跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周軒宇
研究生(外文):Hsuan-Yu Chou
論文名稱:醫用超音波輔助骨水泥硬化與放熱行為之研究
論文名稱(外文):A study of the effect of medical ultrasound on the setting and heating behaviors of bone cements
指導教授:謝宗霖謝宗霖引用關係
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:101
中文關鍵詞:骨水泥超音波固化行為空蝕現象
外文關鍵詞:bone cementultrasoundsetting behaviorcavitation effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚甲基丙烯酸甲酯骨水泥是一種被廣泛運用於骨科手術中的骨水泥,通常被用作固定植入的人工假體,有時也作為骨頭的人工替代物填入骨裂與空隙中。在原料充分混合後,骨水泥會依據情況使用不同的方式填塞致所需部位。有時為了減小侵入性,手術上會使用針筒將骨水泥注射至指定部位並等待其固化。然而,在等待的過程中,未固化的骨水泥很可能流竄至四周,造成嚴重程度不等的併發症。
醫療用超音波因為具有加熱與增快物質傳遞的功能,期望可以運用在以下的研究中,達到加速骨水泥的固化的效果,並加以控制骨水泥固化的時間與位置。實驗結果顯示:在開放系統中,商用Simplex P骨水泥固化時間在超音波輔助下由14分鐘縮短至5分鐘。另外,超音波在通過高密度組織(例如:骨頭)後,仍具有顯著的輔助作用,固化時間得以縮短至6分鐘。並且隨著超音波參數不同,固化曲線出現了雙峰與平頂現象。
同時,研究發現當施加的強度增加時,超音波的空蝕現象除了加速骨水泥的固化外,亦會使骨水泥中的孔洞數量與大小增加。施加超音波對固化後骨水泥的強度影響也因骨水泥流動性不同而有程度上的影響。當超音波瓦數增加至4瓦時,高流動性Simplex P骨水泥的降伏強度會由原本的96 MPa下降至65MPa。
Acrylic-based bone cements have always been an important role in orthopedic surgeries. It has been widely applied to anchor artificial implants as well as filling bone voids and cracks. Mostly, the cements are either hand-kneaded or injected into the desired location during their working phases. But one of the problems related to injection is that cement leakages may occur after injection since cements usually possess low viscosities during injection. These leakages could lead to complications such as spinal compressions and blood vessels thermal damage.
With the ability to generate heat and accelerate mass transfer, medical ultrasound was applied to speed up the polymerization reaction of the bone cements in the present study. Results showed that with the aid of ultrasound, the setting time of commercial Simplex P bone cement could be shortened from 14 min to 5 min. Even after the attenuation through hard tissues, ultrasound still showed a remarkable influence by shortening the setting time to 6min. Two-peak phenomenon and plateaued curves were also observed depending on the ultrasound operation parameters.
When the operating intensities increased, the cavitation effect of ultrasound also increased the pores’ sizes and amounts of the bone cements. This resulted in the decrement of yield strengths of Simplex P bone cements from 96 MPa to 65 MPa when the operation intensity was increased to 4 W.
國立台灣大學碩士學位論文口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
Contents V
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The outline of dissertation 2
Chapter 2 Literature Review 4
2.1 N-isopropyl acrylamide based hydrogel (NIPAAM) 4
2.2 Bone cement 6
2.2.1 Acrylic-based bone cement 6
2.2.2 Setting curve of bone cement 8
2.2.3 Complications related to bone cements 9
2.2.4 Surgical Simplex P bone cement 11
2.3 Power ultrasound application 12
Chapter 3 Experimental Procedures 14
3.1 Processing of NIPAAM 14
3.2 Characterizations of NIPAAM 15
3.2.1 Cloud point determination 15
3.2.2 Compression test 17
3.2.3 Water content determination 18
3.2.4 Small angle X-ray scattering (SAXS) 18
3.3 Processing of bone cement 21
3.3.1 Poly-methyl methacrylate beads synthesis 21
3.3.2 Sieving the beads 22
3.3.3 Bone cement formulations 23
3.4 Characterizations of bone cement 24
3.4.1 Optical microscopy 24
3.4.2 Fourier transformation infrared spectroscopy characterization 27
3.4.3 Thermogravimetric Analysis 28
3.4.4 Compressive strength characterization 30
Chapter 4 Results 32
4.1 Effect of bead diameter 32
4.2 Effect of ambient temperature 33
4.3 Effect of heating plate 34
4.4 Effect of ultrasound operation through NIPAAM phantom 36
4.4.1 Experimental set up 36
4.4.2 Results 38
4.5 Effect of ultrasound operation on injected bone cement 42
4.5.1 Experimental set up 42
4.5.2 Results – setting characteristics 42
4.5.3 Results – compression tests 45
4.5.4 Results – microstructures 46
4.6 Effect of ultrasound operation in 36 C water tank 48
4.6.1 Experimental set up 48
4.6.2 Results – setting characteristics 49
4.6.3 Results – compression tests 53
4.6.4 Results – microstructures 55
4.7 Attenuation test of ultrasound 57
4.7.1 NIPAAM phantom 58
4.7.2 Bone cement 58
4.7.3 Real bones 61
4.8 Effect of ultrasound operation through bones 62
4.8.1 Experimental set up 62
4.8.2 Results 64
4.9 Effect of ultrasound operation on the rheology of bone cement 66
4.9.1 Experimental set up 66
4.9.2 Results 68
4.10 Ultrasound image observation on the rheology of bone cement 69
4.10.1 Experimental set up 69
4.10.2 Results 71
Chapter 5 Discussions 73
5.1 Relationships between mechanical properties of NIPAAM phantom 73
5.2 Mechanics involved in the heat up of bone cements 74
5.3 Differentiation of temperature to time curve 76
5.4 Different experimental set ups and their influences on bone cements 85
5.5 Ultrasound effect on microstructures of different types of bone cements 87
5.6 Ultrasound attenuation of same medium at different rigidity 92
Chapter 6 Conclusions 94
References 96
[1] J. Charnley, "Anchorage of the femoral head prosthesis to the shaft of the femur.," The Journal of bone and joint surgery. British volume., pp. 28-30, 1960.
