跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳沐恩
研究生(外文):Mu-En Chen
論文名稱:熱帶火蟻之性別決定機制探討
論文名稱(外文):What type of sex determination does Solenopsis geminata use? A focus on the homologous SDL region
指導教授:王忠信黃榮南
指導教授(外文):John Wang
口試日期:2017-01-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:63
中文關鍵詞:性別決定機制入侵紅火蟻熱帶火蟻平衡選汰跨種多型性
外文關鍵詞:sex determinationfire antSolenopsis invictaSolenopsis geminatabalancing selectiontrans-species polymorphism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於有性生殖之生物而言,性別決定是非常重要的。多數昆蟲性別決定機制之下游部分是相當保守,但上游基因卻不然。入侵紅火蟻(Solenopsis invicta) 是使用單基因座互補性別決定機制 (single-locus complementary sex determination, sl-CSD) 的真社會性膜翅目昆蟲。 因此,異型合子 (heterozygosity) 個體將發育成雌性,但半型合子 (hemizygosity) 或同型合子 (homozygosity) 個體則會發育為雄性。 我們實驗室過去的研究顯示入侵紅火蟻決定性別基因有別於已被深入研究之另一真社會昆蟲蜜蜂 (Apis mellifera),我們將其命名為 sex determination locus (SDL)。 即便 目 前 尚 未 得 到 此 基 因 之 序 列 , 此 基 因 已 被 證 實 位 於 一 高 度 變 異 區 域 (hypervariable region)。本研究欲確認另一同屬的螞蟻:熱帶火蟻 (Solenopsis geminata)是否亦是使用此新發現之性別決定基因,但由於目前為止尚未有雙套體雄蟲之紀錄,因此本研究將測試雌性個體是否全為異型合子。本研究記錄了與入侵紅火蟻 hypervariable region 同源區域附近的 10 個微衛星 (microsatellite) 基因座之基因型,並檢定其是否如同 CSD 機制一樣偏離哈溫平衡 (Hardy-Weinberg equilibrium),結果顯示並未有顯著不同,後續的模擬資料顯示這是由於樣本數不足而造成。因此,這些微衛星資料被組成單倍群 (haplotype), 並確認是否有任一區域是如同 CSD 機制預期之雌性個體均為異型合子,合乎預期之位置在一橫跨連續五個基因座的區域內被找到,且與隨機得到相同結果的機率有顯著不同。另外,我們亦比較了 hypervariable region 序列在此兩種火蟻間的區別。系統發生樹(phylogenic tree) 顯示在此區域有跨種多型性 (trans-species polymorphism) 之現象,而在平衡選汰 (balancing selection) 下此為一常見之模式。 CSD 機制必然與平衡選汰相關,因此綜合上述證據,我們可以間接了解此兩種全球入侵性螞蟻,即便分別已久,SDL 同源區域仍在其性別決定機制中扮演著重要的角色。
Sex determination is absolutely critical for sexual organisms. For most insect species the downstream components of the sex determination pathway are conserved, but the upstream genes and mechanisms are very diverse. The red imported fire ant (Solenopsis invicta, RIFA) is a eusocial Hymenoptera which uses the single-locus complementary sex determination (sl-CSD) mechanism whereby heterozygosity at a single sex locus results in females and hemizygosity (or homozygosity) at this locus yields males. Our lab has shown that the master trigger gene for RIFA sex determination, sex determination locus (SDL), is different from that of the honey bee (Apis mellifera). Although SDL has not been cloned in RIFA, it is characterized by a hypervariable region. I tested whether the tropical fire ant (Solenopsis geminata, TFA) also uses SDL, which I hypothesize is likely because these two species are congeneric. Conservation of function between these two species predicts that TFA SDL will always be heterozygous in females and homozygous in males. Diploid males were not available so this study focused on females. I genotyped 10 microsatellite loci in TFA that are putatively orthologous to RIFA loci near the hypervariable region. Absolute female heterozygosity would violate Hardy-Weinberg equilibrium, but analysis of these microsatellite data could not rejected the Hardy-Weinberg model, likely because of insufficient power given the large number of sex alleles. Nevertheless, by constructing 5-loci haplotypes, I never found any homozygous haplotypes in females, onsistent with the CSD model. In addition, the phylogenic tree of the hypervariable region and the nearby gene EGF-like revealed trans-species polymorphisms between TFA and RIFA indicating that the alleles may be older than these two species and suggesting that SDL is likely evolving under balancing selection. Together my results indicate that the homologous SDL locus could be important for sex determination in S. geminata.
