跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宇軒
研究生(外文):Yu-Hsuan Wu
論文名稱:含側鏈液晶的聚電解質與其在陰離子交換膜之應用
論文名稱(外文):Polyelectrolytes Containing Side Mesogenic Groups and Their Application in Anion Exchange Membranes
指導教授:趙基揚
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:嵌段共聚苯乙烯及聚(4-乙烯吡啶)側鏈液晶陰離子交換膜
外文關鍵詞:Poly(styrene)-block-poly(4-vinylpyridine)pendant mesogenanion exchange membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用聚(4-乙烯吡啶)以及嵌段共聚苯乙烯及聚(4-乙烯吡啶)高分子電解質為陰離子交換膜的主要結構,並同時掛有側鏈液晶分子。聚(4-乙烯吡啶)上的陽離子是和帶有末端溴官能基的液晶分子反應而得。本實驗對此陰離子交換膜的性質做了系統性的研究,例如:吸水程度、膨潤量、離子交換容積、離子傳導度以及在鹼性環境下的穩定度。
當使用聚(4-乙烯吡啶)作為陰離子交換膜的高分子結構時,僅有較低的側鏈液晶含量可以在水中維持膜的完整度,相較之下,使用嵌段共聚苯乙烯及聚(4-乙烯吡啶)時在較高的側鏈液晶含量在水中仍然可以有很好的完整度,這說明了嵌段共聚高分子在嚴苛環境下擁有的優勢。
帶有41%側鏈液晶接枝比例的嵌段共聚苯乙烯及聚(4-乙烯吡啶)擁有3×〖10〗^(-4) S〖cm〗^(-1)離子傳導度,儘管吸水程度以及膨潤量分別只有不到9%以及3%,與其有相同接枝比例的帶有側鏈甲基陰離子交換膜則分別有28%以及9%。這說明了側鏈液晶分子的引入增加了陰離子交換膜結構的穩定性,也同時提供了有效的離子傳導通道儘管只有極低的吸水程度,在熱穩定性以及強鹼環境下的穩定性也有更好的表現。
In this work, anion exchange membranes (AEMs) based on polyelectrolytes bearing pendant mesogenic groups are prepared using poly(4-vinylpyridine)(P4VP) and poly(styrene)-block-poly(4-vinylpyridine)(PS-b-P4VP) as the polymer backbones. The pyridinium cations were produced upon the introduction of bromide-terminated mesogen groups to the P4VP monomer unit. The membrane quality and integrity, as well as the hydroxide transport properties, including swelling ratio, water uptake, ion exchange capacity (IEC), ionic conductivity and alkaline stability were evaluated. When using P4VP homopolymer as the backbone, only the AEM with low mesogen content would sustain the integrity in water. By contrast, PS-b-P4VP could offer the corresponding AEMs good integrity in water even with high degree of functionalization. PS-b-P4VP with 45% degree of functionalization of mesogenic groups exhibited an ionic conductivity of 3 x 10-4 S cm-1 with only 9 wt% water uptake and less than 3% swelling ratio. On the other hand, the reference AEM with similar degree of functionalization of methyl groups exhibited 28 wt% water uptake and 9% swelling ratio. The use of mesogenic group should enhance the dimensional stability and facilitate effective hydroxide transport pathways even with low water uptake. The side mesogenic groups also found to enhance the thermal stability and the alkaline stability of the AEM.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖索引 VI
表索引 IX
第一章 緒論 1
第二章 文獻回顧 3
2.1 燃料電池及其分類 3
2.2 鹼性燃料電池 6
2.3 陰離子交換膜 7
2.3.1 交換膜需要的性質 8
2.3.2 影響交換膜表現的主要因素 8
2.3.3 陰離子交換膜的種類 11
2.3.4 陰離子交換膜在強鹼環境下的穩定性 21
2.4 嵌段共聚高分子 24
2.4.1 嵌段共聚高分子的性質 25
2.4.2 含有液晶的嵌段共聚高分子 27
2.4.3 嵌段共聚高分子在鹼性燃料電池的應用 34
2.4.4 PS-b-P4VP 35
第三章 實驗步驟與原理 37
3.1 實驗藥品 37
3.2 實驗儀器 39
3.3 材料準備方法 40
3.3.1 PS-b-P4VP的合成 40
3.3.2 液晶小分子的合成 41
3.3.3 陰離子交換膜的製備 43
3.4 材料鑑定方法 46
3.4.1 液態超導核磁共振儀(NMR) 46
3.4.2 凝膠滲透層析儀(GPC) 46
3.4.3 熱裂解分析儀(TGA) 46
3.4.4 示差掃描熱分析儀(DSC) 46
3.4.5 輸送性質鑑定方法 47
第四章 結果與討論 49
4.1 側鏈液晶的合成 49
4.2 P4VP陰離子交換膜 52
4.3 PS-b-P4VP陰離子合成 57
4.4 PS-b-P4VP陰離子交換膜 59
第五章 結論 66
第六章 未來展望 67
附錄 68
參考文獻 70
1.http://www.eia.gov/forecasts/ieo/exec_summ.cfm.