[2] M. Heskins and J. E. Guillet, "Solution Properties of Poly(N-isopropylacrylamide)," Journal Journal of Macromolecular Science: Part A - Chemistry, pp. 1441-1455, 1968.
[3] H. Schild, "Poly (N-Isopropylacrylamide) - experiment, theory and application.," Progress in Polymer Science, pp. 163-249, 1992.
[4] Y. H. Bae, S. W. Kim and B. Vernon, "Thermoreversible copolymer gels for extracellular matrix," Biomedical Materials Research, pp. 69-79, 2000.
[5] J. Heisterkamp, R. v. Hillegersberg and o. N. IJzermans, "Critical temperature and heating time for coagulation damage: Implications for interstitial laser coagulation (ILC) of tumors," Lasers in Surgery and Medicine, pp. 257-262, 1999.
[6] P. Laugier and G. Ha¨ıat, Bone Quantitative Ultrasound, Springer Netherlands, 2011.
[7] J. Shieh, S.-R. Chen, G.-S. Chen, C.-W. Lo, C.-S. Chen, B.-T. Chen, M.-K. Sun, C.-W. Huang and W.-S. Chen, "Acrylic acid controlled reusable temperature-sensitive hydrogel phantoms for thermal ablation therapy," Applied Thermal Engineering, pp. 322-329, 2014.
[8] Di Gennaro F, Hasgall PA, Baumgartner C, Neufeld E, Gosselin MC, Payne D, Klingenböck A and Kuster N, "IT’IS Database for thermal and electromagnetic parameters of biological tissues," 1 9 2015. [Online]. Available: https://www.itis.ethz.ch/virtual-population/tissue-properties/database/acoustic-properties/attenuation-constant/.
[9] Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang and B. Li, "Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: Current status and future developments," ScienceDirect, pp. 1-11, 2015.
[10] H. R. S. Hosseinzadeh, M. Emami, F. Lahiji, A. S. Shahi, A. Masoudi and S. Emami , The Acrylic Bone Cement in Arthroplasty, 2013.
[11] K. D. Kuehn, W. Ege and U. Gopp, "Acrylic bone cements: composition and properties.," Orthop Clin North Am., pp. 17-28, 2005.
[12] P. T. Spierings, "Testing and Performance of Bone Cements," in The Well-Cemented Total Hip Arthroplasty, Springer Berlin Heidelberg, 2005, pp. 67-78.
[13] S. K. Purcell, "Principles of Bone Cement and the Process of Bone Cement Mixing," June 2014. [Online]. Available: http://docshare04.docshare.tips/files/31245/312452504.pdf.
[14] J. C. J. Webb and R. F. Spencer, "The clinical comparative study on high and low viscosity bone cement application in vertebroplasty," the Journal of bone and joint surgery. British volume, pp. 851-857, 2007.
[15] P. Galibert, H. Deramond, P. Rosat and D. Le Gars, "Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty," Neurochirurgie, pp. 166-168, 1987.
[16] J. McGraw, J. Lippert, K. Minkus, P. Rami, T. Davis and R. Budzik, "Prospective evaluation of pain relief in 100 patients undergoing percutaneous vertebroplasty: results and follow-up.," Journal of vascular and intervenional radiology, pp. 883-886, 2002.
[17] G. C. Anselmetti, G. Zoarski, A. Manca, S. Masala, H. Eminefendic, F. Russo and D. Regge, "Percutaneous Vertebroplasty and Bone Cement Leakage: Clinical Experience with a New High-Viscosity Bone Cement and Delivery System for Vertebral Augmentation in Benign and MalignantCompression Fractures," Cardiovascular and interventional radiology, pp. 937-947, 2008.
[18] T.-H. Zeng, Yi-Ming Wang, Xin-Jian Yang, Jian-Yi Xiong and Dai-Qi Guo, "The clinical comparative study on high and low viscosity bone cement application in vertebroplasty," International Journal of Clinical and Experimental Medicine, pp. 18855-18860, 2015.
