|
1.Sun, T.-M.; Wang, C.-S.; Liao, C.-S.; Lin, S.-Y.; Perumal, P.; Chiang, C.-W.; Chen, Y.-F., Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano 2015, 9, 12436-12441. 2.Liao, Y. M.; Lai, Y. C.; Perumal, P.; Liao, W. C.; Chang, C. Y.; Liao, C. S.; Lin, S. Y.; Chen, Y. F., Highly Stretchable Label‐like Random Laser on Universal Substrates. Adv. Mater. Tech. 2016, 1. 3.Wang, C. S.; Nieh, C. H.; Lin, T. Y.; Chen, Y. F., Electrically Driven Random Laser Memory. Adv. Funct. Mater. 2015, 25, 4058-4063. 4.Redding, B.; Choma, M. A.; Cao, H., Speckle-free laser imaging using random laser illumination. Nature photonics 2012, 6, 355-359. 5.Polson, R. C.; Vardeny, Z. V., Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289-1291. 6.Luan, F.; Gu, B.; Gomes, A. S.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in nanocomposite random media. Nano Today 2015, 10, 168-192. 7.Wiersma, D. S., The physics and applications of random lasers. Nat. Phys. 2008, 4, 359-367. 8.Wiersma, D. S.; Cavalieri, S., Light emission: A temperature-tunable random laser. Nature 2001, 414, 708-709. 9.Sznitko, L.; Cyprych, K.; Szukalski, A.; Miniewicz, A.; Mysliwiec, J., Coherent–incoherent random lasing based on nano-rubbing induced cavities. Laser Physics Letters 2014, 11, 045801. 10.Dice, G.; Mujumdar, S.; Elezzabi, A., Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett. 2005, 86, 131105. 11.Popov, O.; Zilbershtein, A.; Davidov, D., Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength. Appl. Phys. Lett. 2006, 89, 191116. 12.Zhai, T.; Zhang, X.; Pang, Z.; Su, X.; Liu, H.; Feng, S.; Wang, L., Random laser based on waveguided plasmonic gain channels. Nano Lett. 2011, 11, 4295-4298. 13.Meng, X.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K., Plasmonically Controlled Lasing Resonance with Metallic− Dielectric Core− Shell Nanoparticles. Nano Lett. 2011, 11, 1374-1378. 14.Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737. 15.Shen, J.; Zhu, Y.; Yang, X.; Li, C., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686-3699. 16.Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R., Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546-18551. 17.Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P., Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308-11309. 18.Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M., Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110-18114. 19.Li, Q.; Ohulchanskyy, T. Y.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N., Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062-12068. 20.Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y., Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695-6697. 21.Haider, G.; Roy, P.; Chiang, C. W.; Tan, W. C.; Liou, Y. R.; Chang, H. T.; Liang, C. T.; Shih, W. H.; Chen, Y. F., Electrical‐Polarization‐Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Adv. Funct. Mater. 2016, 26, 620-628. 22.Guo, D.-Y.; Shan, C.-X.; Liu, K.-K.; Lou, Q.; Shen, D.-Z., Surface plasmon effect of carbon nanodots. Nanoscale 2015, 7, 18908-18913. 23.Pan, D.; Guo, L.; Zhang, J.; Xi, C.; Xue, Q.; Huang, H.; Li, J.; Zhang, Z.; Yu, W.; Chen, Z., Cutting sp 2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314-3318. 24.Liu, H.; Ye, T.; Mao, C., Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473-6475. 25.Smuk, A.; Lazaro, E.; Olson, L. P.; Lawandy, N., Random laser action in bovine semen. Opt. Commun. 2011, 284, 1257-1258. 26.Wang, Z.; Shi, X.; Wei, S.; Sun, Y.; Wang, Y.; Zhou, J.; Shi, J.; Liu, D., Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Physics Letters 2014, 11, 095002. 27.Jewett, S. A.; Makowski, M. S.; Andrews, B.; Manfra, M. J.; Ivanisevic, A., Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater. 2012, 8, 728-733. 28.Perumal, P.; Wang, C.; Boopathi, K. M.; Haider, G.; Liao, W.-C.; Chen, Y.-F., Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics 2016. 29.Ding, J.; Hagerott, M.; Ishihara, T.; Jeon, H.; Nurmikko, A., (Zn, Cd) Se/ZnSe quantum-well lasers: excitonic gain in an inhomogeneously broadened quasi-two-dimensional system. Phys. Rev. B 1993, 47, 10528. 30.Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A., Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335-339. 31.Wiersma, D. S.; Lagendijk, A., Light diffusion with gain and random lasers. Phys. Rev. E 1996, 54, 4256. 32.Cao, H.; Zhao, Y.; Ho, S.; Seelig, E.; Wang, Q. H.; Chang, R. P., Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278. 33.Mujumdar, S., Quantification of lineshape fluctuations in coherent random lasers. SPIE Newsroom 2010. 34.Weng, T.-M.; Chang, T.-H.; Lu, C.-P.; Lu, M.-L.; Chen, J.-Y.; Cheng, S.-H.; Nieh, C.-H.; Chen, Y.-F., Mode control of random laser action assisted by whispering-gallery-mode resonance. ACS Photonics 2014, 1, 1258-1263. 35.Ling, Y.; Cao, H.; Burin, A.; Ratner, M. A.; Liu, X.; Chang, R. P., Investigation of random lasers with resonant feedback. Phys. Rev. A 2001, 64, 063808. 36.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308. 37.Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S.-H.; Ahn, K. J., Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403. 38.Yang, N.; Swain, G. M.; Jiang, X., Nanocarbon electrochemistry and electroanalysis: current status and future perspectives. Electroanalysis 2016, 28, 27-34. 39.Cheng, S.-H.; Yeh, Y.-C.; Lu, M.-L.; Chen, C.-W.; Chen, Y.-F., Enhancement of laser action in ZnO nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes. Opt. Express 2012, 20, A799-A805. 40.Liu, Y.; Willis, R. F., Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 2010, 81, 081406. 41.Hwang, E.; Sarma, S. D., Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 2007, 75, 205418. 42.Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H. A.; Liang, X.; Zettl, A.; Shen, Y. R., Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630-634. 43.Koppens, F. H.; Chang, D. E.; Garcia de Abajo, F. J., Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370-3377.
|