2.Adams, L. A.; Poynton, S. D.; Tamain, C.; Slade, R. C. T.; Varcoe, J. R., A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. Chemsuschem 2008, 1 (1-2), 79-81.
3.Varcoe, J. R.; Slade, R. C. T.; Lam How Yee, E., An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 2006, (13), 1428-1429.
4.Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T., Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. P Natl Acad Sci USA 2008, 105 (52), 20611-20614.
5.Bossell, U., The Birth of the Fuel Cell 1835–1845. European Fuel Cell Forum 2000.
6.Wand, G., Fuel Cells History, part 1. Johnson Matthey plc 2006, 14.
7.Grove, W. R., Philosophical Magazine and Journal of Science 1839, 14, 127.
8.Grove, W. R., Philosophical Magazine 1839, 15, 287-293.
9.http://users.encs.concordia.ca/~pillay/fuel-cells.html.
10.http://www.slideshare.net/Ramaraj90033/fuel-cell-43347517.
11.Gulzow, E., Alkaline fuel cells: A critical view. J Power Sources 1996, 61 (1-2), 99-104.
12.Gulzow, E.; Schulze, M., Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources 2004, 127 (1-2), 243-251.
13.Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J. J.; Song, D. T.; Liu, Z. S.; Wang, H. J.; Shen, J., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J Power Sources 2007, 165 (2), 739-756.
14.Merle, G.; Wessling, M.; Nijmeijer, K., Anion exchange membranes for alkaline fuel cells: A review. J Membrane Sci 2011, 377 (1-2), 1-35.
15.Smitha, B.; Sridhar, S.; Khan, A. A., Solid polymer electrolyte membranes for fuel cell applications - a review. J Membrane Sci 2005, 259 (1-2), 10-26.
16.https://en.wikipedia.org/wiki/Copolymer.
17.Yang, Y.; Holdcroft, S., Synthetic strategies for controlling the morphology of proton conducting polymer membranes. Fuel Cells 2005, 5 (2), 171-186.
18.N. Hadjichristidis, S. P. a. G. F., Block copolymers : synthetic strategies, physical properties, and applications. Wiley-Interscience, Hoboken, N.J. 2003.
19.Hamley, I. W., The physics of block copolymers. Oxford University Press, New York 1998.
20.Susai, T.; Kaneko, M.; Nakato, K.; Isono, T.; Hamada, A.; Miyake, Y., Optimization of proton exchange membranes and the humidifying conditions to improve cell performance for polymer electrolyte fuel cells. International Journal of Hydrogen Energy 2001, 26 (6), 631-637.
21.Morrison, F. A.; Winter, H. H., Effect of Unidirectional Shear on the Structure of Triblock Copolymers .1. Polystyrene Polybutadiene Polystyrene. Macromolecules 1989, 22 (9), 3533-3540.
22.Kotaka, T.; Okamoto, M.; Kojima, A.; Kwon, Y. K.; Nojima, S., Elongational flow-induced morphology change of block copolymers. 2. A polystyrene-block-poly(ethylene butylene)-block-polystyrene triblock copolymer with cylindrical microdomains. Polymer 2001, 42 (7), 3223-3231.
23.Kotaka, T.; Okamoto, M.; Kojima, A.; Kwon, Y. K.; Nojima, S., Elongational flow-induced morphology change of block copolymers - Part 1. A polystyrene-block-poly(ethylene butylene)-block-polystyrene-block-poly(ethylene butylene) tetrablock copolymer with polystyrene spherical microdomains. Polymer 2001, 42 (3), 1207-1217.
24.Stevens, M. P., Polymer chemistry : an introduction. Oxford University Press, New York 1999.