口試委員會審定書……………………………………………………………………I
誌謝……………………………………………………………………………………II
中文摘要………………………………………………………………………………III
Abstract………………………………………………………………………………V
Table of contents……………………………………………………………………VII
List of Figures……………………………………………………………………X
List of Tables……………………………………………………………………XI
Abbreviation Table ………………………………………………………………XII
1. Introduction…………………………………………………………………………1
1.1 Sex determination systems…………………………………………………1
1.2 Core sex determination genes are conserved…………………………………2
1.3 Honeybees and the red imported fire ants (RIFA)………….………………….3
1.4 Tropical fire ant (Solenopsis geminata Fabricius, TFA)………4
1.5 Key questions and the hypothesis………………………………………………5
1.6 General research strategy……………………………………………………6
2. Materials and methods ……………………………………………………………9
2.1 Sample collection……………………………………………………………9
2.2 Ant husbandry……………………………………………………………………9
2.3 Microsatellite data analysis…………………………………………………10
2.3.1 The reference genome…………………………… 10
2.3.2 Primer design………………………………… 10
2.3.3 DNA extraction………………………………………………………11
2.3.4 Multiplex PCR……………………………………………………11
2.3.5 Capillary electrophoresis and microsatellite allele identification……………………12
2.3.6 Hardy-Weinberg test…………………………………………………………12
2.3.7 Simulation data for the Hardy-Weinburg test………………………13
2.3.8 The determination of phased data and heterozygosity power analysis………………14
2.4 SDL homologous sequence analysis…………………………………………………15
2.4.1 The homologous sequences of RIFA and outgroup species…………………15
2.4.2 DNA extraction……………………………………………………………………………16
2.4.3 Primer design………………………………………………………………………16
2.4.4 Selection of candidate neutral loci………………………………………………16
2.4.5 Cloning and sequencing……………………………………………………………17
2.4.5.1 Specific fragment PCR…………………………………………………………17
2.4.5.2 Transformation, culturing, and sequencing……………………………18
2.4.6 Analysis of nucleotide diversity and molecular evolution………………18
3. Results………………………………………………………………………………20
3.1 Microsatellite data and the Hardy-Weinburg test potentially suggest that the homologous hypervariable region could function in TFA sex determination……….20
3.1.1 Sequence data show that the SDL homologous region of TFA is similar to RIFA''s…………………………………………………………………20
3.1.2 Hardy-Weinberg equilibrium model could not be rejected based on single microsatellite locus analysis………………………………………………………20
3.1.3 The exact simulation p-value indicates that a sample size of 1.3 times the allele number is necessary to make the analysis significant……………………21
3.1.4 Analysis of heterozygosity of haplotype blocks potentially suggest that the region between THUMP to SDL6-4 as the candidate SDL locus……………21
3.2 Balancing selection is supported in the homologous sequence in the hypervariable region………………………………………………………………………………22
3.2.1 The description of the hypervariable region and the nearby region and genes…………………………………………………………………………22
3.2.2 Gene tree analyses support trans-species polymorphism (TSP) in the hypervariable region………………………………………………….23
4. Discussion……………………………………………………………………………26
4.1 Structural similarity between TFA and RIFA at the SDL homology candidate region……………………………………………………………………………26
4.2 Information from single microsatellite markers are insufficient to confirm or refute the sex locus…………………………………………………………………………26
4.3 The highly diverse haplotypes at the SDL region in TFA…………………………27
4.4 Balancing selection could be supported by the TSP phenomenon…………………28
5. References……………………………………………………………………………45
Appendix…………………………………………………………………………………50
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.
Andersson L, Sigurdardóttir S, Borsch C, Gustafsson K. 1991. Evolution of MHC polymorphism: Extensive sharing of polymorphic sequence motifs between human and bovine DRB alleles. Immunogenetics 33:188-193.
Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, Goudet J, Ross KG, Shoemaker D. 2011. Global Invasion History of the Fire Ant Solenopsis invicta. Science 331:1066-1068.
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T-L, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, The Tree of Sex C. 2014. Sex Determination: Why So Many Ways of Doing It? PLoS Biol. 12:e1001899.
Bell LR, Maine EM, Schedl P, Cline TW. 1988. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55:1037-1046.
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Cheetham RK, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IMJ, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DMD, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Catenazzi MCE, Chang S, Cooley RN, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fajardo KVF, Furey WS, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Jones TAH, Kang G-D, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ng BL, Novo SM, O''Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Pinkard DC, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Rodriguez AC, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Sohna JES, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, vandeVondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ. 2008. Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry. Nature 456:53-59.
Beukeboom L, Van De Zande L. 2010. Genetics of sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea). J Genet 89:333-339.
Beye M, Hasselmann M, Fondrk MK, Page Jr RE, Omholt SW. 2003. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419-429.
Biewer M, Schlesinger F, Hasselmann M. 2015. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species. Front. Genet. 6:124.
Brownstein MJ, Carpten JD, Smith JR. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20:1004-1006, 1008-1010.
Cho S, Huang ZY, Green DR, Smith DR, Zhang J. 2006. Evolution of the complementary sex-determination gene of honey bees: Balancing selection and trans-species polymorphisms. Genome Res. 16:1366-1375.
Cho S, Huang ZY, Zhang J. 2007. Sex-Specific Splicing of the Honeybee doublesex Gene Reveals 300 Million Years of Evolution at the Bottom of the Insect Sex-Determination Pathway. Genetics 177:1733-1741.
de Boer JG, Kuijper B, Heimpel GE, Beukeboom LW. 2012. Sex determination meltdown upon biological control introduction of the parasitoid Cotesia rubecula? Evol. Appl. 5:444-454.
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, deWinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. 2009. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323:133-138.
Garrigan D, Hedrick PW, Mitton J. 2003. Perspective: Detecting Adaptive Molecular Polymorphism: Lessons from the MHC. Evolution 57:1707-1722.
Gempe T, Beye M. 2011. Function and evolution of sex determination mechanisms, genes and pathways in insects. Bioessays 33:52-60.
Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M. 2009. Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biol. 7:e1000222.
Gotzek D, Axen HJ, Suarez AV, Helms Cahan S, Shoemaker D. 2015. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol. Ecol. 24:374-388.
Gotzek D, Clarke J, Shoemaker D. 2010. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae). BMC Evol. Biol. 10:300.
Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52.
Heimpel GE, de Boer JG. 2008. Sex Determination in the Hymenoptera. Annu. Rev. Entomol. 53:209-230.
Inoue H, Fukumori Y, Hiroyoshi T. 1983. Mapping of autosomal male-determining factors of the housefly, Musca domestica L., by means of sex-reversal. The Jpn. j. of genet. 58:451-461.
Katoh K, Standley DM. 2013. MAFFT MultipleSequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30:772-780.
Kinene T, Wainaina J, Maina S, Boykin L. 2016. Rooting Trees, Method for. Encycl. Evol. Biol. 3:489-493.
Klein J. 1980. Generation of diversity at MHC loci: implications for T-cell receptor repertoires. Immunology 80:239-253.
Kondrashov AS. 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336:435-440.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol.
Lai LC, Hua KH, Yang CC, Huang RN, Wu WJ. 2009. Secretion Profiles of Venom Alkaloids in Solenopsis geminata (Hymenoptera: Formicidae) in Taiwan. Environ. Entomol. 38:879-884.
Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44:W242-W245.
Mikheyev AS, Linksvayer TA. 2015. Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns. eLife 4:e04775.
Miyakawa MO, Mikheyev AS. 2015. QTL Mapping of Sex Determination Loci Supports an Ancient Pathway in Ants and Honey Bees. PLoS Genet. 11:e1005656.
Muller HJ. 1964. The relation of recombination to mutational advance. Mutat. Res-Fund. Mol. M. 1:2-9.
Nagl S, Tichy H, Mayer WE, Takahata N, Klein J. 1998. Persistence of neutral polymorphisms in Lake Victoria cichlid fish. Proc. Natl. Acad. Sci. 95:14238-14243.
