跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳啟權
研究生(外文):Chi-Chuan Chen
論文名稱:應變相關規則處理之神經機制的年齡差異
論文名稱(外文):Neural Correlates of Age Differences in Contingent Rule Processing
指導教授:吳恩賜
指導教授(外文):Joshua Oon Soo Goh
口試日期:2017-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:腦與心智科學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:39
中文關鍵詞:認知功能老化執行功能情境處理規則應變fMRI
外文關鍵詞:Cognitive agingexecutive functionscontext processingcontingent rule mappingsfMRI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
給定的行為在大多數情況下可能是適當的,但在某些其他情況下是不合適的。同樣,一些情境可能會鼓勵某種行為,但也可能偶爾需要替代行為。我們假設老化對人類大腦功能特別影響了針對目標導向行為的特殊規則應變的選擇。年輕與老年成年人進行了功能磁共振成像(fMRI)XDPX實驗,這是一個增設XNOR規則的DPX(dot probe expectancy)任務。Cue-probe配對實例化了不同的情境和應變規則處理,方式類似於非線性邏輯表,其中一些配對更頻繁。特別是當相關便應規則出現頻率次數較少時,老年人比較年輕的成年人反應慢且不準確。皮質活動普遍於年輕人上觀察到,但在老年人上卻有限。老年人在Default Mode Network(DMN)中對較不頻繁的XNOR規則產生了較高的神經活動。這些研究結果表明,在面臨情境應變處理時,與年齡有關的主動轉變為反應處理策略。最重要的是,我們指認出了當人類大腦經歷神經功能資源的年齡相關變化時,DMN參與XNOR邏輯規則計算的角色。
A given behavior may be appropriate in most contexts but inappropriate in some other contexts. Likewise, some contexts may encourage a given behavior but might also contingently require alternative behaviors at times. We hypothesized that age effects on human brain function particularly compromises such selection of contingent rule mappings for goal-directed behavior. Young and older adults underwent a functional magnetic resonance imaging (fMRI) XDPX experiment, which was a modified DPX (dot probe expectancy) task incorporating the XNOR rule. Cue-probe pairings instantiated different contextual and contingent response rule mappings akin to a non-linear logic table with some pairings being more frequent. Older adults were slower and less accurate than younger adults for less common cue contexts particularly when the probe response rule contingency was also less frequent. Cortical activity was widespread to contextual cues in young but minimal in older adults. Older adults engaged higher neural activity in the default mode network (DMN) to the least frequent XNOR probe. These findings suggest an age-related shift from proactive to reactive processing strategies when facing contextual contingencies. Critically, we identify a novel DMN involvement in XNOR computations when the human brain undergoes age-related changes in neural functional resources.
Content
Acknowledgement …………………………………………………………....………... I
中文摘要 ……………………...…………………………………..…………..…........ II
Abstract …...……………………………………………………..………..…………. III
Introduction .................................................................................................................... 1
Aging and Cognitive Control ……………………………..……………….................. 2
Mixed Findings about Inhibition Control in Older Adults …..…………….……… 2
The Dual Mechanism Framework of Cognitive Control …..……………………... 4
Bidirectional Neural Activity in Cognitive Control …………………………...….. 6
Current Study ……………………………………………………………........…….… 8
Aim and Hypothesis ............................................................................................... 11
Methods …………………………………………………...………………………….. 12
Participants …………………………………………...………………………….. 12
Procedure ……………………………………………....………………………… 12
Behavioral Analysis ………………………………………………………...….... 14
Brain Imaging Protocol …………...……………………………………...……… 15
fMRI Data Preprocessing and Analysis ……..………………………………....… 15
ROI Definition and Analysis ………………..…………….......…………………. 16
Results ………………………………………...……………………………………… 17
Behavioral Results …………...…..………………………….…………………… 17
Greater Neural Processing of Contextual Cues in Young than Older Adults ……. 18
Several Brain Regions Showed Effect of Prepotency Inhibition but No Effect of Age .
…………………………………………………………………………………… 18
Greater Neural Processing of Contingent Probes in Older than Younger Adults … 19
ROI Results ……………………………………………...………………………. 19
Discussion …………………………………………………………………………….. 20
References ………………………………………...………………………………….. 24



List of Figures and Table
Figure 1. The XDPX task ..……………………………...………..…. 26
Figure 2. Behavioral results …………..………………...…………… 27
Figure 3. Group comparison of brain activation during contextual cue processing …………………………………………….……. 28
Figure 4. Whole brain activation during XNOR contingent rule processing Old(BX&BY>AX) > Young(BX&BY>AX) ..… 29
Figure 5. ROI analysis for lingual gyrus, fusiform gyrus, superior frontal gyrus and precentral gyrus ………………………………… 30
Figure 6. ROI analysis for superior occipital gyrus ………………….. 31
Figure 7. ROI analysis for DLPFC …………………………………... 32
Figure 8. Brain regions showing positive correlation between B cue processing activation and BY performance in older adults ... 33
Figure 9. DMN regions ROI analysis ………………………………... 34


Table 1. Summary of behavioral results …………………………….. 35
Table 2. Activated brain regions during contextual cue processing … 36
Table 3. Activated brain regions during inhibition of stimulus-response prepotency …………………………………………………. 37
Table 4. Activated brain regions during XNOR contingent rule processing ………………………………………………….. 38
Table 5. Activated brain regions during contextual cue processing with adjusted p value ……………………………………………. 39
Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X.-J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends Cogn Sci, 16(12), 584-592.
