跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宇欣
研究生(外文):Yu-Hsin Hsieh
論文名稱:自迴避行走模型於正規晶格之演算法及應用
論文名稱(外文):Efficient Algorithm of Interacting Self-Avoiding Walks on Lattice Models and Applications
指導教授:胡進錕胡進錕引用關係
口試日期:2017-01-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:71
中文關鍵詞:自迴避行走模型相變兩端點距離蛋白質摺疊蛋白質聚集
外文關鍵詞:interacting self-avoiding walksconformationend-to-end distancephase transitionHP model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們發展出可快速計算晶格交互作用性自迴避行走模型(ISAW) 準確配分函數的演算法,並將此演算法應用到數個子題上。首先,我們在二維正方和三維立方晶格上精確計算(exact enumeration) ISAW 的所有可能結構數,並將結構數與能量的分布轉換成配分函數,由配分函數在複數平面上的根,推論其相變行為。接著,我們分別檢驗所有在二維正方和三維立方晶格上的結構,計算其兩端點距離(end-to-end distance) 隨溫度變化的關係。最後,我們引進了雙鏈帶電荷HP 模型,希望藉由對於最低能態的分析,了解蛋白質沉澱與摺疊的特性。
Ideas and methods of statistical physics have been shown to be useful for understanding many physical, chemical, biological and industrial systems. The interacting self avoiding walks (ISAWs) on a lattice is the simplest model of homopolymers, which can serve as the framework of lattice proteins. We develop an efficient algorithm to compute the exact partition functions of ISAWs and use this algorithm to explore three issues. First, we propose a method based on partition function zeros which considers both the loci of partition function zeros and the thermodynamic functions associated with them. This method is applied to the ISAWs with up to 28 monomers on the simple cubic lattice. A clear scenario for the collapse transition and the freezing transitions can be obtained by this approach. Second, we compute the average end-to-end distance as a function of temperature and find it''s not a monotonically increasing function with some magic numbers of monomers on the simple cubic lattice. Third, we investigate the ground states of a charged HP protein model and find that protein aggregation in this model might not be related to protein misfolding.
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Exact partition functions for ISAWs on lattice . . . . . . . . . . . . . . . 2
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 The lattice setting and data structures . . . . . . . . . . . . . . . . . . 8
2.1.2 Symmetry reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Exhausted enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 The final two monomers . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Index of the end-to-end distances . . . . . . . . . . . . . . . . . . . . 12
2.2 Efficiency of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 16
3.1 Partition functions of the ISAWs . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Partition functions of ISAWs in the square lattice . . . . . . . . . 17
3.1.2 Partition functions of ISAWs in the simple cubic lattice . . . . . 18
3.2 Decomposition of physical quantities by zeros of the exact partition function 21
3.2.1 Collapse and freezing transitions . . . . . . . . . . . . . . . . . . 26
3.3 Partition functions of the ISAWs with end-to-end distance . . . . . . . . 28
3.3.1 Partition functions in the square lattice with end-to-end distance . 29
3.3.2 Partition functions in the simple cubic lattice with end-to-end distance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Magic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Two chain system in the charged HP model . . . . . . . . . . . . . . . . 32
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Efficiency of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Decomposition of physical quantities by zeros of the exact partition function 36
4.3 Magic number in three-dimensional lattice . . . . . . . . . . . . . . . . . 37
4.4 Two chain systems in the charged HP model . . . . . . . . . . . . . . . . 38
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A Partition functions of the ISAWs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.1 Partition functions in the square lattice . . . . . . . . . . . . . . . . . . 40
A.2 Partition functions in the simple cubic lattice . . . . . . . . . . . . . . . 45
B Partition functions of the ISAWs with end-to-end distance 49
B.1 Partition functions of ISAWs in the square lattice with end-to-end distance 49
B.2 Partition functions of ISAWs in the simple cubic lattice with end-to-end
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C Publication list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
[1] Chin-Kun Hu. Historical review on analytic, monte carlo, and renormalization group approaches to critical phenomena of some lattice models. Chinese Journal of Physics, 52(1):1--76, 2014.