Paradis E. 2010. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419-420.
Pitts J, McHugh Ross KG. 2005. Cladistic analysis of the fire ants of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Zool Scr. 34.
Pitts JP, McHugh JV, Ross KG. 2005. Cladistic analysis of the fire ants of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Zool Scr. 34:493-505.
R Development Core Team. 2016. Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Ross K, Fletcher DC. 1986. Diploid male production — a significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 19:283-291.
Ross KG. 1985. Genetic origin of male diploidy in the fire ant, Solenopsis invicta (Hymenoptera : Formicidae), and its evolutionary significance. Evolution 39:888-903.
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19.
Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P, Elsik CG, Gadau J, Grimmelikhuijzen CJ, Hasselmann M, Lozier JD, Robertson HM, Smagghe G, Stolle E, Van Vaerenbergh M, Waterhouse RM, Bornberg-Bauer E, Klasberg S, Bennett AK, Camara F, Guigo R, Hoff K, Mariotti M, Munoz-Torres M, Murphy T, Santesmasses D, Amdam GV, Beckers M, Beye M, Biewer M, Bitondi MM, Blaxter ML, Bourke AF, Brown MJ, Buechel SD, Cameron R, Cappelle K, Carolan JC, Christiaens O, Ciborowski KL, Clarke DF, Colgan TJ, Collins DH, Cridge AG, Dalmay T, Dreier S, du Plessis L, Duncan E, Erler S, Evans J, Falcon T, Flores K, Freitas FC, Fuchikawa T, Gempe T, Hartfelder K, Hauser F, Helbing S, Humann FC, Irvine F, Jermiin LS, Johnson CE, Johnson RM, Jones AK, Kadowaki T, Kidner JH, Koch V, Kohler A, Kraus FB, Lattorff HM, Leask M, Lockett GA, Mallon EB, Antonio DS, Marxer M, Meeus I, Moritz RF, Nair A, Napflin K, Nissen I, Niu J, Nunes FM, Oakeshott JG, Osborne A, Otte M, Pinheiro DG, Rossie N, Rueppell O, Santos CG, Schmid-Hempel R, Schmitt BD, Schulte C, Simoes ZL, Soares MP, Swevers L, Winnebeck EC, Wolschin F, Yu N, Zdobnov EM, Aqrawi PK, Blankenburg KP, Coyle M, Francisco L, Hernandez AG, Holder M, Hudson ME, Jackson L, Jayaseelan J, Joshi V, Kovar C, Lee SL, Mata R, Mathew T, Newsham IF, Ngo R, Okwuonu G, Pham C, Pu LL, Saada N, Santibanez J, Simmons D, Thornton R, Venkat A, Walden KK, Wu YQ, Debyser G, Devreese B, Asher C, Blommaert J, Chipman AD, Chittka L, Fouks B, Liu J, O''Neill MP, Sumner S, Puiu D, Qu J, Salzberg SL, Scherer SE, Muzny DM, Richards S, Robinson GE, Gibbs RA, Schmid-Hempel P, Worley KC. 2015. The genomes of two key bumblebee species with primitive eusocial organization. Genome biol. 16:76.
Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, Wimmer EA, van de Zande L, Robinson MD, Beukeboom LW, Bopp D. 2017. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science 356:642-645.
Shukla JN, Palli SR. 2012. Sex determination in beetles: Production of all male progeny by Parental RNAi knockdown of transformer. Sci. Rep. 2.
Snell GD. 1935. The Determination of Sex in Habrobracon. Proc. Natl. Acad. Sci. U. S. A. 21:446-453.
Takahata N. 1990. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc. Natl. Acad. Sci. USA 87:2419.
Takahata N, Nei M. 1990. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967-978.
Vekemans X, Slatkin M. 1994. Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics 137:1157-1165.
Verhulst EC, Beukeboom LW, van de Zande L. 2010. Maternal Control of Haplodiploid Sex Determination in the Wasp Nasonia. Science 328:620-623.
Wegner KM, Eizaguirre C. 2012. New(t)s and views from hybridizing MHC genes: introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 21:779-781.
Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG. 2011. The genome of the fire ant Solenopsis invicta. Proc. Natl. Acad. Sci. U. S. A. 108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top