跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佳馨
研究生(外文):Chia-Hsin Tsai
論文名稱:開發新尼古丁類農藥殘留之快速免疫檢驗方法
論文名稱(外文):Development of a rapid immune-detection method for residual neonicotinoid pesticides
指導教授:許如君
指導教授(外文):Ju-Chun Hsu
口試委員:黃榮南馮海東吳孟玲徐慈鴻
口試委員(外文):Rong-Nan HuangHai-Tung FengMeng-Ling WuTzu-Hung Hsu
口試日期:2017-05-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:62
中文關鍵詞:單株抗體酵素免疫分析免疫層析試紙新尼古丁類殺蟲劑農藥殘留
外文關鍵詞:monoclonal antibodyELISAstrip testneonicotinoid pesticidesresidue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:943
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新尼古丁類殺蟲劑的使用越見廣泛與頻繁,但現有殘留檢測方法耗時傷財,免疫分析法將能提供一種更快速簡易且低成本的殺蟲劑殘留檢測方式。本論文透過小鼠單株抗體的製備,發展酵素免疫分析方法 (ELISA) 及免疫快篩試紙,小鼠在免疫注射益達胺 (imidacloprid)、可尼丁 (clothianidin)、亞滅培 (acetamiprid) 及賽速安 (thiamethoxam) 等四種新尼古丁類殺蟲劑抗原後,血清中皆帶有得以辨識殺蟲劑的抗體,血清稀釋16,000倍仍可辨識到殺蟲劑抗原,並與控制組有顯著差異。取小鼠脾臟細胞與癌細胞融合製備融合瘤細胞,融合瘤細胞的抗體產生率介於1.04-2.94%,並成功篩選出 18 株能辨識新尼古丁類殺蟲劑的單株抗體細胞株。挑選四株分別辨識益達胺、可尼丁、亞滅培及賽速安的單株細胞生產腹水抗體,再運用 ELISA 進行檢測。抗體 1D10 對益達胺的偵測極限為 72.13 ng/mL;抗體 3E9 對賽速安的偵測極限為 37.89 ng/mL,抗體 3E5 與 4C11 對可尼丁及亞滅培的偵測極限更低,分別為1.543 ng/mL及1.308 ng/mL。於特定濃度範圍內製作檢量線,其迴歸線的決定係數 (R2) 皆大於0.967。以菠菜樣本測試基質對抗體檢測時的干擾,顯示菠菜樣本對益達胺抗體的干擾較低,但對其他三株抗體產生輕微的影響。將靈敏度較高的可尼丁、亞滅培及賽速安抗體與膠體金結合製備免疫快篩試紙,三株抗體與膠體金的最適抗體結合量皆低於 80 mg/L。利用免疫快篩試紙檢測殺蟲劑,檢測時間可縮短至15分鐘,可尼丁的肉眼可辨極限 (visible detection limit) 為 10 ng/mL,亞滅培及賽速安則分別為 100 及 1000 ng/mL。運用試紙進行殺蟲劑檢測,相較於ELISA速度更快卻較不靈敏,若能改善試紙的偵測極限,或是製備更高靈敏度的殺蟲劑抗體,將有助於開發免疫殘留檢測方法。
Neonicotinoid pesticides have been used extensively in field. But now, most pesticides detection methods are time-consuming and expensive. Immunoassays may probably provide a fast, easy and economic detection way for pesticides. In this study, monoclonal antibodies were produced to develop enzyme-linked immunosorbent assay (ELISA) and strip tests. Six mice’s serums contained antibodies recognized pesticides after immunization with pesticide antigen. The titers of the serums were all higher than 16,000 times, and showed significant difference with control. Hybridomas were produced by fusing between spleen cells and tumor cells. Eighteen monoclonal hybridomas that secreted neonicotinoid pesticide antibodies were selected, and the antibody production ratio were from 1.04% to 2.94%. Four of them were found to recognize imidacloprid, clothianidin, acetamiprid and thiamethoxam respectively. The limit of detection (LOD) of the imidacloprid antibody 1D10 was 72.13 ng/mL; and