[2] John Edward Jones. On the determination of molecular fields. ii. from the equation of state of a gas. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 106, pages 463--477. The Royal Society, 1924.
[3] John Edward Lennard-Jones. Cohesion. Proceedings of the Physical Society, 43(5):461, 1931.
[4] JE Lennard-Jones. The equation of state of gases and critical phenomena. Physica, 4(10):941--956, 1937.
[5] JE Lennard. Jones and af devonshire. In Proc. Roy. Soc.(London) A, volume 163, page 53, 1937.
[6] Ernst Ising. A contribution to the theory of ferromagnetism. Z. Phys, 31(1):253--258, 1925.
[7] Hendrik A Kramers and Gregory H Wannier. Statistics of the two-dimensional ferromagnet. part ii. Physical Review, 60(3):263, 1941.
[8] Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition. Physical Review, 65(3-4):117, 1944.
[9] Lars Onsager. Nuovo cimento, 6. Suppl, 2:249, 1949.
[10] Bruria Kaufman. Crystal statistics. ii. partition function evaluated by spinor analysis. Physical Review, 76(8):1232, 1949.
[11] Bruria Kaufman and Lars Onsager. Crystal statistics. iii. short-range order in a binary ising lattice. Physical Review, 76(8):1244, 1949.
[12] Chen Ning Yang. The spontaneous magnetization of a two-dimensional ising model. Physical Review, 85(5):808, 1952.
[13] CH Chang. The spontaneous magnetization of a two-dimensional rectangular ising model. Physical Review, 88(6):1422, 1952.
[14] Stephen G Brush. History of the lenz-ising model. Reviews of modern physics, 39(4): 883, 1967.
[15] Chin-Kun Hu and N Sh Izmailian. Exact correlation functions of bethe lattice spin models in external magnetic fields. Physical Review E, 58(2):1644, 1998.
[16] HWJ Blote, Erik Luijten, and Jouke R Heringa. Ising universality in three dimensions: a monte carlo study. Journal of Physics A: Mathematical and General, 28(22):6289, 1995.
[17] RH Fowler and GS Rushbrooke. An attempt to extend the statistical theory of perfect solutions. Transactions of the Faraday Society, 33:1272--1294, 1937.
[18] Pieter W Kasteleyn. The statistics of dimers on a lattice. In Classic Papers in Combinatorics, pages 281--298. Springer, 2009.
[19] Michael E Fisher. Statistical mechanics of dimers on a plane lattice. Physical Review, 124(6):1664, 1961.
[20] Harold Neville Vazeille Temperley and Michael E Fisher. Dimer problem in statistical mechanics-an exact result. Philosophical Magazine, 6(68):1061--1063, 1961.
[21] Arthur E Ferdinand. Statistical mechanics of dimers on a quadratic lattice. Journal of Mathematical Physics, 8(12):2332--2339, 1967.
[22] EV Ivashkevich, N Sh Izmailian, and Chin-Kun Hu. Kronecker''s double series and exact asymptotic expansions for free models of statistical mechanics on torus. Journal of Physics A: Mathematical and General, 35(27):5543, 2002.
[23] N Sh Izmailian, Chin-Kun Hu, and R Kenna. Exact solution of the dimer model on the generalized finite checkerboard lattice. Physical Review E, 91(6):062139, 2015.
[24] Renfrey Burnard Potts. Some generalized order-disorder transformations. In Mathematical proceedings of the cambridge philosophical society, volume 48, pages 106--109. Cambridge Univ Press, 1952.
[25] PW Kasteleyn and CM Fortuin. Phase transitions in lattice systems with random local properties. In Physical Society of Japan Journal Supplement, Vol. 26. Proceedings of the International Conference on Statistical Mechanics held 9-14 September, 1968 in Koyto., p. 11, volume 26, page 11, 1969.
