectric properties of ceramics in the system CaTiO3-Li0.5Nd0.5TiO3” J. Kor. Ceram. Soc., 40[4] 328-332 (2003).
92.E. Guilmeau, C. Henrist, T.S. Suzuki, Y. Sakka, D. Chateigne, D. Grossin and B. Ouladdiaf, “Texture of alumina by neutron diffraction and SEM-EBSD” Mater. Sci. Forum, 495-497, 1395-1400 (2005).
93.W.L Tzeng, H.W Yen, W.C Lin, S.J Shih, “Grain boundary engineering for improving conductivity of polycrystalline SrTiO3” Ceram. Int., 43, 2361–2367 (2017).
94.T.V. Kolodiazhnyi, A. Petric, G.P. Johari, A.G. Belous, “Effect of preparation conditions on cation ordering and dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics” J. Eur. Ceram. Soc., 22 2013–2021 (2002).
95.M.T. Sebastian and H. Jantunen, “Low loss dielectric materials for LTCC applications: a review” Int. Mater. Rev., 53, 57-90 (2008).
96.S. Sakamoto, H. Adachi, K. Kaneko, Y. Sugimoto and T. Takada, “Novel Low Temperature co-fired ceramic material system composed of dielectrics with different dielectric constants” Jpn. J. Appl. Phys., 52, 09KH03 (2013).
97.T. Takada, S. Nakao, M. Kojima and Y. Higuchi, “Development, analysis, and application of a glass–alumina-based self-constrained sintering low-temperature cofired ceramic” Int. J. Appl. Ceram. Technol., 4 [5] 398–405 (2007).
98.J.R Kim, D.W Kim, H.S Jung, K.S Hong, “Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15 with ZnB2O4 glass” J. Eur. Ceram. Soc., 26, 2105–2109 (2006).
99.N. Wang, C.L Liu, Y.B Wang, J.Z Cheng, J.Z Gong, H.F Zhou., “Microwave dielectric properties and compatibility with silver electrode of novel low-fired Ba4CuTi11O27 ceramic” Ceram. Int., 42, 15855–15860 (2016).
100.R.L Jia, H. Su, X.L Tang and Y.L Jing, “Effects of BaCu(B2O5) addition on sintering temperature and microwave dielectric properties of Ba5Nb4O15–BaWO4 ceramics” Chin. Phys., B23[4] 047801 (2014).
101.H. Ravash, L. Vanherpe, J. Vleugels, N. Moelans, “Three-dimensional phase-field study of grain coarsening and grain shape accommodation in the final stage of liquid-phase sintering” J. Eur. Ceram. Soc., 37, 2265–2275 (2017).
102.A. Kazaryan, B.R. Patton, S.A. Dregia, Y. Wang “On the theory of grain growth in systems with anisotropic boundary mobility” Acta Materialia., 50, 499–510 (2002).
103.X. Cui ,B. Li, J.H Shen, Y.H Wang and J. Zhou, “The co-fired behaviors between Ag and glass–ceramics materials in LTCC” J. Electroceram., 21, 541–544 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top