was 37.89 ng/mL of the thiamethoxam antibody 3E9. The Detection limits were even lower for the clothianidin antibody 3E5 and the acetamiprid antibody 4Cll (1.543 ng/mL and 1.308 ng/mL, respectively). R2 values for pesticide concentration-inhibitory calibration curves within certain concentration ranges were all higher than 0.967. To test matrix interference to antibodies, spinach matrix spiked samples were used. We found that spinach matrices had a slight effect on all antibodies except for the imidacloprid antibody 1D10. The 3E5, 4C11, and 3E9 antibodies were conjugated with colloidal golds to develop strip tests, with the optimized conjugating ratios being all below 80 mg/L. This way reduced the detection time to less than 15 minutes. The visible detection limits of clothianidin, acetamiprid and thiamethoxam strips were 10 ng/mL, 100 and 1000 ng/mL. Using strip for pesticide detection is fast but insensitive than ELISA technique. To develop immunoassays for pesticide detection, we must have to improve the sensitivities of strips and monoclonal antibodies.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
表次 x
圖次 xi
壹、前言 1
貳、往昔研究 3
2.1 新尼古丁類殺蟲劑 3
2.2 殘留農藥檢驗方法 5
2.3 單株及多株抗體 6
2.4 酵素免疫分析方法 8
2.5 快速檢驗試紙 9
參、材料與方法 11
3.1 藥品 11
3.1.1 配製殺蟲劑 11
3.1.2 試劑 11
3.2 農藥抗原合成 12
3.3 蛋白質定量 12
3.4 農藥抗體製備 13
3.4.1 實驗動物飼養 13
3.4.2 免疫小鼠 13
3.4.3 血清測試效價 13
3.4.4 血清測試競爭反應 14
3.4.5 小鼠脾臟細胞與癌細胞融合 14
3.4.6 單株抗體細胞株篩選 14
3.4.7 測試單株抗體專一性 14
3.4.8 細胞冷凍與解凍 15
3.5 蛋白質電泳 15
3.6 單株抗體特性測試 15
3.6.1 交互反應 15
3.6.2 偵測極限與線性範圍 15
3.6.3 蔬菜基質添加標準品分析 16
3.7 免疫快篩試紙製作 16
3.7.1 膠體金與單株抗體之最適結合量 16
3.7.2 抗體-膠體金複合物 (colloidal gold-Ab, Cg-Ab) 最適用量 16
3.7.3 運用免疫快篩試紙檢測殺蟲劑 17
肆、結果 18
4.1 農藥抗原的合成 18
4.2農藥抗原免疫小鼠 18
4.3 小鼠脾臟細胞與癌細胞融合 19
4.4 單株抗體細胞株篩選 19
4.5 單株抗體細胞株專一性測試 19
4.6 抗體純化 20
4.7 單株抗體對不同種類農藥之交互反應測試 20
4.8 四株單株抗體製作檢量線 20
4.9 蔬菜基質添加標準品分析 21
4.10 膠體金與單株抗體之最適結合量及pH值 21
4.11 抗體-膠體金複合物最適用量 22
4.12 免疫快篩試紙偵測極限 23
伍、討論 46
5.1 抗體製備 46
5.2 交互反應測試 46
5.3 運用ELISA技術檢測殺蟲劑 47
5.4 菠菜基質測試添加回收率 48
5.5運用免疫快篩試紙檢測殺蟲劑 48
陸、結論 50
柒、參考文獻 52
捌、附錄 60
Akayama A, Minamida I. 1999. Discovery of a new systemic insecticide, nitenpyram and its insecticidal properties. p 127-148. In: Yamamoto I, Casida JE, (eds). Nicotinoid Insecticides and The Nicotinic Acetylcholine Receptor. Springer Japan.
Andersen L, Dinesen B, Jorgensen PN, Poulsen F, Roder ME. 1993. Enzyme-immunoassay for intact human insulin in serum or plasma. Clin Chem. 39(4): 578-582.