[26] Cornelis Marius Fortuin and Piet W Kasteleyn. On the random-cluster model: I. introduction and relation to other models. Physica, 57(4):536--564, 1972.
[27] Rodney J Baxter. Potts model at the critical temperature. Journal of Physics C: Solid State Physics, 6(23):L445, 1973.
[28] D Kim and RI Joseph. Exact transition temperature of the potts model with q states per site for the triangular and honeycomb lattices. Journal of Physics C: Solid State Physics, 7(8):L167, 1974.
[29] RJ Baxter, HNV Temperley, and SE Ashley. Triangular potts model at its transition temperature, and related models. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 358, pages 535--559. The Royal Society, 1978.
[30] MPM Den Nijs. A relation between the temperature exponents of the eight-vertex and q-state potts model. Journal of Physics A: Mathematical and General, 12(10): 1857, 1979.
[31] FY Wu. Percolation and the potts model. Journal of Statistical Physics, 18(2):115--123, 1978.
[32] Fa-Yueh Wu. The potts model. Reviews of modern physics, 54(1):235, 1982.
[33] John Michael Hammersley. Percolation processes: Lower bounds for the critical probability. The Annals of Mathematical Statistics, 28(3):790--795, 1957.
[34] Michael E Fisher and John W Essam. Some cluster size and percolation problems. Journal of Mathematical Physics, 2(4):609--619, 1961.
[35] Michael E Fisher. Critical probabilities for cluster size and percolation problems. Journal of Mathematical Physics, 2(4):620--627, 1961.
[36] Mq F Sykes and John W Essam. Exact critical percolation probabilities for site and bond problems in two dimensions. Journal of Mathematical Physics, 5(8):1117--1127, 1964.
[37] Joseph Hoshen and Raoul Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm. Physical Review B, 14(8):3438, 1976.
[38] WJC Orr. Statistical treatment of polymer solutions at infinite dilution. Transactions of the Faraday Society, 43:12--27, 1947.
[39] FT Wall, LA Hiller Jr, and DJ Wheeler. Statistical computation of mean dimensions of macromolecules. i. The Journal of Chemical Physics, 22(6):1036--1041, 1954.
[40] Marshall N Rosenbluth and Arianna W Rosenbluth. Monte carlo calculation of the average extension of molecular chains. The Journal of Chemical Physics, 23(2):356--359, 1955.
[41] DC Rapaport. On the polymer phase transition. Physics Letters A, 48(5):339--340, 1974.
[42] Robert Finsy, M Janssens, and André Bellemans. Internal transition in an infinitely long polymer chain. Journal of Physics A: Mathematical and General, 8(10):L106, 1975.
[43] Eugene Shakhnovich and Alexander Gutin. Enumeration of all compact conformations of copolymers with random sequence of links. The Journal of Chemical Physics, 93(8):5967--5971, 1990.
[44] MC Tesi, EJ Janse Van Rensburg, E Orlandini, and SG Whittington. Monte carlo study of the interacting self-avoiding walk model in three dimensions. Journal of statistical physics, 82(1-2):155--181, 1996.
[45] Thomas Vogel, Michael Bachmann, and Wolfhard Janke. Freezing and collapse of flexible polymers on regular lattices in three dimensions. Physical Review E, 76(6): 061803, 2007.
[46] Jae Hwan Lee, Seung-Yeon Kim, Julian Lee, et al. Exact partition function zeros of a polymer on a simple cubic lattice. Physical Review E, 86(1):011802, 2012.
[47] Chi-Ning Chen, Yu-Hsin Hsieh, and Chin-Kun Hu. Heat capacity decomposition by partition function zeros for interacting self-avoiding walks. EPL (Europhysics Letters), 104(2):20005, 2013.
[48] Chen-Ning Yang and Tsung-Dao Lee. Statistical theory of equations of state and phase transitions. i. theory of condensation. Physical Review, 87(3):404, 1952.
