|
[1] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, vol. 86, p. 032324, Sep 2012. [2] K. Khodjasteh and L. Viola, “Dynamically error-corrected gates for universal quantum computation,” Phys. Rev. Lett., vol. 102, p. 080501, Feb 2009. [3] K. Khodjasteh and L. Viola, “Dynamical quantum error correction of unitary operations with bounded controls,” Phys. Rev. A, vol. 80, p. 032314, Sep 2009. [4] K. Khodjasteh, D. A. Lidar, and L. Viola, “Arbitrarily accurate dynamical control in open quantum systems,” Phys. Rev. Lett., vol. 104, p. 090501, Mar 2010. [5] K. Khodjasteh, H. Bluhm, and L. Viola, “Automated synthesis of dynamically corrected quantum gates,” Phys. Rev. A, vol. 86, p. 042329, Oct 2012. [6] J. R. West, D. A. Lidar, B. H. Fong, and M. F. Gyure, “High fidelity quantum gates via dynamical decoupling,” Phys. Rev. Lett., vol. 105, p. 230503, Dec 2010. [7] A. M. Souza, G. A. Álvarez, and D. Suter, “Experimental protection of quantum gates against decoherence and control errors,” Phys. Rev. A, vol. 86, p. 050301, Nov 2012. [8] F. F. Fanchini, J. E. M. Hornos, and R. d. J. Napolitano, “Continuously decoupling a hadamard quantum gate from independent classes of errors,” Phys. Rev. A, vol. 76, p. 032319, Sep 2007. [9] F. F. Fanchini, R. d. J. Napolitano, B. Çakmak, and A. O. Caldeira, “Protecting the sqrt-swap operation from general and residual errors by continuous dynamical decoupling,” Phys. Rev. A, vol. 91, p. 042325, Apr 2015. [10] A. Z. Chaudhry and J. Gong, “Decoherence control: Universal protection of two-qubit states and two-qubit gates using continuous driving fields,” Phys. Rev. A, vol. 85, p. 012315, Jan 2012. [11] X. Xu, Z. Wang, C. Duan, P. Huang, P. Wang, Y. Wang, N. Xu, X. Kong, F. Shi, X. Rong, and J. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett., vol. 109, p. 070502, Aug 2012. [12] J. Clausen, G. Bensky, and G. Kurizki, “Bath-optimized minimal-energy protection of quantum operations from decoherence,” Phys. Rev. Lett., vol. 104, p. 040401, Jan 2010. [13] J. Clausen, G. Bensky, and G. Kurizki, “Task-optimized control of open quantum systems,” Phys. Rev. A, vol. 85, p. 052105, May 2012. [14] M. Wenin and W. Pötz, “Minimization of environment-induced decoherence in quantum subsystems and application to solid-state-based quantum gates,” Phys. Rev. B, vol. 78, p. 165118, Oct 2008. [15] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K. Wilhelm, “Optimal control of a qubit coupled to a non-markovian environment,” Phys. Rev. Lett., vol. 102, p. 090401, Mar 2009. [16] B. Hwang and H.-S. Goan, “Optimal control for non-markovian open quantum systems,” Phys. Rev. A, vol. 85, p. 032321, Mar 2012. [17] J.-S. Tai, K.-T. Lin, and H.-S. Goan, “Optimal control of quantum gates in an exactly solvable non-markovian open quantum bit system,” Phys. Rev. A, vol. 89, p. 062310, Jun 2014. [18] S.-Y. Huang and H.-S. Goan, “Optimal control for fast and high-fidelity quantum gates in coupled superconducting flux qubits,” Phys. Rev. A, vol. 90, p. 012318, Jul 2014. [19] Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A, vol. 91, p. 052315, May 2015. [20] R. Tycko, “Broadband population inversion,” Phys. Rev. Lett., vol. 51, pp. 775-777, Aug 1983. [21] M. H. Levitt, “Composite pulses,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 18, no. 2, pp. 61-122, 1986. [22] S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” Journal of Magnetic Resonance, Series A, vol. 109, no. 2, pp. 221-231, 1994. [23] H. K. Cummins, G. Llewellyn, and J. A. