|
Chapter 1 [1] Grabowska, I., Chudy, M., Dybko, A., & Brzozka, Z. (2008). Uric acid determination in a miniaturized flow system with dual optical detection. Sensors and Actuators B: Chemical, 130(1), 508-513. [2] Kand''ár, R., Žáková, P., & Mužáková, V. (2006). Monitoring of antioxidant properties of uric acid in humans for a consideration measuring of levels of allantoin in plasma by liquid chromatography. Clinica Chimica Acta, 365(1), 249-256. [3] Geim, A. K. (2009). Graphene: status and prospects. Science, 324(5934), 1530-1534. [4] Ni, Z. H., Ponomarenko, L. A., Nair, R. R., Yang, R., Anissimova, S., Grigorieva, I. V., ... & Novoselov, K. S. (2010). On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Letters, 10(10), 3868-3872. [5] Dan, Y., Lu, Y., Kybert, N. J., Luo, Z., & Johnson, A. C. (2009). Intrinsic response of graphene vapor sensors. Nano Letters, 9(4), 1472-1475. [6] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109. [7] Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, 5(7), 487-496. [8] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611-622. [9] Brownson, D. A., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11), 4873-4885. [10] Balandin, A. A. (2013). Low-frequency 1/f noise in graphene devices. Nature Nanotechnology, 8(8), 549-555. Chapter 2 [1] Galbán, J., Andreu, Y., Almenara, M. J., de Marcos, S., & Castillo, J. R. (2001). Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta, 54(5), 847-854. [2] Bulger, H. A., & Johns, H. E. (1941). The determination of plasma uric acid. Journal of Biological Chemistry, 140(2), 427-440. [3] Wu, F., Huang, Y., & Li, Q. (2005). Animal tissue-based chemiluminescence sensing of uric acid. Analytica Chimica Acta, 536(1), 107-113. [4] Amjadi, M., Manzoori, J. L., & Hallaj, T. (2014). Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. Journal of Luminescence, 153, 73-78. [5] Roda, A., Mirasoli, M., Michelini, E., Di Fusco, M., Zangheri, M., Cevenini, L., ... & Simoni, P. (2016). Progress in chemical luminescence-based biosensors: a critical review. Biosensors and Bioelectronics, 76, 164-179. [6] Rocha, D. L., & Rocha, F. R. (2010). A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchemical Journal, 94(1), 53-59. [7] Perelló, J., Sanchis, P., & Grases, F. (2005). Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry. Journal of Chromatography B, 824(1), 175-180. [8] Zhao, F. Y., Wang, Z. H., Wang, H., Zhao, R., & Ding, M. Y. (2011). Determination of uric acid in human urine by ion chromatography with conductivity detector. Chinese Chemical Letters, 22(3), 342-345. [9] Dai, X., Fang, X., Zhang, C., Xu, R., & Xu, B. (2007). Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. Journal of Chromatography B, 857(2), 287-295. [10] Xu, D. K., Hua, L., Li, Z. M., & Chen, H. Y. (1997). Identification and quantitative determination of uric acid in human urine and plasma by capillary electrophoresis with amperometric detection. Journal of Chromatography B: Biomedical Sciences and Applications, 694(2), 461-466. [11] Zhao, S., Wang, J., Ye, F., & Liu, Y. M. (2008). Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection. Analytical Biochemistry, 378(2), 127-131. [12] Bhargava, A. K., Lal, H., & Pundir, C. S. (1999). Discrete analysis of serum uric acid with immobilized uricase and peroxidase. Journal of Biochemical and Biophysical Methods, 39(3), 125-136. [13] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109. [14] Schwierz, F. (2010). Graphene transistors. Nature nanotechnology, 5(7), 487-496. [15] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611-622. [16] Brownson, D. A., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11), 4873-4885. [17] Hu, C. (2010). Modern semiconductor devices for integrated circuits. Prentice Hall.