[49] Tsung-Dao Lee and Chen-Ning Yang. Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model. Physical Review, 87(3):410, 1952.
[50] Michael E Fisher et al. Lectures in theoretical physics. Vol. VU C (University of Colorado Press 1965), 1965.
[51] Chin-Kun Hu. Exact results for a correlated percolation model. Physica A: Statistical Mechanics and its Applications, 119(3):609--614, 1983.
[52] Chin-Kun Hu. Percolation, clusters, and phase transitions in spin models. Physical Review B, 29(9):5103, 1984.
[53] Chin-Kun Hu. Site-bond-correlated percolation and a sublattice dilute potts model at finite temperatures. Physical Review B, 29(9):5109, 1984.
[54] C-K Hu. Bond-correlated percolation model and the unusual behaviour of supercooled water. Journal of Physics A: Mathematical and General, 16(10):L321, 1983.
[55] Yu-Hsin Hsieh, Chi-Ning Chen, and Chin-Kun Hu. Exact partition functions of interacting self-avoiding walks on lattices. In EPJ Web of Conferences, volume 108, page 01005. EDP Sciences, 2016.
[56] Raoul D Schram, Gerard T Barkema, and Rob H Bisseling. Exact enumeration of self-avoiding walks. Journal of Statistical Mechanics: Theory and Experiment, 2011(06): P06019, 2011.
[57] Paul J Flory. Thermodynamics of high polymer solutions. The Journal of chemical physics, 10(1):51--61, 1942.
[58] Jae Hwan Lee, Seung-Yeon Kim, and Julian Lee. Parallel algorithm for calculation of the exact partition function of a lattice polymer. Computer Physics Communications, 182(4):1027--1033, 2011.
[59] Takao Ishinabe. Examination of the theta-point from exact enumeration of selfavoiding walks. Journal of Physics A: Mathematical and General, 18(16):3181, 1985.
[60] Jae Hwan Lee, Seung-Yeon Kim, and Julian Lee. Exact partition functions of a polymer on a square lattice up to chain length 38. In Journal of Physics: Conference Series, volume 454, page 012083. IOP Publishing, 2013.
[61] Yu-Hsin Hsieh, Chi-Ning Chen, and Chin-Kun Hu. Efficient algorithm for computing exact partition functions of lattice polymer models. Computer Physics Communications, 209:27--33, 2016.
[62] Takao Ishinabe. Examination of the theta-point from exact enumeration of self-avoiding walks. Journal of Physics A: Mathematical and General, 18(16):3181, 1985.
[63] Vladimir Privman and Douglas A Kurtze. Partition function zeros in twodimensional lattice models of the polymer+ -point. Macromolecules, 19(9):2377--2379, 1986.
[64] T Ishinabe and Y Chikahisa. Exact enumerations of self-avoiding lattice walks withdifferent nearest-neighbor contacts. The Journal of chemical physics, 85(2):1009--1017, 1986.
[65] Hue Sun Chan and Ken A Dill. Polymer principles in protein structure and stability. Annual review of biophysics and biophysical chemistry, 20(1):447--490, 1991.
[66] D Bennett-Wood, IG Enting, DS Gaunt, AJ Guttmann, JL Leask, AL Owczarek, and SG Whittington. Exact enumeration study of free energies of interacting polygons and walks in two dimensions. Journal of Physics A: Mathematical and General, 31(20):4725, 1998.
[67] Jae Hwan Lee, Seung-Yeon Kim, and Julian Lee. Exact partition function zeros and the collapse transition of a two-dimensional lattice polymer. The Journal of chemical physics, 133(11):114106, 2010.
[68] Reinhard Schiemann, Michael Bachmann, and Wolfhard Janke. Exact sequence analysis for three-dimensional hydrophobic-polar lattice proteins. The Journal of chemical physics, 122(11):114705, 2005.