Anfossi L, Baggiani C, Giovannoli C, D’Arco G, Giraudi G. 2013. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem. 405(2): 467-480.
Blazkova M, Koets M, Wichers JH, Amerongen Av, Fukal L, Rauch P. 2009. Nucleic acid lateral flow immunoassay for the detection of pathogenic bacteria from food. Czech J Food Sci. 27(Spec. Iss.): 350-353.
Bonmatin J, Giorio C, Girolami V, Goulson D, Kreutzweiser D, Krupke C, Liess M, Long E, Marzaro M, Mitchell E. 2015. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut R. 22(1): 35-67.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2): 248-254.
Buckingham S, Balk M, Lummis S, Jewess P, Sattelle D. 1995. Actions of nitromethylenes on an α-bungarotoxin-sensitive neuronal nicotinic acetylcholine receptor. Neuropharmacology. 34(6): 591-597.
Cao X, Ye Y, Liu S. 2011. Gold nanoparticle-based signal amplification for biosensing. Anal Biochem. 417(1): 1-16.
Capozzo AV, Martinez MR, Schielen WJG. 2010. Development of an in process control filtration-assisted chemiluminometric immunoassay to quantify foot and mouth disease virus (FMDV) non-capsid proteins in vaccine-antigen batches. Vaccine. 28(40): 6647-6652.
Casida JE, Quistad GB. 1998. Golden age of insecticide research: past, present, or future? Annu Rev Entomol. 43(1): 1-16.
Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP. 2015. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut R. 22(1): 119-134.
Costa LG. 1987. Toxicology of pesticides: a brief history. p 1-10. In: Costa L, Galli C, Murphy S, (eds). Toxicology of Pesticides. Springer Berlin, Heidelberg.
Crook NE, Payne CC. 1980. Comparison of three methods of ELISA for baculoviruses. J Gen Virol. 46(1): 29-37.
Cutler P, Slater R, Edmunds AJ, Maienfisch P, Hall RG, Earley FG, Pitterna T, Pal S, Paul VL, Goodchild J. 2013. Investigating the mode of action of sulfoxaflor: a fourth‐generation neonicotinoid. Pest Manag Sci. 69(5): 607-619.
Dankwardt A. 2006. Immunochemical assays in pesticide analysis. p 1-27. In: Meyers R, (ed). Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd.
Decourtye A, Devillers J. 2010. Ecotoxicity of neonicotinoid insecticides to bees. p 85-95. In: Thany SH, (ed). Insect Nicotinic Acetylcholine Receptors. Springer New York.
Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y. 2005. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta. 530(2): 185-189.
Deraney RN, Mace CR, Rolland JP, Schonhorn JE. 2016. Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever. Anal Chem. 88(12): 6161-6165.
Dittbrenner N, Moser I, Triebskorn R, Capowiez Y. 2011. Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere. 84(10): 1349-1355.
Dively GP, Kamel A. 2012. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. J Agric Food Chem. 60(18): 4449-4456.
El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C. 2008. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Con Tox. 54(4): 653-661.
Elbert A, Becker B, Hartwig J, Erdelen C. 1991. Imidacloprid-a new systemic insecticide (Germany). Pflanzenschutz-Nachrichten Bayer 44(3): 113-136.
Elbert A, Erdelen C, Kuhnhold J, Nauen R. 2000. Thiacloprid: a novel neonicotinoid insecticide for foliar application. p 21-26. In: Brighton Crop Protection Conference-Pests and Diseases Brighton, UK.
Elbert A, Haas M, Springer B, Thielert W, Nauen R. 2008. Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci. 64(11): 1099-1105.
Engvall E, Ruitenberg E. 1974. Proceedings: ELISA, enzyme linked immunosorbent assay - a new technique for sero-diagnosis of trichinosis. Parasitology. 69(2):
Evtugyn G, Budnikov H, Nikolskaya E. 1998. Sensitivity and selectivity of electrochemical enzyme sensors for inhibitor determination. Talanta. 46(4): 465-484.
