|
Reference:
1.K. Wakino, “Recent development of dielectric resonator materials and filters in Japan” Ferroelectrics., 91,69-86 (1989). 2.Y. Higuchi, H. Tamura, “Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies” J. Eur. Ceram. Soc., 23 2683-88 (2003). 3.I.M. Reaney, D. Iddles, “Microwave dielectric ceramics for resonators and filters in mobile phone networks” J. Am. Ceram. Soc., 89 [7] 2063–2072 (2006). 4.A.M. Srivastava and J.F. Ackerman, “On the Luminescence of Ba5M4O15 (M=Ta+5, Nb+5)” J. Solid State Chem., 134 [1] 187–91 (1997). 5.D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong, “Microwave dielectric properties of low-fired Ba5Nb4O15” J. Am. Ceram. Soc., 85 [11] 2759-62 (2002). 6.C.Y. Tsao, W.H. Tuan, K.C. Feng, “De-sintering of Ba5Nb4O15 ceramic and its influence on microwave characteristics” J. Eur. Ceram. Soc., 37,1517–1521 (2017). 7.R. J. Cava, “Dielectric materials for applications in microwave communications” J. Mater. Chem., 11, 54-62 (2001). 8.M. Weiden, A. Grauel, J. Norwig, S. Horn, F. Steglich, “Crystalline structure of the strontium niobates Sr4Nb2O9 and Sr5Nb4O15” J. Alloys and Comp., 218,13-16 (1995). 9.F. Galasso and L. Katz, “Preparation and structure of Ba5Ta4O15 and related compounds” Acta Cryst., 14, 647-650 (1961). 10.Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry and K. Zhu, “Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys” Chem. Mater., 28, 284−292 (2016). 11.S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vane, P. Kuzˇel, I. N. Jawahar, M.T. Sebastian and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics”, J. Appl. Phys., 89[7] 3900-3906 (2001) 12.H. Sreemoolanadhan, J. Isaac, S. Solomon, M.T Sebastian, K.A Jose and P. Mohanan, “Dielectric properties of Ba5Nb4O15 ceramics. Phys. Stat. Sol., 143, K45-48 (1994). 13.D.W Kim, H.J Youn, K.S Hong, C.K Kim, “Microwave dielectric properties of (1-x)Ba5Nb4O15-xBaNb2O6 mixtures” Jpn. J. Appl. Phys. 41,3812-3816 (2002). 14.D.W Kim, B.K Kim, H.J Je, and J.G Park, “Degradation mechanism of dielectric loss in barium niobate under a reducing atmosphere” J. Am. Ceram. Soc., 89 [10] 3302–3304 (2006). 15.Richard C. Ropp, “Encyclopedia of the Alkaline Earth Compounds”, P753, 2013 16.D.W Kim, K.S Hong, C.S. Yoon, C.K Kim, “Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15–BaNb2O6 mixtures for LTCC applications” J. Eur. Ceram. Soc., 23, 2597–2601 (2003). 17.G.H Chen, B. Qi, “Barium niobate formation from mechanically activated BaCO3-Nb2O5 mixtures” J. Alloys Compd., 425, 395-398 (2006). 18.C.A Kumar, D. Pamu, S. Josephine, “Impedance spectroscopy, broadband, and microwave dielectric properties of mechanically alloyed Ba5Nb4O15 ceramics” Int. J. Appl. Ceram. Technol., 13 [3], 554-563 (2016). 19.Suk-Joong L. Kang “Sintering: densification, grain growth, and microstructure” Elsevier Ltd. (2005) ISBN 978-0-7506-6385-4. 20.W. D. Kingery, “Densification during sintering in the presence of a liquid phase. I. Theory” J. Appl. Phys., 30 [3] 301-306 (1959) 21.R.M German, P. Suri and S.J Park, “Review: liquid phase sintering” J. Mater. Sci., 44, 1–39 (2009). 22.J. Svoboda, H. Riedel and R. Gaebel, “A model for liquid phase sintering” Acta mater., 44 [8] 3215-3226 (1996). 23.M. Kahlweit, “Ostwald ripening of precipitated” Adv. Colloid Interface Sci., 5, 1-35 (1975). 24.I. M. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions” J. Phys. Chem. Solids, 19 [1/2] 35-50 (1961). 