[19] R. Schmidt, B. Cakir, T. Mattes, M. Wegener, W. Puhl and M. Richter, "Cement leakage during vertebroplasty: an underestimated problem?," European spine journal, pp. 466-473, 2005.
[20] Mandy, "Newer Surgical Methods for Sciatic Pain," 28 8 2013. [Online]. Available: http://sciaticapainrelieftoday.com/newer-surgical-methods-for-sciatic-pain.html.
[21] W. T. Richards and A. L. Loomis, "The chemical effects of high frequency sound waves in a preliminary survey.," Journal of American Chemical Society, pp. 3086-3100, 1927.
[22] S. Peters, "The Influence of Power Ultrasound on Setting and Strength Development of Cement Suspensions," Bauhaus-Universität Weima, Weimar, 2016.
[23] L. H. Thompson and . L. K. Doraiswamy, "The rate enhancing effect of ultrasound by inducing supersaturation in a solid–liquid system," Chemical Engineering Science, pp. 3085-3090, 2000.
[24] Z. Guo, A. G. Jones and N. Li, "The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization.," Chemical Engineering Science, pp. 1617-1626, 2006.
[25] M. D. Luque de Castro and F. Priego-Capote, "Ultrasound-assisted crystallization (sonocrystalization)," pp. 717-724, 2007.
[26] B. Amara, N.; Ratsimba, A. M. Wilhelm and H. Delmas, "Crystallization of potash alum: effect of power ultrasound," Ultrasonics Sonochemistry, pp. 265-270, 2001.
[27] N. Lyczko, F. Espitalier, O. Louisnard and J. Schwartzentruber, "Effect of ultrasound on induction time and the methastable zone width of potassium sulphate," Chemical Engineering Journal, pp. 233-241, 2002.
[28] M. Shibayama, "Spatial inhomogeneity and dynamic fluctuations of polymer gels.," Macromolecular Chemistry and Physics, pp. 1-30, 1998.
[29] P. Debye and A. M. Bueche, "Scattering by an Inhomogeneous Solid," Journal of Applied Physics, 1949.
[30] a. S. S. F. Di Lorenzo, "Nanostructural heterogeneity in polymer networks and gels," Polymer Chemistry, pp. 5515-5528, 2015.
[31] L. Morejón, E. Mendizábal, J. A. Delgado, N. Davidenko, F. López-Dellamary, R. Manríquez, M. P. Ginebra, F. J. Gil and J. A. Planell, "Synthesis and characterization of poly (methyl methacrylate-styrene) copolymeric beads for bone cements," Latin American applied research, pp. 175-182, 2005.
[32] ISO5833:2002, "Implants for surgery-Acrylic resin cements," International Standardization Organisation, Switzerland, 2002.
[33] J. L. Bouvard, D. K. Ward, D. Hossain, E. B. Marin, D. J. Bammann and M. F. Horstemeyer, "A general inelastic internal state variable model for amorphous glassy polymers," Acta Mechanica, pp. 71-96, 2010.
[34] X. Gao, Y. Cao, X. Song, Z. Zhang, C. Xiao, C. He and X. Chen, "pH- and thermo-responsive poly(N-isopropylacrylamideco- acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups," Journal of Materials Chemistry, pp. 5578-5587, 2013.
[35] F. D. Lorenzo, "Nanostructural Complexity in Polymer Gels and Microgel Packings," Freie Universität Berlin, Berlin, 2015.
[36] N. Orakdogen and O. Okay, "Correlation between crosslinking efficiency and spatial inhomogeneity in poly(acrylamide) hydrogels," Polymer Bulletin, pp. 631-641, 2006.
[37] M. Y. Kizilay and O. Okay, "Effect of Initial Monomer Concentration on Spatial Inhomogeneity in Poly(acrylamide) Gels," American Chemical Society, pp. 6856-6862, 2003.
[38] B. O''Shaughnessy and J. Yu, "Autoacceleration in free radical polymerization," The american physical society, pp. 1723-1726, 1994.
[39] P. J. Flory, Principles of Polymer Chemistry, Ithaca: Cornell University Press, 1953.
[40] K.-D. Kühn, Bone Cements: Up-to-Date Comparison of Physical and Chemical Properties of Commercial Materials, Springer-Verlag Berlin Heidelberg, 2000.
[41] A. C. L. P. J. S. G. N. W. R. W. Matthew H. Pelletier, "Pore distribution and material properties of bone cement cured at different temperatures," Acta Biomaterialia, pp. 886-891, 2010.
[42] M. A. Vajnhandl S, "Ultrasound in textile dyeing and the decolourization/ mineralization of textile dyes.," Dyes and Pigments, pp. 89-101, 2005.
[43] Y. G. Adewuy, "Sonochemistry:  Environmental Science and Engineering Applications," Industrial & Engineering Chemistry Research, pp. 4681-4715, 2001.
[44] F. D. Loren, "asd iroo," rmefw/l ghh, pp. 5515-5528, 2015.
[45] J. S. Scarpa, D. D. Mueller and I. M. Klotz, "Slow hydrogen-deuterium exchange in a non-α-helical polyamide," Journal of the American Chemical Society, p. 6024–6030, 1967.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top