Fernández-Alba AR, Tejedor A, Agüera A, Contreras M, Garrido J. 2000. Determination of imidacloprid and benzimidazole residues in fruits and vegetables by liquid chromatography–mass spectrometry after ethyl acetate multiresidue extraction. J AOAC Int. 83(3): 748-755.
Gabaldón JA, Maquieira A, Puchades R. 1999. Current trends in immunoassay-based kits for pesticide analysis. Crit Rev Food Sci 39(6): 519-538.
Gan SD, Patel KR. 2013. Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol 133(9): 1-3.
Georghiou GP, Mellon RB. 1983. Pesticide resistance in time and space. p 1-46. In: Georghiou GP, (ed). Pest Resistance to Pesticides. Springer Science & Business Media.
Gilburn AS, Bunnefeld N, Wilson JM, Botham MS, Brereton TM, Fox R, Goulson D. 2015. Are neonicotinoid insecticides driving declines of widespread butterflies? Peer J [Internet]. 3(e1402. Available from doi: 10.7717/peerj1402.
Girotti S, Maiolini E, Ghini S, Eremin S, Manes J. 2010. Quantification of imidacloprid in honeybees: development of a chemiluminescent ELISA. Anal Lett. 43(3): 466-475.
Groth SF, Scheidegger D. 1980. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 35(1): 1-21.
Hage DS. 1999. Immunoassays. Anal Chem. 71(12): 294-304.
Hammock BD, Mumma RO. 1980. Potential of immunochemical technology for pesticide analysis. p 321-352. In: Harvey J, Zweig G, Cannizzaro R, Dishburger H, Sherma J, (eds). Pesticide Analytical Methodology. American Chemical Society.
Hennion MC, Barcelo D. 1998. Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: a review. Anal Chim Acta. 362(1): 3-34.
Hou Y, Bian H, Zhao X, Hu Y, Su T, Wang X, Wan X. 2011. Determination of nicotinoid residues in complicated matrix vegetables by solid phase extraction and HPLC method. J Instrum Anal. 30(58-63.
Hu J, Guo YR, Liang X, Liu XJ, Zhu GN, Liu FQ, Wang MH, Wang LM, Hua XD, Zhang CZ. 2016. Lateral flow immunoassay for simultaneous determination of four kinds of pyrethroid pesticides in vegetables and fruits. Chinese J Anal Chem 44(12): 1900-1906.
Hua X, Wang L, Li G, Fang Q, Wang M, Liu F. 2013. Multi-analyte enzyme-linked immunosorbent assay for organophosphorus pesticides and neonicotinoid insecticides using a bispecific monoclonal antibody. Anal Methods. 5(6): 1556-1563.
Iwasa T, Motoyama N, Ambrose JT, Roe RM. 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 23(5): 371-378.
Janeway CA. 2005. Basic concepts in immunology. p 1-36. In: Janeway CA, Travers P, Walport M, Shlomchik MJ, (eds). Immunobiology: The Immune System in Health & Disease Garland Science Publications.
Jantzie L, Tanay V, Todd K. 2007. Methods in immunochemistry. p 193-218. In: Lajtha A, Tettamanti G, Goracci G, (eds). Handbook of Neurochemistry and Molecular Neurobiology. Springer Science.
Jeschke P, Nauen R. 2005. Neonicotinoid Insecticides. p 53-105. In: Gilbert LI, Iatrou K, Gill SS, (eds). Comprehensive Molecular Insect Science. Elsevier, Amsterdam.
Jeschke P, Nauen R, Schindler M, Elbert A. 2011. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. 59(7): 2897-2908.
Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J. 2008. Immunosensors for detection of pesticide residues. Biosens Bioelectron. 23(11): 1577-1587.