25.M. Hillert, O. Hunderi, N. Ryum and T.O. Satre, “A comment on the Lifshitz-Slyozov-Wagner (L-S-W) theory of particle coarsening” Scripta Metallurgica., 23, 1979-1982 (1989). 26.H. Zhuang, Z.X Yue, F. Zhao and L.T Li, “Low-Temperature sintering and microwave dielectric properties of Ba5Nb4O15–BaWO4 composite ceramics for LTCC applications” J. Am. Ceram. Soc., 91 [1] 1–5 (2008). 27.H. Zhou, H. Wang, M.H Zhang and H.B Yang, “Microwave dielectric properties and compatibility with silver of low-fired Ba5Nb4O15 ceramics by BaCu(B2O5) addition” J. Mater. Res., 25 [9] 1793-1798 (2010). 28.C.A Kumar and D. Pamu, “Microwave dielectric properties of low temperature fired Ba5Nb4O15 - BaWO4 ceramics supplemented with their own nanoparticles for LTCC applications” Int. J Appl. Ceram. Technol., 14, 191–199 (2017). 29.M.M. Seabaugh, I.H. Kerscht and G.L. Messing, “Texture development by templated grain growth in liquid-phase-sintered α-Alumina” J. Am. Ceram. Soc., 80 [5] 1181–88 (1997). 30.E. A. Holm, G. N. Hassold and M. A. Miodownik, “On misorientation distribution evolution during anisotropic grain growth” Acta mater., 49, 2981–2991 (20010). 31.L.F Chen, V.V. Varadan, C.K. Ong and C.P Neo, "Microwave theory and techniques for materials characterization". Microwave electronics. Wiley. (2004) ISBN 0-470-84492-2. 32.L.Z Cao and D.M Cao, “A modified formula for microwave measurement of dielectric loss using a closed cylindrical cavity dielectric resonator” Progress in Electromagnetics Research Letters, 49, 39–44 (2014). 33.Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method” IEEE Tran Microwave Theory Tech. MTT-33, 586-592 (1985). 34.Y. Kobayashi and S. Tanaka, “Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates” IEEE Tran Microwave Theory Tech. MTT-28, 1077-1085 (1980). 35.B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range” IRE Tran Microwave Theory Tech., MTT-8, 403-410 (1960). 36.J. Sheen, “Comparisons of microwave dielectric property measurements by transmission /reflection techniques and resonance techniques” Meas. Sci. Technol., 20, 042001-12 (2009). 37.小林禧夫 銅張りプリント配線基板のマイクロ波/ミリ波特性と実測例, RFワーヅレド No.12, 57-69. 38.JIS R1627:1996 “Testing method for dielectric properties of fine ceramics at microwave frequency” 39.IEC 61338-1-3:1999 “Waveguide type dielectric resonators - Part 1-3: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency” 40.J. Krupka, “Frequency domain complex permittivity measurements at microwave frequencies” Meas. Sci. Technol. 17, R55–R70 (2006). 41.H. Tamura, K. Konoike, Y. Sakabe and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure” Communication Am. Ceram. Soc., 67 [4] C59-61 (1984). 42.M.W. Lufaso and P.M. Woodward, “Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites” Acta Cryst., B60, 10-20 (2006). 43.P.M. Woodward, “Octahedral tilting in perovskites. I. Geometrical considerations” Acta Cryst., B53, 32-43 (1997). 44.P.M. Woodward, “Octahedral tilting in perovskites. II. Structure stabilizing forces” Acta Cryst., B53, 44-46 (1997). 45.A.M. Glazer, “The Classification of tilted octahedra in perovskites” Acta Cryst., B28, 3384 -3392 (1972). 46.R. J. Cernik, M. Barwick, F. Azough and R. Freer, “A synchrotron X-ray study of structural ordering in the microwave dielectric ceramic system: Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3” J. Appl. Cryst., 40, 749–755 (2007). 