25.Brinkmann, S.; Stadler, R.; Thomas, E. L., New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer microdomains. Macromolecules 1998, 31 (19), 6566-6572.
26.Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokawa, Y.; Hashimoto, T., Influence of casting solvents on microphase-separated structures of poly(2-vinylpyridine)-block-polyisoprene. Polymer 1999, 40 (25), 7147-7156.
27.Kim, G.; Libera, M., Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films. Macromolecules 1998, 31 (8), 2569-2577.
28.Heck, B.; Arends, P.; Ganter, M.; Kressler, J.; Stuhn, B., SAXS and TEM studies on poly(styrene)-block-poly(ethene-co-but-1-ene)-block-poly(styrene) in bulk and at various interfaces. Macromolecules 1997, 30 (16), 4559-4566.
29.Agel, E.; Bouet, J.; Fauvarque, J. F., Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 2001, 101 (2), 267-274.
30.Fenton, D. E.; Parker, J. M.; Wright, P. V., Complexes of Alkali-Metal Ions with Poly(Ethylene Oxide). Polymer 1973, 14 (11), 589-589.
31.M. Armand, J. C., M. Duclot, Polyethers as solid electrolytes, in: Fast
Ion Transp. Solids: Electrodes Electrolytes. Proc. Int. Conf. 1979, 131-136.
32.Appetecchi, G. B.; Aihara, Y.; Scrosati, B., Investigation of swelling phenomena in PEO-based polymer electrolytes - II. Chemical and electrochemical characterization. Solid State Ionics 2004, 170 (1-2), 63-72.
33.Appetecchi, G. B.; Alessandrini, F.; Duan, R. G.; Arzu, A.; Passerini, S., Electrochemical testing of industrially produced PEO-based polymer electrolytes. J Power Sources 2001, 101 (1), 42-46.
34.Appetecchi, G. B.; Croce, F.; Hassoun, J.; Scrosati, B.; Salomon, M.; Cassel, F., Hot-pressed, dry, composite, PEO-based electrolyte membranes I. Ionic conductivity characterization. J Power Sources 2003, 114 (1), 105-112.
35.Appetecchi, G. B.; Croce, F.; Persi, L.; Ronci, F.; Scrosati, B., Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta 2000, 45 (8-9), 1481-1490.
36.Minier, M.; Berthier, C.; Gorecki, W., Thermal-Analysis and Nmr-Study of a Poly(Ethylene Oxide) Complex Electrolyte - Peo(Licf3so3)X. J Phys-Paris 1984, 45 (4), 739-744.
37.Druger, S. D.; Ratner, M. A.; Nitzan, A., Generalized Hopping Model for Frequency-Dependent Transport in a Dynamically Disordered Medium, with Applications to Polymer Solid Electrolytes. Phys Rev B 1985, 31 (6), 3939-3947.
38.Jeong, S. K.; Lee, J. S.; Woo, S. H.; Seo, J. A.; Min, B. R., Characterization of Anion Exchange Membrane Containing Epoxy Ring and C-Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells. Energies 2015, 8 (7), 7084-7099.
39.Zhang, Z. P.; Shen, K. Z.; Lin, L. M.; Pang, J. H., Anion exchange membranes based on tetra-quaternized poly(arylene ether ketone). J Membrane Sci 2016, 497, 318-327.
40.Chen, W. T.; Yan, X. M.; Wu, X. M.; Huang, S. Q.; Luo, Y. L.; Gong, X.; He, G. H., Tri-quaternized poly (ether sulfone) anion exchange membranes with improved hydroxide conductivity. J Membrane Sci 2016, 514, 613-621.
41.Salmon, E.; Guinot, S.; Godet, M.; Fauvarque, J. F., Structural characterization of new poly(ethylene oxide) - Based alkaline solid polymer electrolytes. J Appl Polym Sci 1997, 65 (3), 601-607.
42.Vassal, N.; Salmon, E.; Fauvarque, J. F., Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochim Acta 2000, 45 (8-9), 1527-1532.
43.Lewandowski, A.; Skorupska, K.; Malinska, J., Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 2000, 133 (3-4), 265-271.
44.Bauer, B.; Strathmann, H.; Effenberger, F., Anion-Exchange Membranes with Improved Alkaline Stability. Desalination 1990, 79 (2-3), 125-144.
45.Wu, G. M.; Lin, S. J.; Yang, C. C., Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J Membrane Sci 2006, 275 (1-2), 127-133.
