(54.236.58.220) 您好!臺灣時間:2021/03/05 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彥翔
研究生(外文):Yen-Hsiang Huang
論文名稱:週期性孔洞結構石墨烯組成的異質結構酵素高靈敏度催化型尿酸感測器
論文名稱(外文):Patterned Graphene Based Multiple Heterojunctions as Ultrasensitive Enzymatic Uric Acid Sensors
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:37
中文關鍵詞:石墨烯石墨烯挖洞異質結構生物感測器氧化鋅尿酸酶尿酸
外文關鍵詞:graphenepattern grapheneheterojunctionbiosensorZnOuricaseuric acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣體偵測器、生物感測器是近幾年熱門的論文題目,石墨烯在這幾年也被拿來做這些應用的材料,石墨烯/氧化鋅/P型矽基板的異質結構作為電性量測的主要結構,在石墨烯上修飾尿酸酶,使得在不同濃度下的尿酸碰到尿酸酶時,產生化學反應的速度與量的不同,使得載子在石墨烯上被吸收,而導致費米能階的改變,進而影響異質結構能帶的彎曲,不同濃度導致產生的載子數目不同,因此偵測到不同電信訊號。再來第二部分研究著重於在石墨烯上挖洞,藉以改變酵素所能吸收的效率,探究挖洞大小與感測的靈敏度或反應時間的關聯性。
Gas sensors and biosensors are hot topics in research in recent years. Graphene/ZnO/p-type silicon multiple heterojunctions is the main structure used in this work to serve as biosensors. By decorating uricase on graphene, uricase would conduct chemical reaction. Different concentration of uric acid would produce different number of chemical products with different reaction rate. The Fermi level would be changed when carriers were doped in graphene, which would result in band bending, and the measured electrical signal would be changed. Second part of this research is about patterned graphene heterojunctions. When uricase attaches on patterned graphene, we try to find out the relationship between different size of holes and sensitivity on the detection of uric acid.
口試委員審定書..................................i
致謝...........................................ii
中文摘要........................................iii
ABSTRACT.......................................iv
CONTENTS.......................................v
LIST OF FIGURES................................vii
LIST OF TABLES.................................viii
Chapter 1 Introduction...................1
Chapter 2 Theoretical Background.........3
2.1 Uric Acid Sensor.......................3
2.2 Graphene, 2D material..................4
2.3 Schottky barrier diodes................4
2.4 Photolithography.......................5
Chapter 3 Experimental Details...........7
3.1 Current-Voltage (I-V) measurement......7
3.2 Uric acid measurement system...........7
3.3 Radio-Frequency (RF) sputtering........8
3.4 Thermal evaporation....................9
3.5 Chemical Vapor Deposition System.......10
3.6 Photolithography.......................13
3.7 Patterned Graphene.....................13
3.8 The performance of patterned graphene..15
3.8.1 Adhesion of Uricase....................15
3.8.2 Adhesion of O2.........................16
3.9 Sample Preparation.....................17
Chapter 4 Results and Discussion.........19
Chapter 5 Conclusion.....................29
REFERENCE......................................30
Chapter 1
[1] Grabowska, I., Chudy, M., Dybko, A., & Brzozka, Z. (2008). Uric acid determination in a miniaturized flow system with dual optical detection. Sensors and Actuators B: Chemical, 130(1), 508-513.
[2] Kand''ár, R., Žáková, P., & Mužáková, V. (2006). Monitoring of antioxidant properties of uric acid in humans for a consideration measuring of levels of allantoin in plasma by liquid chromatography. Clinica Chimica Acta, 365(1), 249-256.
[3] Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534.
[4] Ni, Z. H., Ponomarenko, L. A., Nair, R. R., Yang, R., Anissimova, S., Grigorieva, I. V., ... & Novoselov, K. S. (2010). On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Letters, 10(10), 3868-3872.
[5] Dan, Y., Lu, Y., Kybert, N. J., Luo, Z., & Johnson, A. C. (2009). Intrinsic response of graphene vapor sensors. Nano Letters, 9(4), 1472-1475.
[6] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109.
[7] Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, 5(7), 487-496.
[8] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611-622.
[9] Brownson, D. A., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11), 4873-4885.
[10] Balandin, A. A. (2013). Low-frequency 1/f noise in graphene devices. Nature Nanotechnology, 8(8), 549-555.
Chapter 2
[1] Galbán, J., Andreu, Y., Almenara, M. J., de Marcos, S., & Castillo, J. R. (2001). Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta, 54(5), 847-854.
[2] Bulger, H. A., & Johns, H. E. (1941). The determination of plasma uric acid. Journal of Biological Chemistry, 140(2), 427-440.