47.J.L. Hutchison, A.J. Jacobson, “Electron microscopy of the perovskite-related phases 4H Ba0.1Sr0.9MnO2.96 5H Ba5Nb4O15 and 6H BaFeO2.79” J. Solid State Chem., 20, 417-422 (1977). 48.G. Trolliard, N. Teneze, Ph. Boullay, M. Manier and D. Mercurio, “HRTEM study of cation-deficient perovskite-related AnBn-δO3n (n>=4δ) microphases in the Ba5Nb4O15–BaTiO3 system” J. Solid State Chem., 173, 91-100 (2003). 49.M. Grundner, J. Halbritter, “XPS and AES studies on oxide growth and oxide coatings on niobium” J. App. Phys., 51, 397-405 (1981). 50.P.P Ma, H. Gu and X.M Chen, “Determination of 1:2 ordered domain boundaries in Ba[(Co, Zn, Mg)1/3Nb2/3]O3 dielectric ceramics” J. Am. Ceram. Soc., 99 [4] 1299-1304 (2016). 51.P.K. Davies and J.Z Tong, “Effect of ordering-Induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics” J. Am. Ceram. Soc., 80 [7] 1727-1740 (1997). 52.F. Azough, R. Freer, D. Iddles, T. Shimada, B. Schafferd, “The effect of cation ordering and domain boundaries on low loss Ba(BI1/3BII2/3)O3 perovskite dielectrics revealed by high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM)” J. Eur. Ceram. Soc., 34, 2285–2297 (2014). 53.Qi. Ma, P. Ryan, J. W. Freeland and R. A. Rosenberg, “Thermal effect on the oxides on Nb (100) studied by synchrotron-radiation x-ray photoelectron spectroscopy” J. Appl. Phys., 96[12] 7675-7680 (2004). 54.B.A. Sexton, A.E. Hughes and K. Foger, “XPS investigation of strong metal-support interactions on group Illa-Va oxides” J. Catal., 77, 85-93 (1982). 55.S. Kimura, “Phase equilibria in the system NbO2-Nb2O5 : Phase relations at 1300 and 1400oC and related thermodynamic treatment” J. Sol. Stat. Chem., 6, 438-449 (1973). 56.C.T Lee, C.C Ou, Y.C Lin, C.Y Huang, C.Y Su, “Structure and microwave dielectric property relations in (Ba1−xSrx)5Nb4O15 system” J. Eur. Ceram. Soc., 27, 2273–2280 (2007). 57.Y.C Liou, W.H Shiu, C.Y Shih, “Microwave ceramics Ba5Nb4O15 and Sr5Nb4O15 prepared by a reaction-sintering process” Mater. Sci. Eng., B131, 142–146 (2006). 58.W.D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction of ceramics - 2nd edition” Wiley Co., ISBN: 978-0-471-47860-7 59.S.C. Hansen and D.S. Phillips, “Grain boundary microstructures in a liquid-phase sintered alumina (α-Al2O3)” Philos. Mag., A47 [2] 209-234 (1983). 60.S. Stemmer, G. Roebben and O. van der Biest, “Evolution of grain boundary films in liquid phase sintered silicon nitride during high-temperature testing” Acta mater., 46[15] 5599-5606 (1998). 61.W. Rheinheimer and M.J. Hoffmann, “Grain growth in perovskites: What is the impact of boundary transitions?” Curr. Opin. Solid State Mater. Sci., 20, 286–298 (2016). 62.E.Z. Kurmaev, A. Moewes, O.G. Bureev, I.A. Nekrasov, V.M. Cherkashenko, M.A. Korotin, D.L. Edererd, “Electronic structure of niobium oxides” J. Alloys and Comp., 347, 213–218 (2002). 63.C. Vineis, P.K Davies, T. Negas, S. Bell, “Microwave dielectric of hexagonal perovskites” Mater. Res. Bull., 131[5] 431-37 (1996). 64.I.N Jawahar, M.T Sebastian, P. Mohanan, “Microwave dielectric properties of Ba5-xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4−xO15 ceramics” Mater. Sci. Eng., B106, 207–212 (2006). 65.I.T Kim, Y.H Kim, S.J Chung, “Order-disorder transition and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics” Jpn. J. Appl. Phys., 34[8] 4096-4103 (1995). 66.C.T Lee, Y.C Lin and C.Y Huang, “Cation ordering and dielectric characteristics in barium zinc niobate” J. Am. Ceram. Soc., 90 [2] 483–489 (2007). 