46.Yang, C. C., Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte. J Power Sources 2002, 109 (1), 22-31.
47.Xing, B.; Savadogo, O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem Commun 2000, 2 (10), 697-702.
48.Wu, Y. H.; Wu, C. M.; Li, Y.; Xu, T. W.; Fu, Y. X., PVA-silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. J Membrane Sci 2010, 350 (1-2), 322-332.
49.Wu, Q. M.; Zhang, J. F.; Sang, S. B., Preparation of alkaline solid polymer electrolyte based on PVA-TiO2-KOH-H2O and its performance in Zn-Ni battery. J Phys Chem Solids 2008, 69 (11), 2691-2695.
50.Yang, C. C., Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membrane Sci 2007, 288 (1-2), 51-60.
51.Zhang, S. L.; Xu, T. W.; Wu, C. M., Synthesis and characterizations of novel, positively charged hybrid membranes from poly(2,6-dimethyl-1,4-phenylene oxide). J Membrane Sci 2006, 269 (1-2), 142-151.
52.Wu, Y. H.; Wu, C. M.; Varcoe, J. R.; Poynton, S. D.; Xu, T. W.; Fu, Y. X., Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid anion-exchange membranes for alkaline fuel cells: Effect of silica content and the single cell performance. J Power Sources 2010, 195 (10), 3069-3076.
53.Gohil, G. S.; Shahi, V. K.; Rangarajan, R., Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membranes. J Membrane Sci 2004, 240 (1-2), 211-219.
54.Lebrun, L.; Da Silva, E.; Metayer, M., Elaboration of ion-exchange membranes with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix. J Appl Polym Sci 2002, 84 (8), 1572-1580.
55.Lebrun, L.; Follain, N.; Metayer, M., Elaboration of a new anion-exchange membrane with semi-interpenetrating polymer networks and characterisation. Electrochim Acta 2004, 50 (4), 985-993.
56.Kumar, M.; Singh, S.; Shahi, V. K., Cross-Linked Poly(vinyl alcohol)-Poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) Based Anion-Exchange Membranes in Aqueous Media. J Phys Chem B 2010, 114 (1), 198-206.
57.Altmeier, P., Strongly alkaline anion exchange membranes and process for
producing the same. US 5746917 1998.
58.Altmeier, P., Strongly basic anion-exchanging molded bodies and a method of
manufacturing the same. US 5936004 1999.
59.Shahi, V. K.; Thampy, S. K.; Rangarajan, R., Studies on transport properties of surfactant immobilized anion-exchange membrane. J Membrane Sci 1999, 158 (1-2), 77-83.
60.Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H., Synthesis and thermal stability of novel anion exchange resins with spacer chains. J Appl Polym Sci 1997, 64 (6), 1161-1167.
61.Pandey, A. K.; Goswami, A.; Sen, D.; Mazumder, S.; Childs, R. F., Formation and characterization of highly crosslinked anion-exchange membranes. J Membrane Sci 2003, 217 (1-2), 117-130.
62.Pandey, A. K.; Childs, R. F.; West, M.; Lott, J. N. A.; McCarry, B. E.; Dickson, J. M., Formation of pore-filled ion-exchange membranes with in situ crosslinking: Poly(vinylbenzyl ammonium salt)-filled membranes. J Polym Sci Pol Chem 2001, 39 (6), 807-820.
63.Robertson, N. J.; Kostalik, H. A.; Clark, T. J.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W., Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications. J Am Chem Soc 2010, 132 (10), 3400-3404.
64.Poynton, S. D.; Kizewski, J. P.; Slade, R. C. T.; Varcoe, J. R., Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells. Solid State Ionics 2010, 181 (3-4), 219-222.
65.Elmidaoui, A.; Cherif, A. T.; Brunea, J.; Duclert, F.; Cohen, T.; Gavach, C., Preparation of Perfluorinated Ion-Exchange Membranes and Their Application in Acid Recovery. J Membrane Sci 1992, 67 (2-3), 263-271.
66.Varcoe, J. R., Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys Chem Chem Phys 2007, 9 (12), 1479-1486.
67.Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H.; Poynton, S. D.; Driscoll, D. J.; Apperley, D. C., Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 2007, 19 (10), 2686-2693.
68.Vinodh, R.; Ilakkiya, A.; Elamathi, S.; Sangeetha, D., A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization. Mater Sci Eng B-Adv 2010, 167 (1), 43-50.