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A, vol. 67, p. 042308, Apr 2003. [24] K. R. Brown, A. W. Harrow, and I. L. Chuang, “Arbitrarily accurate composite pulse sequences,” Phys. Rev. A, vol. 70, p. 052318, Nov 2004. [25] L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys., vol. 76, pp. 1037-1069, Jan 2005. [26] T. Ichikawa, M. Bando, Y. Kondo, and M. Nakahara, “Designing robust unitary gates: Application to concatenated composite pulses,” Phys. Rev. A, vol. 84, p. 062311, Dec 2011. [27] M. Bando, T. Ichikawa, Y. Kondo, and M. Nakahara, “Concatenated composite pulses compensating simultaneous systematic errors,” Journal of the Physical Society of Japan, vol. 82, no. 1, p. 014004, 2013. [28] T. Ichikawa, U. Güngördü, M. Bando, Y. Kondo, and M. Nakahara, “Minimal and robust composite two-qubit gates with Ising-type interaction,” Phys. Rev. A, vol. 87, p. 022323, Feb 2013. [29] J. T. Merrill and K. R. Brown, “Progress in compensating pulse sequences for quantum computation,” in Quantum Information and Computation for Chemistry, pp. 241-294, John Wiley & Sons, Inc., 2014. [30] X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, and S. Das Sarma, “Composite pulses for robust universal control of singlet-triplet qubits,” Nat. Commun., vol. 3, p. 997, Aug. 2012. [31] J. P. Kestner, X. Wang, L. S. Bishop, E. Barnes, and S. Das Sarma, “Noise-resistant control for a spin qubit array,” Phys. Rev. Lett., vol. 110, p. 140502, Apr 2013. [32] X. Wang, L. S. Bishop, E. Barnes, J. P. Kestner, and S. Das Sarma, “Robust quantum gates for singlet-triplet spin qubits using composite pulses,” Phys. Rev. A, vol. 89, p. 022310, Feb 2014. [33] X. Wang, F. A. Calderon-Vargas, M. S. Rana, J. P. Kestner, E. Barnes, and S. Das Sarma, “Noise-compensating pulses for electrostatically controlled silicon spin qubits,” Phys. Rev. B, vol. 90, p. 155306, Oct 2014. [34] X. Rong, J. Geng, Z. Wang, Q. Zhang, C. Ju, F. Shi, C.-K. Duan, and J. Du, “Implementation of dynamically corrected gates on a single electron spin in diamond,” Phys. Rev. Lett., vol. 112, p. 050503, Feb 2014. [35] X.-C. Yang and X.Wang, “Noise filtering of composite pulses for singlet-triplet qubits,” Scientific Reports, vol. 6, p. 28996, July 2016. [36] C. Chen, D. Dong, R. Long, I. R. Petersen, and H. A. Rabitz, “Sampling-based learning control of inhomogeneous quantum ensembles,” Phys. Rev. A, vol. 89, p. 023402, Feb 2014. [37] D. Dong, C. Chen, B. Qi, I. R. Petersen, and F. Nori, “Robust manipulation of superconducting qubits in the presence of fluctuations,” Scientific Reports, vol. 5, p. 7873, Jan. 2015. [38] D. Dong, C. Wu, C. Chen, B. Qi, I. R. Petersen, and F. Nori, “Learning robust pulses for generating universal quantum gates,” Scientific Reports, vol. 6, p. 36090, Oct. 2016. [39] J.-S. Li and N. Khaneja, “Control of inhomogeneous quantum ensembles,” Phys. Rev. A, vol. 73, p. 030302, Mar 2006. [40] J. H. Lee, E. Montano, I. H. Deutsch, and P. S. Jessen, “Robust site-resolvable quantum gates in an optical lattice via inhomogeneous control,” Nat. Commun., vol. 4, p. 2027, June 2013. [41] E. Barnes, X. Wang, and S. Das Sarma, “Robust quantum control using smooth pulses and topological winding,” Scientific Reports, vol. 5, p. 12685, Aug. 2015. [42] D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett., vol. 111, p. 050404, Jul 2013. [43] R. L. Kosut, M. D. Grace, and C. Brif, “Robust control of quantum gates via sequential convex programming,” Phys. Rev. A, vol. 88, p. 052326, Nov 2013. [44] B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S. Jessen, “Accurate and robust unitary transformations of a high-dimensional quantum system,” Phys. Rev. Lett., vol. 114, p. 240401, Jun 2015. [45] G. Gordon, G. Kurizki, and D. A. Lidar, “Optimal dynamical decoherence control of a qubit,” Phys. Rev. Lett., vol. 101, p. 010403, Jul 2008. [46] A. Ruschhaupt, X. Chen, D. Alonso, and J. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New Journal of Physics, vol. 14, no. 9, p. 093040, 2012. [47] X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Guérin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A, vol. 88, p. 033406, Sep 2013. [48] T. J. Green, J. Sastrawan, H. Uys, and M. J. Biercuk, “Arbitrary quantum control of qubits in the presence of universal noise,” New Journal of Physics, vol. 15, no. 9, p. 095004, 2013. [49] A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J. McLoughlin, X. Zhen, T. J. Green, and M. J. Biercuk, “Experimental noise filtering by quantum control,” Nat. Phys., vol. 10, pp. 825-829, Nov. 2014. [50] H. Ball and M. J. Biercuk, “Walsh-synthesized