[3] Wu, F., Huang, Y., & Li, Q. (2005). Animal tissue-based chemiluminescence sensing of uric acid. Analytica Chimica Acta, 536(1), 107-113.
[4] Amjadi, M., Manzoori, J. L., & Hallaj, T. (2014). Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. Journal of Luminescence, 153, 73-78.
[5] Roda, A., Mirasoli, M., Michelini, E., Di Fusco, M., Zangheri, M., Cevenini, L., ... & Simoni, P. (2016). Progress in chemical luminescence-based biosensors: a critical review. Biosensors and Bioelectronics, 76, 164-179.
[6] Rocha, D. L., & Rocha, F. R. (2010). A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchemical Journal, 94(1), 53-59.
[7] Perelló, J., Sanchis, P., & Grases, F. (2005). Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry. Journal of Chromatography B, 824(1), 175-180.
[8] Zhao, F. Y., Wang, Z. H., Wang, H., Zhao, R., & Ding, M. Y. (2011). Determination of uric acid in human urine by ion chromatography with conductivity detector. Chinese Chemical Letters, 22(3), 342-345.
[9] Dai, X., Fang, X., Zhang, C., Xu, R., & Xu, B. (2007). Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. Journal of Chromatography B, 857(2), 287-295.
[10] Xu, D. K., Hua, L., Li, Z. M., & Chen, H. Y. (1997). Identification and quantitative determination of uric acid in human urine and plasma by capillary electrophoresis with amperometric detection. Journal of Chromatography B: Biomedical Sciences and Applications, 694(2), 461-466.
[11] Zhao, S., Wang, J., Ye, F., & Liu, Y. M. (2008). Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection. Analytical Biochemistry, 378(2), 127-131.
[12] Bhargava, A. K., Lal, H., & Pundir, C. S. (1999). Discrete analysis of serum uric acid with immobilized uricase and peroxidase. Journal of Biochemical and Biophysical Methods, 39(3), 125-136.
[13] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109.
[14] Schwierz, F. (2010). Graphene transistors. Nature nanotechnology, 5(7), 487-496.
[15] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611-622.
[16] Brownson, D. A., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11), 4873-4885.
[17] Hu, C. (2010). Modern semiconductor devices for integrated circuits. Prentice Hall.

Chapter 3
[1] Thompson, L. F. (1983). An introduction to lithography.
Chapter 4
[1] Ryu, S., Liu, L., Berciaud, S., Yu, Y. J., Liu, H., Kim, P., ... & Brus, L. E. (2010). Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Letters, 10(12), 4944-4951.
[2] Li, L., Du, Z., Liu, S., Hao, Q., Wang, Y., Li, Q., & Wang, T. (2010). A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 82(5), 1637-1641.
[3] Wu, C. L., Cheng, C. C., Sun, T. M., Haider, G., Liou, Y. R., Tan, W. J., ... & Chen, Y. F. (2016). Graphene based multiple heterojunctions as an effective approach for high-performance gas sensing. Applied Physics Letters, 109(12), 122107.
[4] Kan, J., Pan, X., & Chen, C. (2004). Polyaniline–uricase biosensor prepared with template process. Biosensors and Bioelectronics, 19(12), 1635-1640.
[5] Jiang, Y., Wang, A., & Kan, J. (2007). Selective uricase biosensor based on polyaniline synthesized in ionic liquid. Sensors and Actuators B: Chemical, 124(2), 529-534.
[6] Arora, K., Sumana, G., Saxena, V., Gupta, R. K., Gupta, S. K., Yakhmi, J. V., ... & Malhotra, B. D. (2007). Improved performance of polyaniline-uricase biosensor. Analytica Chimica Acta, 594(1), 17-23.
[7] Pan, X., Zhou, S., Chen, C., & Kan, J. (2006). Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline. Sensors and Actuators B: Chemical, 113(1), 329-334.
[8] Arslan, F. (2008). An amperometric biosensor for uric acid determination prepared from uricase immobilized in polyaniline-polypyrrole film. Sensors, 8(9), 5492-5500.
[9] Moraes, M. L., Rodrigues Filho, U. P., Oliveira, O. N., & Ferreira, M. (2007). Immobilization of uricase in layer-by-layer films used in amperometric biosensors for uric acid. Journal of Solid State Electrochemistry, 11(11), 1489-1495.
[10] Zhao, C., Wan, L., Wang, Q., Liu, S., & Jiao, K. (2009). Highly sensitive and selective uric acid biosensor based on direct electron transfer of hemoglobin-encapsulated chitosan-modified glassy carbon electrode. Analytical Sciences, 25(8), 1013-1017.
[11] Erden, P. E., Pekyardimci, Ş., & Kiliç, E. (2011). Amperometric carbon paste enzyme electrodes for uric acid determination with different mediators. Collection of Czechoslovak Chemical Communications, 76(9), 1055-1073.