69.Zeng, Q. H.; Liu, Q. L.; Broadwell, I.; Zhu, A. M.; Xiong, Y.; Tu, X. P., Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J Membrane Sci 2010, 349 (1-2), 237-243.
70.Stoica, D.; Alloin, F.; Marais, S.; Langevin, D.; Chappey, C.; Judeinstein, P., Polyepichlorhydrin membranes for alkaline fuel cells: Sorption and conduction properties. J Phys Chem B 2008, 112 (39), 12338-12346.
71.Xiong, Y.; Fang, J.; Zeng, Q. H.; Liu, Q. L., Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J Membrane Sci 2008, 311 (1-2), 319-325.
72.Zhang, Q. G.; Liu, Q. L.; Zhu, A. M.; Xiong, Y.; Ren, L., Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol. J Membrane Sci 2009, 335 (1-2), 68-75.
73.J.S. Park, G. G. P., S.H. Park, Y.G. Yoon, C.S. Kim, W.Y. Lee, Development of solid-state alkaline electrolytes for solid alkaline fuel cells. Macromol Symp 2007, 249-250, 174-182.
74.Park, J. S.; Park, S. H.; Yim, S. D.; Yoon, Y. G.; Lee, W. Y.; Kim, C. S., Performance of solid alkaline fuel cells employing anion-exchange membranes. J Power Sources 2008, 178 (2), 620-626.
75.Wang, G. G.; Weng, Y. M.; Chu, D.; Chen, R. R.; Xie, D., Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity. J Membrane Sci 2009, 332 (1-2), 63-68.
76.Matsui, K.; Tobita, E.; Sugimoto, K.; Kondo, K.; Seita, T.; Akimoto, A., Novel Anion-Exchange Membranes Having Fluorocarbon Backbone - Preparation and Stability. J Appl Polym Sci 1986, 32 (3), 4137-4143.
77.K. Matsui, Y. K., T. Hiyama, E. Tobita, K. Kondo, A. Akimoto, T. Seita, H. Watanabe, Fluorocarbon Anion Exchangers. Toyo Soda Mfg. Co., Ltd., Sagami Chemical Research Center, Japan 1986.
78.Unlu, M.; Zhou, J. F.; Kohl, P. A., Hybrid Polymer Electrolyte Fuel Cells: Alkaline Electrodes with Proton Conducting Membrane. Angew Chem Int Edit 2010, 49 (7), 1299-1301.
79.Unlu, M.; Zhou, J. F.; Kohl, P. A., Hybrid Anion and Proton Exchange Membrane Fuel Cells. J Phys Chem C 2009, 113 (26), 11416-11423.
80.Hu, J.; Wan, D. L.; Zhu, W. G.; Huang, L. H.; Tan, S. Z.; Cai, X.; Zhang, X. J., Fabrication of a High-Stability Cross-Linked Quaternized Poly(epichlorolydrin)/PTFE Composite Membrane via a Facile Route. Acs Appl Mater Inter 2014, 6 (7), 4720-4730.
81.Sharma, S.; Dinda, M.; Sharma, C. R.; Ghosh, P. K., A safer route for preparation of anion exchange membrane from inter-polymer film and performance evaluation in electrodialytic application. J Membrane Sci 2014, 459, 122-131.
82.Rao, A. H. N.; Thankamony, R. L.; Kim, H. J.; Nam, S.; Kim, T. H., Imidazolium-functionalized poly(arylene ether sulfone) block copolymer as an anion exchange membrane for alkaline fuel cell. Polymer 2013, 54 (1), 111-119.
83.Lin, X. C.; Liang, X. H.; Poynton, S. D.; Varcoe, J. R.; Ong, A. L.; Ran, J.; Ran, J.; Li, Q. H.; Xu, T. W., Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells. J Membrane Sci 2013, 443, 193-200.
84.Wu, X. M.; Chen, W. T.; Yan, X. M.; He, G. H.; Wang, J. J.; Zhang, Y.; Zhu, X. P., Enhancement of hydroxide conductivity by the di-quaternization strategy for poly(ether ether ketone) based anion exchange membranes. J Mater Chem A 2014, 2 (31), 12222-12231.
85.Xu, H. K.; Fang, J.; Guo, M. L.; Lu, X. H.; Wei, X. L.; Tu, S., Novel anion exchange membrane based on copolymer of methyl methacrylate, vinylbenzyl chloride and ethyl acrylate for alkaline fuel cells. J Membrane Sci 2010, 354 (1-2), 206-211.