noise lters for quantum logic,” EPJ Quantum Technology, vol. 2, p. 11, 2015. [51] G. A. Paz-Silva and L. Viola, “General transfer-function approach to noise filtering in open-loop quantum control,” Phys. Rev. Lett., vol. 113, p. 250501, Dec 2014. [52] W. D. Oliver, “Quantum control: Engineering a revolution,” Nat. Phys., vol. 10, pp. 794-795, Nov. 2014. [53] C. Kabytayev, T. J. Green, K. Khodjasteh, M. J. Biercuk, L. Viola, and K. R. Brown, “Robustness of composite pulses to time-dependent control noise,” Phys. Rev. A, vol. 90, p. 012316, Jul 2014. [54] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A, vol. 57, pp. 120 126, Jan 1998. [55] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science, vol. 309, p. 2180, Sept. 2005. [56] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Driven coherent oscillations of a single electron spin in a quantum dot,” Nature, vol. 442, pp. 766-771, Aug. 2006. [57] F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen, “Spin echo of a single electron spin in a quantum dot,” Phys. Rev. Lett., vol. 100, p. 236802, Jun 2008. [58] D. J. Reilly, J. M. Taylor, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Suppressing spin qubit dephasing by nuclear state preparation,” Science, vol. 321, p. 817, Aug. 2008. [59] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, “Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization,” Nat. Phys., vol. 5, pp. 903-908, Dec. 2009. [60] H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A. Yacoby, “Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath,” Phys. Rev. Lett., vol. 105, p. 216803, Nov 2010. [61] C. Barthel, J. Medford, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit,” Phys. Rev. Lett., vol. 105, p. 266808, Dec 2010. [62] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nat. Phys., vol. 7, pp. 109-113, Feb. 2011. [63] K. C. Nowack, M. Shafiei, M. Laforest, G. E. D. K. Prawiroatmodjo, L. R. Schreiber, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Single-shot correlations and two-qubit gate of solid-state spins,” Science, vol. 333, p. 1269, Sept. 2011. [64] R. Brunner, Y.-S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, and S. Tarucha, “Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot,” Phys. Rev. Lett., vol. 107, p. 146801, Sep 2011. [65] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, “Demonstration of entanglement of electrostatically coupled singlet-triplet qubits,” Science, vol. 336, p. 202, Apr. 2012. [66] J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. DiVincenzo, H. Lu, A. C. Gossard, and C. M. Marcus, “Self-consistent measurement and state tomography of an exchange-only spin qubit,” Nat. Nanotech., vol. 8, pp. 654-659, Sept. 2013. [67] J. M. Nichol, L. A. Orona, S. P. Harvey, S. Fallahi, G. C. Gardner, M. J. Manfra, and A. Yacoby, “High-fidelity entangling gate for double-quantum-dot spin qubits,” npj Quantum Information, vol. 3, no. 1, p. 3, 2017. [68] E. A. Chekhovich, M. N. Makhonin, A. I. Tartakovskii, A. Yacoby, H. Bluhm, K. C. Nowack, and L. M. K. Vandersypen, “Nuclear spin effects in semiconductor quantum dots,” Nat. Mater., vol. 12, pp. 494-504, June 2013. [69] B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure, and A. T. Hunter, “Coherent singlet-triplet oscillations in a silicon-based double quantum dot,” Nature, vol. 481, pp. 344-347, Jan. 2012. [70] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, “Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot,” Nat. Nanotech., vol. 9, pp. 666-670, Sept. 2014. [71] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotech., vol. 9, pp. 981-985, Dec. 2014. [72] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “A two-qubit logic gate in silicon,” Nature, vol. 526, pp. 410-414, Oct. 2015. [73] K. Eng, T. D. Ladd, A. Smith, M. G. Borselli, A. A. Kiselev, B. H. Fong, K. S. Holabird, T. M. Hazard, B. Huang, P. W. Deelman, I. Milosavljevic, A. E. Schmitz, R. S. Ross, M. F. Gyure, and A. T. Hunter, “Isotopically enhanced triple-quantum-dot qubit,” Science Advances, vol. 1, no. 4, 