Chapter 3 [1] Thompson, L. F. (1983). An introduction to lithography. Chapter 4 [1] Ryu, S., Liu, L., Berciaud, S., Yu, Y. J., Liu, H., Kim, P., ... & Brus, L. E. (2010). Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Letters, 10(12), 4944-4951. [2] Li, L., Du, Z., Liu, S., Hao, Q., Wang, Y., Li, Q., & Wang, T. (2010). A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 82(5), 1637-1641. [3] Wu, C. L., Cheng, C. C., Sun, T. M., Haider, G., Liou, Y. R., Tan, W. J., ... & Chen, Y. F. (2016). Graphene based multiple heterojunctions as an effective approach for high-performance gas sensing. Applied Physics Letters, 109(12), 122107. [4] Kan, J., Pan, X., & Chen, C. (2004). Polyaniline–uricase biosensor prepared with template process. Biosensors and Bioelectronics, 19(12), 1635-1640. [5] Jiang, Y., Wang, A., & Kan, J. (2007). Selective uricase biosensor based on polyaniline synthesized in ionic liquid. Sensors and Actuators B: Chemical, 124(2), 529-534. [6] Arora, K., Sumana, G., Saxena, V., Gupta, R. K., Gupta, S. K., Yakhmi, J. V., ... & Malhotra, B. D. (2007). Improved performance of polyaniline-uricase biosensor. Analytica Chimica Acta, 594(1), 17-23. [7] Pan, X., Zhou, S., Chen, C., & Kan, J. (2006). Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline. Sensors and Actuators B: Chemical, 113(1), 329-334. [8] Arslan, F. (2008). An amperometric biosensor for uric acid determination prepared from uricase immobilized in polyaniline-polypyrrole film. Sensors, 8(9), 5492-5500. [9] Moraes, M. L., Rodrigues Filho, U. P., Oliveira, O. N., & Ferreira, M. (2007). Immobilization of uricase in layer-by-layer films used in amperometric biosensors for uric acid. Journal of Solid State Electrochemistry, 11(11), 1489-1495. [10] Zhao, C., Wan, L., Wang, Q., Liu, S., & Jiao, K. (2009). Highly sensitive and selective uric acid biosensor based on direct electron transfer of hemoglobin-encapsulated chitosan-modified glassy carbon electrode. Analytical Sciences, 25(8), 1013-1017. [11] Erden, P. E., Pekyardimci, Ş., & Kiliç, E. (2011). Amperometric carbon paste enzyme electrodes for uric acid determination with different mediators. Collection of Czechoslovak Chemical Communications, 76(9), 1055-1073. [12] Zhang, F., Wang, X., Ai, S., Sun, Z., Wan, Q., Zhu, Z., ... & Yamamoto, K. (2004). Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Analytica Chimica Acta, 519(2), 155-160. [13] Zhang, F. F., Wang, X. L., Li, C. X., Li, X. H., Wan, Q., Xian, Y. Z., ... & Yamamoto, K. (2005). Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide. Analytical and Bioanalytical Chemistry, 382(6), 1368-1373. [14] Chauhan, N., & Pundir, C. S. (2011). An amperometric uric acid biosensor based on multiwalled carbon nanotube–gold nanoparticle composite. Analytical Biochemistry, 413(2), 97-103. [15] Rawal, R., Chawla, S., Chauhan, N., Dahiya, T., & Pundir, C. S. (2012). Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite. International Journal of Biological Bacromolecules, 50(1), 112-118. [16] Wang, Y., Yu, L., Zhu, Z., Zhang, J., & Zhu, J. (2009). Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes. Analytical Letters, 42(5), 775-789. [17] Behera, S., & Raj, C. R. (2007). Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid. Biosensors and Bioelectronics, 23(4), 556-561. [18] Ahuja, T., Kumar, D., Tanwar, V. K., Sharma, V., Singh, N., & Biradar, A. M. (2010). An amperometric uric acid biosensor based on Bis [sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode. Thin Solid Films, 519(3), 1128-1134. [19] Nakaminami, T., Ito, S. I., Kuwabata, S., & Yoneyama, H. (1999). Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer. Analytical Chemistry, 71(10), 1928-1934. [20] Gilmartin, M. A., & Hart, J. P. (1994). Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase. Analyst, 119(5), 833-840. [21] Luo, Y. C., Do, J. S., & Liu, C. C. (2006). An amperometric uric acid biosensor based on modified Ir–C electrode. Biosensors and Bioelectronics, 22(4), 482-488. [22] Kanyong, P., Pemberton, R. M., Jackson, S. K., & Hart, J. P. (2012). Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Analytical Biochemistry, 428(1), 39-43. [23] Akyilmaz, E., Sezgintürk, M. K., & Dinçkaya, E. (2003). A biosensor based on urate oxidase–peroxidase coupled enzyme system for uric acid determination in urine. Talanta, 61(2), 73-79. [24] Uchiyama, S., & Sakamoto, H. (1997). Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor. Talanta, 44(8), 1435-1439. [25] Zhang, Y., Wen, G., Zhou, Y., Shuang, S., Dong, C., & Choi, M. M. (2007). Development and analytical application of a uric acid biosensor using an uricase-immobilized eggshell membrane. Biosensors and Bioelectronics, 22(8), 1791-1797. [26] Wang, X., Hagiwara, T., & Uchiyama, S. (2007). Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor. Analytica Chimica Acta, 587(1), 41-46. [27] Zhang, Y. Q., Shen, W. D., Gu, R. A., Zhu, J., & Xue, R. Y. (1998). Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane. Analytica Chimica Acta, 369(1), 123-128. [28] Miland, E., Ordieres, A. M., Blanco, P. T., Smyth, M. R., & Fagain, C. O. (1996). Poly (o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid. Talanta, 43(5), 785-796. [29] Çete, S., Yaşar, A., & Arslan, F. (2006). An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Artificial cells, Blood Substitutes, and Biotechnology, 34(3), 367-380. [30] Dutra, R. F., Moreira, K. A., Oliveira, M. I. P., Araujo, A. N., Montenegro, M. C. B. S., & Silva, V. L. (2005). An inexpensive biosensor for uric acid determination in human serum by flow‐injection analysis. Electroanalysis, 17(8), 701-705. [31] Kuwabata, S., Nakaminami, T., Ito, S. I., & Yoneyama, H. (1998). Preparation and properties of amperometric uric acid sensors. Sensors and Actuators B: Chemical, 52(1), 72-77. [32] Arora, K., Tomar, M., & Gupta, V. (2011). Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film. Biosensors and Bioelectronics, 30(1), 333-336. [33] Tsai, W. C., & Wen, S. T. (2006). Determination of uric acid in serum by a mediated amperometric biosensor. Analytical Letters, 39(5), 891-901. [34] Wang, X., Yin, F., & Tu, Y. (2010). A uric acid biosensor based on Langmuir-Blodgett film as an enzyme-immobilizing matrix. Analytical Letters, 43(9), 1507-1515. [35] Hoshi, T., Saiki, H., & Anzai, J. I. (2003). Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta, 61(3), 363-368.
|