[69] Thomas Wüst and David P Landau. Versatile approach to access the low temperature thermodynamics of lattice polymers and proteins. Physical review letters, 102(17): 178101, 2009.
[70] Hsiao-Ping Hsu, Vishal Mehra, Walter Nadler, and Peter Grassberger. Growth algorithms for lattice heteropolymers at low temperatures. The Journal of chemical physics, 118(1):444--451, 2003.
[71] Fugao Wang and DP Landau. Efficient, multiple-range random walk algorithm to calculate the density of states. Physical review letters, 86(10):2050, 2001.
[72] Michael Bachmann and Wolfhard Janke. Multicanonical chain-growth algorithm. Physical review letters, 91(20):208105, 2003.
[73] Chi-Ning Chen, Chin-Kun Hu, and FY Wu. Partition function zeros of the square lattice potts model. Physical review letters, 76(2):169, 1996.
[74] Kit Fun Lau and Ken A Dill. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules, 22(10):3986--3997, 1989.
[75] Ken A Dill, Sarina Bromberg, Kaizhi Yue, Hue Sun Chan, Klaus M Ftebig, David P Yee, and Paul D Thomas. Principles of protein folding—a perspective from simple exact models. Protein Science, 4(4):561--602, 1995.
[76] Mai Suan Li, Govardhan Reddy, Chin-Kun Hu, JE Straub, D Thirumalai, et al. Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Physical Review Letters, 105(21):218101, 2010.
[77] Andrew R Conway, Ian G Enting, and Anthony J Guttmann. Algebraic techniques for enumerating self-avoiding walks on the square lattice. Journal of Physics A: Mathematical and General, 26(7):1519, 1993.
[78] CYRIL Domb. Self avoiding walks on lattices. Stochastic Processes in Chemical Physics, 15:229--259, 2009.
[79] Anthony J Guttmann. Polygons, polyominoes and polycubes, volume 775. Springer, 2009.
[80] Iwan Jensen. Enumeration of self-avoiding walks on the square lattice. Journal of Physics A: Mathematical and General, 37(21):5503, 2004.
[81] Iwan Jensen. A new transfer-matrix algorithm for exact enumerations: self-avoiding walks on the square lattice. arXiv preprint arXiv:1309.6709, 2013.
[82] Eugene Shakhnovich, G Farztdinov, AM Gutin, and Martin Karplus. Protein folding bottlenecks: A lattice monte carlo simulation. Physical review letters, 67(12):1665, 1991.
[83] Reinhard Schiemann, Michael Bachmann, and Wolfhard Janke. Exact enumeration of three-dimensional lattice proteins. Computer Physics Communications, 166(1): 8--16, 2005.
[84] Peter Borrmann, Oliver Mülken, and Jens Harting. Classification of phase transitions in small systems. Physical review letters, 84(16):3511, 2000.
[85] Stefan Schnabel, Daniel T Seaton, David P Landau, and Michael Bachmann. Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems. Physical Review E, 84(1):011127, 2011.
[86] Ken A Dill. Theory for the folding and stability of globular proteins. Biochemistry,24(6):1501--1509, 1985.
[87] Fatih Yaşar, Adam K Sieradzan, and Ulrich HE Hansmann. Folding and selfassembly of a small heterotetramer. The Journal of chemical physics, 140(10):105103, 2014.
[88] WM Berhanu, P Jiang, and UHE Hansmann. Folding and association of a homotetrameric protein complex in an all-atom go model. Physical Review E, 87(1):014701, 2013.
[89] DT Seaton, T Wüst, and DP Landau. Collapse transitions in a flexible homopolymer chain: Application of the wang-landau algorithm. Physical Review E, 81(1):011802, 2010.
[90] Stefan Schnabel, Michael Bachmann, and Wolfhard Janke. Elastic lennard-jones polymers meet clusters: Differences and similarities. The Journal of chemical physics, 131(12):124904, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top