2015. [74] K. Takeda, J. Kamioka, T. Otsuka, J. Yoneda, T. Nakajima, M. R. Delbecq, S. Amaha, G. Allison, T. Kodera, S. Oda, and S. Tarucha, “A fault-tolerant addressable spin qubit in a natural silicon quantum dot,” Science Advances, vol. 2, no. 8, 2016. [75] F. J. Dyson, “The radiation theories of Tomonaga, Schwinger, and Feynman,” Phys. Rev., vol. 75, pp. 486-502, Feb. 1949. [76] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The computer journal, vol. 7, no. 4, pp. 308-313, 1965. [77] S. Finch and Y. Yt, Ornstein-Uhlenbeck process. Citeseer, 2004. [78] A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D.Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys., vol. 9, pp. 570-575, Sept. 2013. [79] Y. Li, N. Sinitsyn, D. L. Smith, D. Reuter, A. D. Wieck, D. R. Yakovlev, M. Bayer, and S. A. Crooker, “Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In, Ga)As quantum dots,” Phys. Rev. Lett., vol. 108, p. 186603, May 2012. [80] R. A. Żak, B. Röthlisberger, S. Chesi, and D. Loss, “Quantum computing with electron spins in quantum dots,” arXiv preprint arXiv: 0906.4045, 2009. [81] W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Möttönen, K. W. Chan, A. Morello, and A. S. Dzurak, “Observation of the single-electron regime in a highly tunable silicon quantum dot,” Appl. Phys. Lett., vol. 95, p. 242102, Dec. 2009. [82] T. Meunier, V. E. Calado, and L. M. K. Vandersypen, “Efficient controlled-phase gate for single-spin qubits in quantum dots,” Phys. Rev. B, vol. 83, p. 121403, Mar 2011. [83] L. S. Theis, F. Motzoi, and F. K. Wilhelm, “Simultaneous gates in frequency-crowded multilevel systems using fast, robust, analytic control shapes,” Phys. Rev. A, vol. 93, p. 012324, Jan 2016. [84] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm, “Optimal control methods for rapidly time-varying Hamiltonians,” Phys. Rev. A, vol. 84, p. 022307, Aug 2011. [85] D. J. Egger and F. K. Wilhelm, “Adaptive hybrid optimal quantum control for imprecisely characterized systems,” Phys. Rev. Lett., vol. 112, p. 240503, Jun 2014. [86] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jeffrey, A. Megrant, J. Mutus, C. Neill, P. J. J. O''Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Optimal quantum control using randomized benchmarking,” Phys. Rev. Lett., vol. 112, p. 240504, Jun 2014. [87] C. Ferrie and O. Moussa, “Robust and efficient in situ quantum control,” Phys. Rev. A, vol. 91, p. 052306, May 2015. [88] E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and robust randomized benchmarking of quantum processes,” Phys. Rev. Lett., vol. 106, p. 180504, May 2011. [89] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A. Smolin, M. Ware, J. Strand, B. L. T. Plourde, and M. Steffen, “Process verification of two-qubit quantum gates by randomized benchmarking,” Phys. Rev. A, vol. 87, p. 030301, Mar 2013. [90] S. Machnes, D. J. Tannor, F. K. Wilhelm, and E. Assémat, “Gradient optimization of analytic controls: the route to high accuracy quantum optimal control,” arXiv preprint arXiv: 1507.04261, 2015. [91] Z. Chen, J. Kelly, C. Quintana, R. Barends, B. Campbell, Y. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Lucero, E. Jeffrey, A. Megrant, J. Mutus, M. Neeley, C. Neill, P. J. J. O''Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Korotkov, and J. M. Martinis, “Measuring and suppressing quantum state leakage in a superconducting qubit,” Phys. Rev. Lett., vol. 116, p. 020501, Jan 2016. [92] J. Scheuer, X. Kong, R. S. Said, J. Chen, A. Kurz, L. Marseglia, J. Du, P. R. Hemmer, S. Montangero, T. Calarco, B. Naydenov, and F. Jelezko, “Precise qubit control beyond the rotating wave approximation,” New Journal of Physics, vol. 16, no. 9, p. 093022, 2014. [93] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-Herbrüggen, J. Biamonte, and J. Wrachtrup, “High- delity spin entanglement using optimal control,” Nat. Commun., vol. 5, p. 3371, Feb. 2014. [94] X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu, and J. Du, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” vol. 6, p. 8748, Nov. 2015.
|