跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳冠廷
研究生(外文):Kuan-Ting Wu
論文名稱:自製傅立葉轉換紅外光譜顯微鏡及其在材料檢測的應用
論文名稱(外文):Construction of Micro-FTIR System and Its Application in Material Characterization
指導教授:張玉明張玉明引用關係張顏暉張顏暉引用關係
指導教授(外文):Yu-Ming ChangYuan-Huei Chang
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:傅立葉轉換紅外光譜顯微紅外光譜系統二維紅外光譜掃描間隙氧有機-無機鈣鈦礦
外文關鍵詞:FTIRMicro-FTIR2D-FTIR mappingInterstitial OxygenHybrid Organic-Inorganic Perovskite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出將商業型傅立葉轉換紅外光譜儀之中紅外光源導出,透過自行設計架設的中紅外顯微光路,建置成顯微紅外光譜系統(Micro-FTIR)。本系統提供次釐米(~900 um)的空間解析度,可對微量材料直接進行FTIR光譜量測,同時也可針對大面積 (12 x 12 mm2)材料進行二維紅外光譜影像掃描。我們進一步利用此自製的Micro-FTIR系統進行材料檢測的應用,其中第一主題是矽晶圓的間隙氧的濃度測量,我們提出一個利用本系統測量厚度200 um到2 mm厚矽晶圓間隙氧濃度的方法;第二主題是單根紡織纖維的FTIR測量,我們利用二維紅外光譜掃描影像並辨別不同種類紡織纖維的空間分布,展現我們的micro-FTIR優越的空間解析能力;第三主題是針對有機無機鈣鈦礦材料(Hybrid Organic-Inorganic Perovskite)的FTIR光譜量測,從FTIR光譜的特徵峰可以清晰辨別有機無機鈣鈦礦材料的有機部位為Formamidinium (FA)或是Methylammonium (MA)。我們認為此自製的顯微紅外光譜系統將成為實驗室新穎材料物性研究的關鍵技術。
In this thesis, we report the construction of a Micro-FTIR system based on a commercial FTIR spectrometer. This home-built Micro-FTIR system offers sub-millimeter spatial resolution (~900 um) and large mapping area (12x12 mm2) for FTIR microscopy. We use this Micro-FTIR system for three topics: (a) The characterization of interstitial oxygen in silicon wafer, where we developed an analysis method to characterize the Oi content of silicon wafer in various thicknesses ranging from 200 um to 2 mm; (b) Spatially resolving entangled fabric fibers, where we demonstrated different types of fabric fibers can be distinguished by FTIR mapping and further confirmed the spatial resolution of our system; (c) The investigation of hybrid organic-inorganic perovskite (HOIP), where the spectral features originated from the organic part (Formamidinium, FA or Methylammonium, MA) of four organic perovskite samples FA(MA)PbI3 and FA(MA)PbBr3, can be clearly distinguished. We believe that this home-built Micro-FTIR system will become a powerful optical tool to characterize emergent materials in our laboratory.
TABLE OF CONTENTS
中文摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xi
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 FOURIER TRANSFORM INFRARED SPECTROSCOPY 1
1.2.1 Michelson Interferometer 1
1.2.2 Fourier Transform 2
1.2.3 FTIR Spectrometer 8
1.2.4 The Advantage of FTIR Spectrometer 10
CHAPTER 2 EXPERIMENT SETUP 12
2.1 BRUKER TENSOR 27 FTIR SPECTROMETER 12
2.2 MICRO-FTIR SETUP 13
2.3 MEASUREMENT TRIGGER AND 2D SCAN 15
2.3.1 Measurement Trigger 15
2.3.2 2D Scan 16
2.4 SYSTEM CHARACTERIZATION 16
CHAPTER 3 CHARACTERIZATION OF INTERSTITIAL OXYGEN IN SILICON WAFER 21
3.1 INTRODUCTION 21
3.2 MATERIALS AND METHODS 22
3.2.1 Sample Preparation 22
3.2.2 Standard Method of ASTM F 1188-00 23
3.2.3 Stack Method to Calculation Oi Concentration 25
3.3 RESULTS AND DISCUSSION 26
3.3.1 Standard Method Results 26
3.3.2 Stack Method Results 27
3.4 CONCLUSION 30
CHAPTER 4 CHARACTERIZATION OF FABRIC MATERIALS 31
4.1 INTRODUCTION 31
4.2 MATERIALS AND METHODS 31
4.2.1 Sample and FTIR Feature 31
4.2.2 2D FTIR Mapping Investigation of Fabric Strings 34
4.3 RESULTS AND DISCUSSION 35
4.3.1 The First Sample Setup 35
4.3.2 The Second Sample Setup 37
4.4 CONCLUSION 39
CHAPTER 5 CHARACTERIZATION OF HYBRID ORGANIC-INORGANIC PEROVSKITE 40
5.1 INTRODUCTION 40
5.2 MATERIALS AND METHODS 40
5.2.1 Hybrid Organic-Inorganic Perovskite (HOIP) 40
5.2.2 Sample Preparation 41
5.3 RESULTS AND DISCUSSION 43
5.3.1 FTIR Spectra of HOIPs 43
5.3.2 2D FTIR Mapping of HOIP Mixture 45
5.4 CONCLUSION 47
CHAPTER 6 CONCLUSION 48
REFERENCE 49
APPENDIX 1 CHARACTERIZATION OF HOIPS BY FTIR, RAMAN, AND PL SPECTROSCOPIES 52
A1.1 INTRODUCTION OF RAMAN SPECTROSCOPY 52
A1.2 RESULTS 53
A1.3 CONCLUSION 58
APPENDIX 2 MANUAL OF OPUS SOFTWARE 59
A2.1 SPECTRA ACQUISITION (SINGLE SPECTRUM) 59
A2.2 CONTINUOUS SPECTRA ACQUISITION 63
APPENDIX 3 MANUAL OF 2D FTIR SCAN SOFTWARE 65
A3.1 STAGE CONTROL PROGRAM 65
A3.2 FTIR LINE SCAN AND 2D MAPPING 66
A3.2.1 Line Scan 66
A3.2.2 2D Mapping 67
[1]Griffiths, David J., “Introduction to Electrodynamics,” 3rd Edition, Pearson Education, (2007)
[2]K-P Möllmann and M Vollmer, “Fourier transform infrared spectroscopy in physics laboratory courses,” Eur. J. Phys., 34, S123-S137, (2013)
[3]Griffiths, Peter R. R, James A. A De Haseth, and James Dudley D Winefordner., “Fourier Transform Infrared Spectrometry,” 2nd Edition, John Wiley & Sons, Inc., (2007).
