跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡哲安
研究生(外文):Che-An Tsai
論文名稱:鈣鈦礦及二維材料混合結構之製作及其光電傳輸特性
論文名稱(外文):Fabrication and optoelectronic properties of erovskite/two-dimensional-material hybrid structures
指導教授:陳永芳陳永芳引用關係王偉華王偉華引用關係
指導教授(外文):Yang-Fang ChenWei-Hua Wang
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:73
中文關鍵詞:二維材料石墨烯二硫化鉬鈦鈣礦場效電晶體光偵測器光電傳輸特性
外文關鍵詞:two dimensional materialgrapheneMoS2perovskitefield effect transistorphotodetectoroptoelectronic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
 本篇論文的研究主軸是結合鹵化甲基銨鉛鈦鈣礦(methylammonium lead halide peroskite)以及二維材料場效電晶體的光電傳輸特性。為了延伸現今莫爾定律至10奈米以下元件製程,近十年以來,二維材料為發展迅速的新穎奈米材料,它擁有許多獨特的傳輸性質,如最廣為人知的二維材料-石墨烯(graphene)具有極高的載子遷移律、透明度及可撓性,這些特性都有助於未來新型態電晶體或是光電元件的運用。鹵化甲基銨鉛鈦鈣礦為一種鈦鈣礦結構(perovskite)的物質,其具有直接能隙、良好的吸光律以及夠長的載子平均自由徑,使得此材料能在吸光之後能輕易的將載子傳遞出去,在近幾年中被廣泛的運用在太陽能電池上。
  文內我們將先探討石墨烯(graphene)以及二硫化鉬(MoS2)的傳輸特性,石墨烯的高載子遷移律(mobility)以及二硫化鉬的高電流開關比(on-off ratio)都很適合使用於光偵測器,然而此兩種材料的低吸收律卻限制了其光電元件的表現,因此,我們初步利用鈦鈣礦的修飾來增進元件吸收,進而改善整體的光學特性。
  我們採用熱蒸鍍以及氣相合成的兩階段法來合成鈦鈣礦,此種合成法能夠較為有效的控制鈦鈣礦的厚度,同時可以藉由控制成長環境,在二維材料上長出特殊的鈦鈣礦結構。而由於鈦鈣礦將對原本的二維材料元件產生載子參雜(doping)的效應,且參雜行為由鈦鈣礦主導,因此便可以在元件上探討鈦鈣礦的物理特性,我們將以鈦鈣礦在溫度變化下產生的相變化來討論此種參雜行為。最後,由於鈦鈣礦容易吸收空氣中的水氣、氧氣而變質,我們利用同為太陽能電池常見的聚(3-己烷基噻吩)(P3HT)作為保護層,阻隔鈦鈣礦元件與外界接觸,進而提昇其使用壽命,同時我們也觀察到此一保護層亦能夠改善元件的特性。
  Two-dimensional (2D) materials have attracted intense attention due to their remarkable properties. For example, high carrier mobility, high optical transparency, and high mechanical flexibility can be demonstrated on graphene, a well-known 2D material, for applications. Methylammonium lead triiodide (CH3NH3PbI3, perovskite) is a new material that has direct bandgap, strong absorption corresponding to an onset near 800 nm and carrier diffusion length up to micrometer scale. It has attracted intensive interest for its diverse optoelectronic applications in the field of solar cells, photodetectors, lasers, and light-emitting diodes (LEDs). The main objective of this thesis is investigating the photocurrent properties of perovskite/2D-material hybrid structures.