86.Jheng, L. C.; Hsu, S. L. C.; Lin, B. Y.; Hsu, Y. L., Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. J Membrane Sci 2014, 460, 160-170.
87.Wang, G. G.; Weng, Y. M.; Chu, D.; Xie, D.; Chen, R. R., Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J Membrane Sci 2009, 326 (1), 4-8.
88.Ghigo, G.; Cagnina, S.; Maranzana, A.; Tonachini, G., The mechanism of the Stevens and Sommelet-Hauser Rearrangements. A Theoretical Study. J Org Chem 2010, 75 (11), 3608-3617.
89.Chempath, S.; Boncella, J. M.; Pratt, L. R.; Henson, N.; Pivovar, B. S., Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides. J Phys Chem C 2010, 114 (27), 11977-11983.
90.Cope, A. C.; Mehta, A. S., Mechanism of Hofmann Elimination Reaction - an Ylide Intermediate in Pyrolysis of a Highly Branched Quaternary Hydroxide. J Am Chem Soc 1963, 85 (13), 1949-&.
91.Chempath, S.; Einsla, B. R.; Pratt, L. R.; Macomber, C. S.; Boncella, J. M.; Rau, J. A.; Pivovar, B. S., Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes. J Phys Chem C 2008, 112 (9), 3179-3182.
92.Dutta, A.; Datta, J., Outstanding Catalyst Performance of PdAuNi Nanoparticles for the Anodic Reaction in an Alkaline Direct Ethanol (with Anion-Exchange Membrane) Fuel Cell. J Phys Chem C 2012, 116 (49), 25677-25688.
93.Mai, Y. Y.; Eisenberg, A., Self-assembly of block copolymers. Chem Soc Rev 2012, 41 (18), 5969-5985.
94.Darling, S. B., Directing the self-assembly of block copolymers. Prog Polym Sci 2007, 32 (10), 1152-1204.
95.Hamley, I. W.; Castelletto, V., Small-angle scattering of block copolymers in the melt, solution and crystal states. Prog Polym Sci 2004, 29 (9), 909-948.
96.Gopinadhan, M.; Majewski, P. W.; Osuji, C. O., Facile Alignment of Amorphous Poly(ethylene oxide) Microdomains in a Liquid Crystalline Block Copolymer Using Magnetic Fields: Toward Ordered Electrolyte Membranes. Macromolecules 2010, 43 (7), 3286-3293.
97.Yoshio, M.; Kagata, T.; Hoshino, K.; Mukai, T.; Ohno, H.; Kato, T., One-dimensional ion-conductive polymer films: Alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc 2006, 128 (16), 5570-5577.
98.Kato, T., From Nanostructured Liquid Crystals to Polymer-Based Electrolytes. Angew Chem Int Edit 2010, 49 (43), 7847-7848.
99.Ichikawa, T.; Yoshio, M.; Hamasaki, A.; Kagimoto, J.; Ohno, H.; Kato, T., 3D Interconnected Ionic Nano-Channels Formed in Polymer Films: Self-Organization and Polymerization of Thermotropic Bicontinuous Cubic Liquid Crystals. J Am Chem Soc 2011, 133 (7), 2163-2169.
100.Gray, D. H.; Gin, D. L., Polymerizable lyotropic liquid crystals containing transition-metal ions as building blocks for nanostructured polymers and composites. Chem Mater 1998, 10 (7), 1827-1832.
101.Deng, H.; Gin, D. L.; Smith, R. C., Polymerizable lyotropic liquid crystals containing transition-metal and lanthanide ions: Architectural control and introduction of new properties into nanostructured polymers. J Am Chem Soc 1998, 120 (14), 3522-3523.
102.Liang, X. H.; Lu, X. Y.; Yu, M.; Cavanagh, A. S.; Gin, D. L.; Weimer, A. W., Modification of nanoporous supported lyotropic liquid crystal polymer membranes by atomic layer deposition. J Membrane Sci 2010, 349 (1-2), 1-5.
103.Hatakeyama, E. S.; Gabriel, C. J.; Wiesenauer, B. R.; Lohr, J. L.; Zhou, M. J.; Noble, R. D.; Gin, D. L., Water filtration performance of a lyotropic liquid crystal polymer membrane with uniform, sub-1-nm pores. J Membrane Sci 2011, 366 (1-2), 62-72.