[4]W. Herres and J. Gronholz, “Understanding FT-IR data processing, part 1-3,” Comp. Appl. Lab., 2, 216, (1984)
[5]Peter Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. OSA., 39 (11), 970–976, (1949)
[6]P. Jacquinot, “New developments in interference spectroscopy,” Rep. Progr. Phys., 23, 267, (1960)
[7]Janine Connes and Pierre Connes, “Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results,” J. Opt. Soc. Am., 56 (7), 896-910, (1966)
[8]“TENSOR User Manual,” 7th Edition, BRUKER OPTIK GmbH, (2007)
[9]H. J. Hrostowski and R. H. Kaiser, “Infrared Absorption of Oxygen in Silicon,” Phy. Rev., 107, 966, (1957)
[10]ASTM F1188-00, “Standard Test Method for Interstitial Atomic Oxygen Content of Silicon by Infrared Absorption,” ASTM International, West Conshohocken, PA, (2000)
[11]J.O. Stevenson and J.W. Medernach, “Numerical Methods for Determining Interstitial Oxygen in Silicon,” Sandia Report, 1-39, (1995)
[12]ASTM D5576-00, “Standard Practice for Determination of Structural Features in Polyolefins and Polyolefin Copolymers by Infrared Spectrophotometry (FT-IR),” ASTM International, West Conshohocken, PA, (2013)
[13]Jerome F. O’Keefe, “Identification of polymers by IR spectroscopy,” Rubber World, 230 (3), 27-32 , (2004)
[14]Rachel P.O. Santos, Bruno V.M. Rodrigues, Elaine C. Ramires, Adhemar C. Ruvolo-Filho, Elisabete Frollini, “Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET,” Ind. Crops Prod., 72, 69-76, (2015)
[15]Engr. Reashad Bin Kabir, Engr. Nasrin Ferdous, “Kevlar-The Super Tough Fiber,” Int. J. Text. Sci., 1, 78-83, (2013)
[16]Rina Sa, Yan Yan, Lei Wang, Yuan Li, Liqun Zhang, Nanying Ning, Wencai Wang, and Ming Tian, “Improved adhesion properties of poly-p-phenyleneterephthamide fibers with a rubber matrix via UV-initiated grafting modification,” RSC Adv., 5, 94351-94360, (2015)
[17]Jarvist M. Frost and Aron Walsh, “What Is Moving in Hybrid Halide Perovskite Solar Cells?,” Acc. Chem. Res., 49, 528−535, (2016)
[18]Michael Saliba, Taisuke Matsui, Ji-Youn Seo, Konrad Domanski, Juan-Pablo Correa-Baena, Mohammad Khaja Nazeeruddin, Shaik M. Zakeeruddin, Wolfgang Tress, Antonio Abate, Anders Hagfeldt and Michael Gratzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci., 9, 1989-1997, (2016)
[19]Tianran Chen, Wei-Liang Chen, Benjamin J. Foley, Jooseop Lee, Jacob P. C. Ruff, J. Y. Peter Ko, Craig M. Brown, Leland W. Harriger, Depei Zhang, Changwon Park, Mina Yoon, Yu-Ming Chang, Joshua J. Choi, and Seung-Hun Lee, “Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites,” Proceedings of National Academy of Sciences, doi: 10.1073/pnas.1704421114, (2017)
[20]Ralf G. Niemann, Athanassios G. Kontos, Dimitrios Palles, Halogen Effects on Ordering and Bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) Hybrid Perovskites: A Vibrational Spectroscopic Study, J. Phys. Chem. C, 120 (5), 2509–2519, (2016)
[21]Tobias Glaser, Christian Müller, Michael Sendner, Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites, J. Phys. Chem. Lett., 6, 2913-2918, (2015)
[22]Lingrui Wang, Kai Wang, and Bo Zou, Pressure-Induced Structural and Optical Properties of Organometal Halide Perovskite-Based Formamidinium Lead Bromide, J. Phys. Chem. Lett., 7, 2556−2562, (2016)
[23]E. Kucharska, J. Hanuza, A. Ciupa, M. Maczka, L. Macalik, Vibrational properties and DFT calculations of formamidine-templated Co and Fe formats, Vib. Spectrosc., 75, 45−50, (2014)
[24]M. Y. Khilji, W. F. Sherman, and G. R. Wilkinson, “Raman Study of Three Polytypes of PbI2,” J. Raman Spec., 13, 127-133, (1982)
[25]Sagar Motilal Jain, Bertrand Philippe, Erik M. J. Johansson, Byung-wook Park, Håkan Rensmo, Tomas Edvinsson, and Gerrit Boschloo, “Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase,” J. Mater. Chem. A, 4, 2630-2642, (2016)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top