Jinguji H, Thuyet DQ, Uéda T, Watanabe H. 2013. Effect of imidacloprid and fipronil pesticide application on Sympetrum infuscatum (Libellulidae: Odonata) larvae and adults. Paddy Water Environ. 11(1-4): 277-284.
Johnson R. 2010. Possible causes of colony collapse disorder. p 8-12. In: Johnson R, (ed). Honey Bee Colony Collapse Disorder. Diane Publishing, Washington.
Jung F, Gee SJ, Harrison RO, Goodrow MH, Karu AE, Braun AL, Li QX, Hammock BD. 1989. Use of immunochemical techniques for the analysis of pesticides. Pesticide science. 26(3): 303-317.
Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256(5517): 495-497.
Köhler G, Milstein C. 1976. Derivation of specific antibody‐producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 6(7): 511-519.
Ketema F, Zeh C, Edelman DC, Saville R, Constantine NT. 2001. Assessment of the performance of a rapid, lateral flow assay for the detection of antibodies to HIV. J Acquir Immune Defic Syndr. 27(1): 63-70.
Kim H-J, Shelver WL, Li QX. 2004. Monoclonal antibody-based enzyme-linked immunosorbent assay for the insecticide imidacloprid. Anal Chim Acta. 509(1): 111-118.
Kim HJ, Liu SZ, Keum YS, Li QX. 2003. Development of an enzyme-linked immunosorbent assay for the insecticide thiamethoxam. J Agric Food Chem. 51(7): 1823-1830.
Kim YA, Lee E-H, Kim K-O, Lee YT, Hammock BD, Lee H-S. 2011. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal Chim Acta. 693(1–2): 106-113.
Kloepper-Sams PJ, Park SS, Gelboin HV, Stegeman JJ. 1987. Specificity and cross-reactivity of monoclonal and polyclonal antibodies against cytochrome P-450E of the marine fish scup. Arch Biochem Biophys. 253(1): 268-278.
Kondo M, Yamashita H, Uchigashima M, Kono T, Takemoto T, Fujita M, Saka M, Iwasa S, Ito S, Miyake S. 2009. Development of an enzyme-linked immunosorbent assay for residue analysis of the insecticide emamectin benzoate in agricultural products. J Agric Food Chem. 57(2): 359-364.
Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K. 2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS one. 7(1): e29268.
Laschi S, Ogończyk D, Palchetti I, Mascini M. 2007. Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors. Enzyme Microb Tech. 40(3): 485-489.
Laurino D, Manino A, Patetta A, Porporato M. 2013. Toxicity of neonicotinoid insecticides on different honey bee genotypes. B Insecto. 66(1): 119-126.
Lee E-H, Kim YA, Lee YT, Hammock BD, Lee H-S. 2013. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide EPN. Food Agr Immunol. 24(2): 129-138.
Lee JK, Ahn KC, Park OS, Kang SY, Hammock BD. 2001. Development of an ELISA for the detection of the residues of the insecticide imidacloprid in agricultural and environmental samples. J Agric Food Chem. 49(5): 2159-2167.
Li J, Zhu Z. 2010. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin. 31(9): 1198-1207.
Li K, Li QX. 2000. Development of an enzyme-linked immunosorbent assay for the insecticide imidacloprid. J Agric Food Chem. 48(8): 3378-3382.
Li M, Hua X, Ma M, Liu J, Zhou L, Wang M. 2014. Detecting clothianidin residues in environmental and agricultural samples using rapid, sensitive enzyme-linked immunosorbent assay and gold immunochromatographic assay. [Internet]. 499(1-6. Available from doi: http://doi.org/10.1016/j.scitotenv.2014.08.029.
Li M, Sheng E, Cong L, Wang M. 2013. Development of immunoassays for detecting clothianidin residue in agricultural products. J Agric Food Chem. 61(15): 3619-3623.
Li P, Zhang Q, Zhang W. 2009. Immunoassays for aflatoxins. Trac Trend Anal Chem. 28(9): 1115-1126.