104.Carter, B. M.; Wiesenauer, B. R.; Noble, R. D.; Gin, D. L., Thin-film composite bicontinuous cubic lyotropic liquid crystal polymer membranes: Effects of anion-exchange on water filtration performance. J Membrane Sci 2014, 455, 143-151.
105.Gratzer, W. B.; Doty, P., A Conformation Examination of Poly-L-Alanine and Poly-D,L-Alanine in Aqueous Solution. J Am Chem Soc 1963, 85 (8), 1193-&.
106.Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S., Zigzag Morphology of a Poly(Styrene-B-Hexyl Isocyanate) Rod Coil Block-Copolymer. Macromolecules 1995, 28 (5), 1688-1697.
107.Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G. P., Self-assembled smectic phases in rod-coil block copolymers. Science 1996, 273 (5273), 343-346.
108.Fischer, H.; Poser, S.; Arnold, M.; Frank, W., On the Influence of the Morphological Structure on the Liquid-Crystalline Behavior of Liquid-Crystalline Side-Chain Block-Copolymers. Macromolecules 1994, 27 (24), 7133-7138.
109.Mao, G. P.; Wang, J. G.; Clingman, S. R.; Ober, C. K.; Chen, J. T.; Thomas, E. L., Molecular design, synthesis, and characterization of liquid crystal coil diblock copolymers with azobenzene side groups. Macromolecules 1997, 30 (9), 2556-2567.
110.Wang, J. G.; Mao, G. P.; Ober, C. K.; Kramer, E. J., Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: Synthesis, liquid crystalline structure, and critical surface tension. Macromolecules 1997, 30 (7), 1906-1914.
111.Mao, G.; Ober, C. K., Block copolymers containing liquid crystalline segments. Acta Polym 1997, 48 (10), 405-422.
112.Adams, J.; Gronski, W., Lc Side-Chain Ab-Block Copolymers with an Amorphous a-Block and a Liquid-Crystalline B-Block. Makromol Chem-Rapid 1989, 10 (10), 553-557.
113.Mao, G. P.; Wang, J. G.; Ober, C. K.; Brehmer, M.; O''Rourke, M. J.; Thomas, E. L., Microphase-stabilized ferroelectric liquid crystals (MSFLC): Bistable switching of ferroelectric liquid crystal-coil diblock copolymers. Chem Mater 1998, 10 (6), 1538-1545.
114.Komiya, Z.; Schrock, R. R., Synthesis of Side-Chain Liquid-Crystal Polymers by Living Ring-Opening Metathesis Polymerization .4. Synthesis of Ab Block Copolymers Containing Amorphous and Side-Chain Liquid-Crystal Blocks. Macromolecules 1993, 26 (6), 1387-1392.
115.Yang, J.; Pinol, R.; Gubellini, F.; Levy, D.; Albouy, P. A.; Keller, P.; Li, M. H., Formation of polymer vesicles by liquid crystal amphiphilic block copolymers. Langmuir 2006, 22 (18), 7907-7911.
116.Xu, B.; Pinol, R.; Nono-Djamen, M.; Pensec, S.; Keller, P.; Albouy, P. A.; Levy, D.; Li, M. H., Self-assembly of liquid crystal block copolymer PEG-b-smectic polymer in pure state and in dilute aqueous solution. Faraday Discuss 2009, 143, 235-250.
117.Hwang, G. J.; Ohya, H., Preparation of anion exchange membrane based on block copolymers. Part II: the effect of the formation of macroreticular structure on the membrane properties. J Membrane Sci 1998, 149 (2), 163-169.
118.Hwang, G. J.; Ohya, H. H., Preparation of anion-exchange membrane based on block copolymers Part 1. Amination of the chloromethylated copolymers. J Membrane Sci 1998, 140 (2), 195-203.
119.Lee, H. C.; Liu, K. L.; Tsai, L. D.; Lai, J. Y.; Chao, C. Y., Anion exchange membranes based on novel quaternized block copolymers for alkaline direct methanol fuel cells. Rsc Adv 2014, 4 (21), 10944-10954.
120.Li, Y. F.; Liu, Y.; Savage, A. M.; Beyer, F. L.; Seifert, S.; Herring, A. M.; Knauss, D. M., Polyethylene-Based Block Copolymers for Anion Exchange Membranes. Macromolecules 2015, 48 (18), 6523-6533.