67.S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, “Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies” J. Am. Ceram. Soc., 66[6] 421-423 (1983). 68.E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, H. Ohsato, “Order-disorder transition and its effect on microwave quality factor Q in Ba(Zn1/3Nb2/3)O3 system” J. Electroceram., 17, 375–379 (2006). 69.R. J. Cernik, M. Barwick, F. Azough and R. Freer, “A synchrotron X-ray study of structural ordering in the microwave dielectric ceramic system: Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3” J. Appl. Cryst., 40, 749–755 (2007). 70.D. Grebennikov,O. Ovchar, A. Belous and P. Mascher, “Application of positron annihilation and Raman spectroscopies to the study of perovskite structure” J. Appl. Phys., 108, 114109 (2010). 71.G. Trolliard, N. Te´ne`ze, Ph. Boullay, and D. Mercurio, “TEM study of cation-deficient-perovskite related AnBn-1O3n compounds: the twin-shift option” J. Solid State Chem., 177, 1188–1196 (2004). 72.R. Freer, F. Azough, “Microstructural engineering of microwave dielectric ceramics” J. Eur. Ceram. Soc., 28, 1433–1441 (2008). 73.I.N Jawahar, P. Mohanan and M.T Sebastian, “A5B4O15 (A=Ba,Sr,Mg,Ca,Zn; B=Nb,Ta) microwave dielectric ceramics” Mater. Lett. 57, 4043-4048 (2003). 74.P. Ferrer, M. Alguer´o and A. Castro, “Influence of the mechanochemical conditions on the processing of Bi4SrTi4O15 ceramics from submicronic powdered precursors” J. Alloys and Comp., 464, 252–258 (2008). 75.B. Itaalit, M. Mouyanen, J. Bernard, J.M Reboul and D. Houivet, “Improvement of microwave dielectric properties of Ba(Co0.7Zn0.3)1/3Nb2/3O3 ceramics prepared by solid-state reaction” Ceram. Int., 41, 1937–1942 (2015). 76.T. Wang, X.D Fang, W.W Dong, R.H Tao, Z.H Deng, D.L Li, Y.P Zhao, G. Meng, S. Zhou, X.B Zhu, “Mechanochemical effects on microstructure and transport properties of nanocrystalline La0.8Na0.2MnO3 ceramics” J. Alloys and Comp., 458, 248–252 (2008). 77.M. Senna, T. Kinoshita, Y. Abe, H. Kishi, C. Ando, Y. Doshida, B. Stojanovic, “Smart soft-mechanochemical syntheses of well-crystallized pure phase fine particulates of mixed oxides for electroceramics” J. Eur. Ceram. Soc., 27, 4301–4306 (2007). 78.B. Psiuk, J. Szade, R. Wrzalik, M. Osadnik, T. Wala, “Milling-induced phenomena in SrTiO3” Ceram. Int., 40, 6957–6961 (2014). 79.S.Y Noh, M.J Yoo, S. Nahm, C.H Choi, H.M Park and H.J Lee, “Effect of structural changes on the microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics” Jpn. J. Appl. Phys., 41[5] 2978–2981 (2002). 80.B.D. Stojanovic, “Mechanochemical synthesis of ceramic powders with perovskite structure” J. Mater. Process. Technol., 143-144, 78–81(2003). 81.G. Chen, J. Chen, L.J Liu, C. Srinivasakannan and J.H Peng, “Synthesis and Characterization of BaCO3 nanoparticles with different morphologies by microwave homogenous precipitation” High Temp. Mater. Proc., 32[1] 47–50 (2013). 82.L.C Tien, C.C Chou and D.S Tsai, “Ordered structure and dielectric properties of lanthanum-substituted Ba(Mg1/3Ta2/3)O3” J. Am. Ceram. Soc., 83[8] 2074–2078 (2000). 83.F. Lichtenberg , A. Herrnberger and K. Wiedenmann, “Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2,A’Ak-1BkO3k+1 and AmBm-1O3m” Prog. Solid State Chem., 36, 253-387 (2008). 84.M.A. Akbas and P.K. Davies, “Ordering-induced microstructures and microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 system” J. Am. Ceram. Soc., 81[3] 670–76 (1998). 