Linke S, Neubauer K, Dorner MB, Dorner BG, Pauli G, Schweiger B. 2011. Generation and characterisation of monoclonal antibodies against influenza virus A, subtype H5N1. J Virol Methods. 175(1): 85-94.
Liu GY, Ju XL, Cheng J. 2010. Selectivity of Imidacloprid for fruit fly versus rat nicotinic acetylcholine receptors by molecular modeling. J Mol Model. 16(5): 993-1002.
Liu JKH. 2014. The history of monoclonal antibody development – Progress, remaining challenges and future innovations. Ann Med Surg. 3(4): 113-116.
Liu L, Suryoprabowo S, Zheng Q, Song S, Kuang H. 2017. Development of an immunochromatographic strip for detection of acetamiprid in cucumber and apple samples. Food Agr Immunol. 28(1-12.
Liu Z, Li M, Shi H, Wang M. 2013. Development and evaluation of an enzyme-linked immunosorbent assay for the determination of thiacloprid in agricultural samples. Food Anal Method. 6(2): 691-697.
Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, Kobel W, Rindlisbacher A, Senn R, Steinemann A. 2001. Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci. 57(10): 906-913.
Mallat E, Barcelo D, Barzen C, Gauglitz G, Abuknesha R. 2001. Immunosensors for pesticide determination in natural waters. TrAC Trend Anal Chem. 20(3): 124-132.
Marty J-L, Garcia D, Rouillon R. 1995. Biosensors: potential in pesticide detection. Trac Trend Anal Chem. 14(7): 329-333.
Matapatara W, Thongnopnua P, Lipipun V. 2007. Simultaneous detection of amphetamine, methamphetamine and ephedrine by heterology competitive enzyme-linked immunosorbent assay. Asian Biomed. 1(2): 167-179.
Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 22(11): 573-580.
May K. 1991. Home tests to monitor fertility. Am J Obstet Gynecol. 165(6): 2000-2002.
Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G. 2010. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. 19(1): 207-215.
Mulchandani P, Mulchandani A, Kaneva I, Chen W. 1999. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens Bioelectron. 14(1): 77-85.
Murdoch DR, Laing RT, Mills GD, Karalus NC, Town GI, Mirrett S, Reller LB. 2001. Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia. J Clin Microbiol. 39(10): 3495-3498.
Murphy K, Weaver C. 2016. The development of mature lymphocyte receptor repertoires. p 257-345. In: Murphy K, Weaver C, (eds). Janeway''s Immunobiology. Garland Science.
Nauen R, Ebbinghaus-Kintscher U, Elbert A, Jeschke P, Tietjen K. 2001. Acetylcholine receptors as sites for developing neonicotinoid insecticides. p 77-105. In: Ishaaya I, (ed). Biochemical Sites of Insecticide Action and Resistance. Springer Science & Business Media.
Ngom B, Guo Y, Wang X, Bi D. 2010. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 397(3): 1113-1135.
Ohkawara Y, Akayama A, Matsuda K, Andersch W. 2002. Clothianidin: a novel broad-spectrum neonicotinoid insecticide. p 51-58. In: The BCPC Conference: Pests and Diseases. 18-21 November 2002. Brighton, UK. British Crop Protection Council.
Parekh BS, Kennedy MS, Dobbs T, Pau CP, Byers R, Green T, Hu DJ, Vanichseni S, Young NL, Choopanya K, Mastro TD, McDougal JS. 2002. Quantitative detection of increasing HIV type 1 antibodies after seroconversion: A simple assay for detecting recent HIV infection and estimating incidence. AIDS Res Hum Retrov. 18(4): 295-307.
Perry A, Yamamoto I, Ishaaya I, Perry R. 2013. Botanical insecticides. p 78-91. In: Perry A, Yamamoto I, Ishaaya I, Perry R, (eds). Insecticides in Agriculture and Environment. Springer Science & Business Media.
Plapp FW, Wang TC. 2012. Genetic Origins of Insecticide Resistance. p 47-70. In: Georghiou GP, (ed). Pest Resistance to Pesticides. Springer Science & Business Media.