Aron, A. R. (2007). The neural basis of inhibition in cognitive control. Neuroscientist, 13(3), 214-228. doi:10.1177/1073858407299288
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci, 18(4), 177-185.
Barch, D. M., Moore, H., Nee, D. E., Manoach, D. S., & Luck, S. J. (2012). CNTRICS imaging biomarkers selection: Working memory. Schizophr Bull, 38(1), 43-52. doi:10.1093/schbul/sbr160
Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci, 16(2), 106-113.
Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., . . . Reed, B. R. (2001). Context processing in older adults: evidence for a theory relating cognitive control to neurobiology in healthy aging. J Exp Psychol Gen, 130(4), 746-763.
Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. Variation in working memory, 76-106.
Breukelaar, I. A., Antees, C., Grieve, S. M., Foster, S. L., Gomes, L., Williams, L. M., & Korgaonkar, M. S. (2017). Cognitive control network anatomy correlates with neurocognitive behavior: A longitudinal study. Hum Brain Mapp, 38(2), 631-643. doi:10.1002/hbm.23401
Colcombe, S. J., Kramer, A. F., Erickson, K. I., & Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychol Aging, 20(3), 363-375. doi:10.1037/0882-7974.20.3.363
Colcombe, S. J., Kramer, A. F., Erickson, K. I., & Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and aging, 20(3), 363.
DiGirolamo, G. J., Kramer, A. F., Barad, V., Cepeda, N. J., Weissman, D. H., Milham, M. P., . . . Webb, A. (2001). General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport, 12(9), 2065-2071.
Dixon, M. L., Fox, K. C., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321-330. doi:10.1016/j.neuropsychologia.2014.05.024
Gilbert, S. J., & Burgess, P. W. (2008). Executive function. Curr Biol, 18(3), R110-114. doi:10.1016/j.cub.2007.12.014
Hakun, J. G., Zhu, Z., Brown, C. A., Johnson, N. F., & Gold, B. T. (2015). Longitudinal alterations to brain function, structure, and cognitive performance in healthy older adults: A fMRI-DTI study. Neuropsychologia, 71, 225-235. doi:10.1016/j.neuropsychologia.2015.04.008
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology of learning and motivation, 22, 193-225.
Jones, J. A., Sponheim, S. R., & MacDonald, A. W., 3rd. (2010). The dot pattern expectancy task: reliability and replication of deficits in schizophrenia. Psychol Assess, 22(1), 131-141. doi:10.1037/a0017828
Langenecker, S. A., & Nielson, K. A. (2003). Frontal recruitment during response inhibition in older adults replicated with fMRI. Neuroimage, 20(2), 1384-1392. doi:http://dx.doi.org/10.1016/S1053-8119(03)00372-0
Lopez-Garcia, P., Lesh, T. A., Salo, T., Barch, D. M., MacDonald, A. W., 3rd, Gold, J. M., . . . Carter, C. S. (2016). The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. yz, 16(1), 164-175. doi:10.3758/s13415-015-0384-1
MacDonald, A. W., 3rd, Goghari, V. M., Hicks, B. M., Flory, J. D., Carter, C. S., & Manuck, S. B. (2005). A convergent-divergent approach to context processing, general intellectual functioning, and the genetic liability to schizophrenia. Neuropsychology, 19(6), 814-821. doi:10.1037/0894-4105.19.6.814
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.
Mayda, A. B., Westphal, A., Carter, C. S., & DeCarli, C. (2011). Late life cognitive control deficits are accentuated by white matter disease burden. Brain, 134(Pt 6), 1673-1683. doi:10.1093/brain/awr065
Nielson, K. A., Langenecker, S. A., & Garavan, H. (2002). Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychology and aging, 17(1), 56.
Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cereb Cortex, 18(5), 1010-1028. doi:10.1093/cercor/bhm135
Rush, B. K., Barch, D. M., & Braver, T. S. (2006). Accounting for cognitive aging: context processing, inhibition or processing speed? Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 13(3-4), 588-610. doi:10.1080/13825580600680703
Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H.-Y., Das, S., Weinberger, D. R., & Mattay, V. S. (2010). Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging, 31(5), 839-852.
Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J., . . . Turner, G. R. (2014). Goal-congruent default network activity facilitates cognitive control. J Neurosci, 34(42), 14108-14114. doi:10.1523/JNEUROSCI.2815-14.2014
Swick, D., Ashley, V., & Turken, U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC neuroscience, 9(1), 102.
Turner, G. R., & Spreng, R. N. (2012). Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol Aging, 33(4), 826 e821-813. doi:10.1016/j.neurobiolaging.2011.06.005
Turner, G. R., & Spreng, R. N. (2015). Prefrontal Engagement and Reduced Default Network Suppression Co-occur and Are Dynamically Coupled in Older Adults: The Default-Executive Coupling Hypothesis of Aging. J Cogn Neurosci, 27(12), 2462-2476. doi:10.1162/jocn_a_00869
Williams, B. R., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Dev Psychol, 35(1), 205-213.  
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top