121.Dong, X.; Hou, S. H.; Mao, H. C.; Zheng, J. F.; Zhang, S. B., Novel hydrophilic-hydrophobic block copolymer based on cardo poly (arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes. J Membrane Sci 2016, 518, 31-39.
122.Li, L. H.; Yue, X.; Wu, W. J.; Yan, W. X.; Zeng, M. J.; Zhou, Y.; Liao, S. J.; Li, X. H., Multi-block copolymers with fluorene-containing hydrophilic segments densely functionalized by side-chain quaternary ammonium groups as anion exchange membranes. Rsc Adv 2016, 6 (47), 41453-41464.
123.Wang, L. Z.; Hickner, M. A., Highly conductive side chain block copolymer anion exchange membranes. Soft Matter 2016, 12 (24), 5359-5371.
124.Gu, S.; Cai, R.; Luo, T.; Chen, Z. W.; Sun, M. W.; Liu, Y.; He, G. H.; Yan, Y. S., A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells. Angew Chem Int Edit 2009, 48 (35), 6499-6502.
125.Ye, Y. S.; Stokes, K. K.; Beyer, F. L.; Elabd, Y. A., Development of phosphonium-based bicarbonate anion exchange polymer membranes. J Membrane Sci 2013, 443, 93-99.
126.Liu, Y.; Zhang, B. Z.; Kinsinger, C. L.; Yang, Y.; Seifert, S.; Yan, Y. S.; Maupin, C. M.; Liberatore, M. W.; Herring, A. M., Anion exchange membranes composed of a poly(2,6-dimethyl-1, 4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation. J Membrane Sci 2016, 506, 50-59.
127.Noonan, K. J. T.; Hugar, K. M.; Kostalik, H. A.; Lobkovsky, E. B.; Abruna, H. D.; Coates, G. W., Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes. J Am Chem Soc 2012, 134 (44), 18161-18164.
128.Jiang, L. H.; Lin, X. C.; Ran, J.; Li, C. R.; Wu, L.; Xu, T. W., Synthesis and Properties of Quaternary Phosphonium-based Anion Exchange Membrane for Fuel Cells. Chinese J Chem 2012, 30 (9), 2241-2246.
129.Sajjad, S. D.; Liu, D.; Wei, Z.; Sakri, S.; Shen, Y.; Hong, Y.; Liu, F. Q., Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs). J Power Sources 2015, 300, 95-103.
130.Wang, L. M.; Dou, L. Y.; Zhang, S. B., Nanofiber-based poly(aryl ether sulfone) containing guanidinium groups as novel anion-exchange membranes. J Polym Res 2013, 20 (9).
131.Liu, L.; Li, Q.; Dai, J. W.; Wang, H.; Jin, B. K.; Bai, R. K., A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability. J Membrane Sci 2014, 453, 52-60.
132.Rao, A. H. N.; Kim, H. J.; Nam, S.; Kim, T. H., Cardo poly(arylene ether sulfone) block copolymers with pendant imidazolium side chains as novel anion exchange membranes for direct methanol alkaline fuel cell. Polymer 2013, 54 (26), 6918-6928.
133.Kong, X.; Wadhwa, K.; Verkade, J. G.; Schmidt-Rohr, K., Determination of the Structure of a Novel Anion Exchange Fuel Cell Membrane by Solid-State Nuclear Magnetic Resonance Spectroscopy. Macromolecules 2009, 42 (5), 1659-1664.
134.Cheng, K. W.; Chan, W. K., Morphology of rhenium complex-containing polystyrene-block-poly (4-vinylpyridine) and its use as self-assembly templates for nanoparticles. Langmuir 2005, 21 (12), 5247-5250.
135.van Zoelen, W.; van Ekenstein, G. A.; Ikkala, O.; ten Brinke, G., Incorporation of PPE in lamellar self-assembled PS-b-P4VP(PDP) supramolecules and PS-b-P4VP diblock copolymers. Macromolecules 2006, 39 (19), 6574-6579.
136.Vukovic, I.; ten Brinke, G.; Loos, K., Hexagonally Perforated Layer Morphology in PS-b-P4VP(PDP) Supramolecules. Macromolecules 2012, 45 (23), 9409-9418.
137.Chuang, W. T.; Huang, Y. C.; Su, C. J.; Jeng, U. S.; Sheu, H. S., Successive order-order transitions of the hierarchical morphology of a dendron-jacketed block copolymer via subsequent stretching alignment and self-assembly. Soft Matter 2012, 8 (43), 11163-11168.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top