Posthuma-Trumpie GA, Korf J, van Amerongen A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. a literature survey. Anal Bioanal Chem. 393(2): 569-582.
Ramesh A, Thirugnanam PE, Balakrishnamurthy P. 2007. Hapten synthesis, generation of polyclonal antibodies and development of ELISA for determination of thiamethoxam residues in food and environmental samples. Indian J Biotechnol. 6(3): 365-371.
Rust MK, Waggoner MM, Hinkle NC, Stansfield D, Barnett S. 2003. Efficacy and longevity of nitenpyram against adult cat fleas (Siphonaptera: Pulicidae). J Med Entomol. 40(5): 678-681.
Sánchez-Bayo F, Hyne RV. 2014. Detection and analysis of neonicotinoids in river waters–development of a passive sampler for three commonly used insecticides. Chemosphere. 99(143-151.
Sacks DB, Porter SE, Ladenson JH, McDonald JM. 1991. Monoclonal antibody to calmodulin: development, characterization, and comparison with polyclonal anti-calmodulin antibodies. Anal Biochem. 194(2): 369-377.
Shi FS, Liu J, Zhang L, Liu JX, Wang JP. 2016. Development of an enzyme linked immunosorbent assay for the determination of phenothiazine drugs in meat and animal feeds. J Environ Sci Health, Part B. 51(10): 715-721.
Shim WB, Kim JS, Kim MG, Chung DH. 2013. Rapid and sensitive immunochromatographic strip for on‐site detection of sulfamethazine in meats and eggs. J Food Sci. 78(10): M1575-M1581.
Shu Q, Wang LM, Ouyang H, Wang WW, Liu FQ, Fu ZF. 2017. Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody. Biosens Bioelectron. 87(908-914.
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin J-M, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut R. 22(1): 5-34.
Singer JM, Plotz CM. 1956. The latex fixation test: I. Application to the serologic diagnosis of rheumatoid arthritis. Am J Med. 21(6): 888-892.
Sparks TC, Nauen R. 2015. IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Phys. 121(122-128.
Sun J, Dong T, Zhang Y, Wang S. 2010. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products. Anal Chim Acta. 666(1–2): 76-82.
Suri CR, Raje M, Varshney GC. 2002. Immunosensors for pesticide analysis: antibody production and sensor development. Crit Rev Biotechnol. 22(1): 15-32.
Tang Y, Zhai Y-F, Xiang J-J, Wang H, Liu B, Guo C-W. 2010. Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples. Environ Pollut. 158(6): 2074-2077.
Tomizawa M, Casida JE. 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol. 48(1): 339-364.
Tomizawa M, Casida JE. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 45(247-268.
Tomizawa M, Casida JE. 2011. Neonicotinoid insecticides: highlights of a symposium on strategic molecular designs. J Agric Food Chem. 59(7): 2883-2886.
Tsialla Z, Ucles-Moreno A, Petrou P, Fernandez-Alba AR, Kakabakos SE. 2015. Development of an indirect enzyme immunoassay for the determination of thiabendazole in white and red wines. Int J Environ Anal Chem. 95(13): 1299-1309.
Uchigashima M, Watanabe E, Ito S, Iwasa S, Miyake S. 2012. Development of immunoassay based on monoclonal antibody reacted with the neonicotinoid insecticides clothianidin and dinotefuran. Sensors. 12(11): 15858-15872.
Valdovinos-Núñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Sánchez ER. 2009. Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Eco Entomol. 102(5): 1737-1742.
Vasylieva N, Ahn KC, Barnych B, Gee SJ, Hammock BD. 2015. Development of an immunoassay for the detection of the phenylpyrazole insecticide fipronil. Environ Sci Tech. 49(16): 10038-10047.
Verma N, Bhardwaj A. 2015. Biosensor technology for pesticides—a review. Appl Biochem Biotechnol. 175(6): 3093-3119.