85.L.G. Austin, “A commentary on the Kick, Bond and Rittinger laws of grinding” Powder Technol., 7, 315-317 (1973). 86.E.T. Stamboliadis, “The energy distribution theory of comminution specific surface energy, mill efficiency and distribution mode” Miner. Eng., 20, 140–145 (2007). 87.José M.F. Ferreira, S.M. Olhero, A. Kaushal, “Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate?” J. Eur. Ceram. Soc., 33, 2509-2517 (2013). 88.H. Tanaka, “Shape changes of spheroidal and rectangular grains driven by excess free energy” J. Eur. Ceram. Soc., 24, 2763-2768 (2004). 89.P. Boullay, N. Te´ne`ze, G. Trolliard, D. Mercurio and J.M. Perez-Mato, “Superspace description of the hexagonal perovskites in the system Ba5Nb4O15–BaTiO3 as modulated layered structures” J. Solid State Chem., 174, 209–220 (2003). 90.F. Hofmann et. al., “3D lattice distortions and defect structures in ion-implanted nano-crystals” Scientific Reports., 7:45993 (2017). 91.T.Lowe, F. Azough, R. Freer, “ The microstructure and microwave dielectric properties of ceramics in the system CaTiO3-Li0.5Nd0.5TiO3” J. Kor. Ceram. Soc., 40[4] 328-332 (2003). 92.E. Guilmeau, C. Henrist, T.S. Suzuki, Y. Sakka, D. Chateigne, D. Grossin and B. Ouladdiaf, “Texture of alumina by neutron diffraction and SEM-EBSD” Mater. Sci. Forum, 495-497, 1395-1400 (2005). 93.W.L Tzeng, H.W Yen, W.C Lin, S.J Shih, “Grain boundary engineering for improving conductivity of polycrystalline SrTiO3” Ceram. Int., 43, 2361–2367 (2017). 94.T.V. Kolodiazhnyi, A. Petric, G.P. Johari, A.G. Belous, “Effect of preparation conditions on cation ordering and dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics” J. Eur. Ceram. Soc., 22 2013–2021 (2002). 95.M.T. Sebastian and H. Jantunen, “Low loss dielectric materials for LTCC applications: a review” Int. Mater. Rev., 53, 57-90 (2008). 96.S. Sakamoto, H. Adachi, K. Kaneko, Y. Sugimoto and T. Takada, “Novel Low Temperature co-fired ceramic material system composed of dielectrics with different dielectric constants” Jpn. J. Appl. Phys., 52, 09KH03 (2013). 97.T. Takada, S. Nakao, M. Kojima and Y. Higuchi, “Development, analysis, and application of a glass–alumina-based self-constrained sintering low-temperature cofired ceramic” Int. J. Appl. Ceram. Technol., 4 [5] 398–405 (2007). 98.J.R Kim, D.W Kim, H.S Jung, K.S Hong, “Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15 with ZnB2O4 glass” J. Eur. Ceram. Soc., 26, 2105–2109 (2006). 99.N. Wang, C.L Liu, Y.B Wang, J.Z Cheng, J.Z Gong, H.F Zhou., “Microwave dielectric properties and compatibility with silver electrode of novel low-fired Ba4CuTi11O27 ceramic” Ceram. Int., 42, 15855–15860 (2016). 100.R.L Jia, H. Su, X.L Tang and Y.L Jing, “Effects of BaCu(B2O5) addition on sintering temperature and microwave dielectric properties of Ba5Nb4O15–BaWO4 ceramics” Chin. Phys., B23[4] 047801 (2014). 101.H. Ravash, L. Vanherpe, J. Vleugels, N. Moelans, “Three-dimensional phase-field study of grain coarsening and grain shape accommodation in the final stage of liquid-phase sintering” J. Eur. Ceram. Soc., 37, 2265–2275 (2017). 102.A. Kazaryan, B.R. Patton, S.A. Dregia, Y. Wang “On the theory of grain growth in systems with anisotropic boundary mobility” Acta Materialia., 50, 499–510 (2002). 103.X. Cui ,B. Li, J.H Shen, Y.H Wang and J. Zhou, “The co-fired behaviors between Ag and glass–ceramics materials in LTCC” J. Electroceram., 21, 541–544 (2008).
|