[12] Zhang, F., Wang, X., Ai, S., Sun, Z., Wan, Q., Zhu, Z., ... & Yamamoto, K. (2004). Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Analytica Chimica Acta, 519(2), 155-160.
[13] Zhang, F. F., Wang, X. L., Li, C. X., Li, X. H., Wan, Q., Xian, Y. Z., ... & Yamamoto, K. (2005). Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide. Analytical and Bioanalytical Chemistry, 382(6), 1368-1373.
[14] Chauhan, N., & Pundir, C. S. (2011). An amperometric uric acid biosensor based on multiwalled carbon nanotube–gold nanoparticle composite. Analytical Biochemistry, 413(2), 97-103.
[15] Rawal, R., Chawla, S., Chauhan, N., Dahiya, T., & Pundir, C. S. (2012). Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite. International Journal of Biological Bacromolecules, 50(1), 112-118.
[16] Wang, Y., Yu, L., Zhu, Z., Zhang, J., & Zhu, J. (2009). Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes. Analytical Letters, 42(5), 775-789.
[17] Behera, S., & Raj, C. R. (2007). Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid. Biosensors and Bioelectronics, 23(4), 556-561.
[18] Ahuja, T., Kumar, D., Tanwar, V. K., Sharma, V., Singh, N., & Biradar, A. M. (2010). An amperometric uric acid biosensor based on Bis [sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode. Thin Solid Films, 519(3), 1128-1134.
[19] Nakaminami, T., Ito, S. I., Kuwabata, S., & Yoneyama, H. (1999). Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer. Analytical Chemistry, 71(10), 1928-1934.
[20] Gilmartin, M. A., & Hart, J. P. (1994). Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase. Analyst, 119(5), 833-840.
[21] Luo, Y. C., Do, J. S., & Liu, C. C. (2006). An amperometric uric acid biosensor based on modified Ir–C electrode. Biosensors and Bioelectronics, 22(4), 482-488.
[22] Kanyong, P., Pemberton, R. M., Jackson, S. K., & Hart, J. P. (2012). Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Analytical Biochemistry, 428(1), 39-43.
[23] Akyilmaz, E., Sezgintürk, M. K., & Dinçkaya, E. (2003). A biosensor based on urate oxidase–peroxidase coupled enzyme system for uric acid determination in urine. Talanta, 61(2), 73-79.
[24] Uchiyama, S., & Sakamoto, H. (1997). Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor. Talanta, 44(8), 1435-1439.
[25] Zhang, Y., Wen, G., Zhou, Y., Shuang, S., Dong, C., & Choi, M. M. (2007). Development and analytical application of a uric acid biosensor using an uricase-immobilized eggshell membrane. Biosensors and Bioelectronics, 22(8), 1791-1797.
[26] Wang, X., Hagiwara, T., & Uchiyama, S. (2007). Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor. Analytica Chimica Acta, 587(1), 41-46.
[27] Zhang, Y. Q., Shen, W. D., Gu, R. A., Zhu, J., & Xue, R. Y. (1998). Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane. Analytica Chimica Acta, 369(1), 123-128.
[28] Miland, E., Ordieres, A. M., Blanco, P. T., Smyth, M. R., & Fagain, C. O. (1996). Poly (o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid. Talanta, 43(5), 785-796.
[29] Çete, S., Yaşar, A., & Arslan, F. (2006). An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Artificial cells, Blood Substitutes, and Biotechnology, 34(3), 367-380.
[30] Dutra, R. F., Moreira, K. A., Oliveira, M. I. P., Araujo, A. N., Montenegro, M. C. B. S., & Silva, V. L. (2005). An inexpensive biosensor for uric acid determination in human serum by flow‐injection analysis. Electroanalysis, 17(8), 701-705.
[31] Kuwabata, S., Nakaminami, T., Ito, S. I., & Yoneyama, H. (1998). Preparation and properties of amperometric uric acid sensors. Sensors and Actuators B: Chemical, 52(1), 72-77.
[32] Arora, K., Tomar, M., & Gupta, V. (2011). Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film. Biosensors and Bioelectronics, 30(1), 333-336.
[33] Tsai, W. C., & Wen, S. T. (2006). Determination of uric acid in serum by a mediated amperometric biosensor. Analytical Letters, 39(5), 891-901.
[34] Wang, X., Yin, F., & Tu, Y. (2010). A uric acid biosensor based on Langmuir-Blodgett film as an enzyme-immobilizing matrix. Analytical Letters, 43(9), 1507-1515.
[35] Hoshi, T., Saiki, H., & Anzai, J. I. (2003). Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta, 61(3), 363-368.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