Wakita T, Kinoshita K, Yamada E, Yasui N, Kawahara N, Naoi A, Nakaya M, Ebihara K, Matsuno H, Kodaka K. 2003. The discovery of dinotefuran: a novel neonicotinoid. Pest Manag Sci. 59(9): 1016-1022.
Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y. 2001. Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal Chim Acta. 427(2): 211-219.
Wang R, Wang Z, Yang H, Wang Y, Deng A. 2012. Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody‐based enzyme‐linked immunosorbent assay. J Sci Food Agric. 92(6): 1253-1260.
Wang S, Zhang C, Wang J, Zhang Y. 2005. Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide carbaryl. Anal Chim Acta. 546(2): 161-166.
Watanabe E, Eun H, Baba K, Arao T, Ishii Y, Endo S, Ueji M. 2004. Rapid and simple screening analysis for residual imidacloprid in agricultural products with commercially available ELISA. Anal Chim Acta. 521(1): 45-51.
Watanabe E, Kobara Y, Miyake S. 2013a. Rapid and simple immunochemical screening combined with hand‐shaking extraction for thiamethoxam residue in agricultural products. Journal of the Science of Food and Agriculture. 93(8): 1839-1844.
Watanabe E, Miyake S. 2013. Quantitative determination of neonicotinoid insecticide thiamethoxam in agricultural samples: a comparative verification between high-performance liquid chromatography and monoclonal antibody-based immunoassay. Food Anal Method. 6(2): 658-666.
Watanabe E, Miyake S, Baba K, Eun H, Endo S. 2006. Immunoassay for acetamiprid detection: application to residue analysis and comparison with liquid chromatography. Anal Bioanal Chem. 386(5): 1441-1448.
Watanabe E, Miyake S, Yogo Y. 2013b. Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments. J Agric Food Chem. 61(51): 12459-12472.
Wong SC, Curtis JA, Wingert WE. 2008. Concurrent detection of heroin, fentanyl, and xylazine in seven drug-related deaths reported from the Philadelphia Medical Examiner''s Office. J Forensic Sci. 53(2): 495-498.
Wright GA, Softley S, Earnshaw H. 2015. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees. Scientific reports [Internet]. 5(15322. Available from doi: 10.1038/srep15322.
Xing C, Liu L, Song S, Feng M, Kuang H, Xu C. 2015. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens Bioelectron. 66(445-453.
Xu R, Gan X, Fang Y, Zheng S, Dong Q. 2007. A simple, rapid, and sensitive integrated protein microarray for simultaneous detection of multiple antigens and antibodies of five human hepatitis viruses (HBV, HCV, HDV, HEV, and HGV). Anal Biochem. 362(1): 69-75.
Xu T, Wei K-Y, Wang J, Ma H-X, Li J, Xu Y-J, Li QX. 2010. Quantitative analysis of the neonicotinoid insecticides imidacloprid and thiamethoxam in fruit juices by enzyme-linked immunosorbent assays. J AOAC Int. 93(1): 12-18.
Xu T, Xu QG, Li H, Wang J, Li QX, Shelver WL, Li J. 2012. Strip-based immunoassay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products. Talanta. 101(85-90.
Xu ZL, Wang Q, Lei HT, Eremin SA, Shen YD, Wang H, Beier RC, Yang JY, Maksimova KA, Sun YM. 2011. A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples. Anal Chim Acta. 708(1-2): 123-129.
Yalow RS, Berson SA. 1960. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 39(7): 1157-1175.
Yamada T, Takahashi H, Hatano R. 1999. A novel insecticide, acetamiprid. p 149-176. In: Yamamoto I, Casida J, (eds). Nicotinoid Insecticides and The Nicotinic Acetylcholine Receptor. Springer Japan.
Zhou P, Lu Y, Zhu J, Hong J, Li B, Zhou J, Gong D, Montoya A. 2004. Nanocolloidal gold-based immunoassay for the detection of the N-methylcarbamate pesticide carbofuran. J Agric Food Chem. 52(14): 4355-4359.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