  First, we demonstrate a fabrication of perovskite/2D-material hybrid system. It is based on 2D material field effect transistors (FETs), which are made by a resist-free method without chemical etching process. Perovskite is grown by a two-step process, involving physical vapor deposition and a vapor transport chemical deposition system. By control growth condition of perovskite, different shape of perovskite can be formed on 2D materials. From the result of photocurrent measurement on the perovskite/2D-material hybrid system, it is shown that the introduction of perovskite can improve the optoelectronic performance of graphene- or MoS2- based photodetector. At low temperature, we observe characteristics of a phase transition of perovskite from electrical properties of doped 2D materials. In other words, we can use 2D-material-based FETs as a platform to demonstrate phase transition of perovskite. Finally, perovskite is easily reaction with water and oxygen in air, how to keep its quality becomes an important task for application. We improve the stability of perovskite by poly(3-hexylthiophene) (P3HT) as a protection layer. The result shows that P3HT can improve not only stability but performance of the device based on perovskite/2D-material structures.
Chapter.1 Introduction 1
1.1 Background of 2D materials 1
1.2 Basic properties of 2D materials 3
1.2.1 Graphene 3
1.2.2 Molybdenum disulfide (MoS2) 5
1.3 Basic properties of Lead Halide Perovskite 7
1.4 Motivation 9
1.5 Thesis organization 10
Chapter.2 Theoretical background 12
2.1 Characters of 2D material electronics 12
2.1.1 Mobility and Field-effect mobility 12
2.1.2 Ion/Ioff ratio and threshold voltage 15
2.1.3 Schottky barrier height 16
2.2 Characters of 2D material optoelectronics 17
2.2.1 Photoluminescence 18
2.2.2 Responsivity 18
2.2.3 Quantum efficiency 18
2.2.4 Response time 19
2.3 Photodetection mechanism in 2D materials 20
2.3.1 Photoconductive effect 20
2.3.2 Photogating effect 21
2.3.3 Photovoltaic effect 23
2.3.4 Photo-thermoelectric effect 24
Chapter.3 Experiment methods 27
3.1 2D material FET fabrication 27
3.1.1 2D material preparation 27
3.1.2 Electrode deposition 28
3.1.3 Thermal Annealing Process 29
3.2 Perovskite formation 30
3.2.1 PbI2 growth by thermal evaporation 34
3.2.2 Perovskite formation by CVD 35
3.3 Measurement systems 36
3.3.1 Optoelectronic measure system 36
3.3.2 Scanning electron microscope (SEM) 40
3.3.3 Atomic force microscope (AFM) 41
Chapter.4 Result and Discussion 43
4.1 Perovskite formation on 2D materials 43
4.2 Hybrid System of perovskite and graphene 48
4.2.1 Optoelectronic properties 48
4.2.2 Phase Transition of perovskite on graphene 52
4.2.3 Improvement of stability and performance on perovskite/graphene device by P3HT 55
4.3 Hybrid System of perovskite and MoS2 60
Chapter.5 Conclusion 67
References 69
References
1.Moore, G.E., Tech. Dig. Int. Electron Devices Meet. , 1975. 21: p. 11.
2.Novoselov, K., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
3.Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology, 2011. 6(3): p. 147-150.
4.Miró, P., M. Audiffred, and T. Heine, An atlas of two-dimensional materials. Chemical Society Reviews, 2014. 43(18): p. 6537-6554.
5.Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
6.Novoselov, K.S., Graphene: materials in the flatland (Nobel Lecture). Angewandte Chemie International Edition, 2011. 50(31): p. 6986-7002.
7.Wallace, P.R., The band theory of graphite. Physical Review, 1947. 71(9): p. 622.
8.Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
9.Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature communications, 2012. 3: p. 887.
10.Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013. 5(4): p. 263-75.
11.Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
12.Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275.
13.Radisavljevic, B., et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011. 6(3): p. 147-50.
14.Yu, Z., et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun, 2014. 5: p. 5290.
15.Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
16.Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-+.
17.Docampo, P., et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications, 2013. 4.
18.Liu, M.Z., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-+.
19.Gratzel, M., The light and shade of perovskite solar cells. Nature Materials, 2014. 13(9): p. 838-842.
20.Green, M.A., A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nature Photonics, 2014. 8(7): p. 506-514.
21.Zhou, H.P., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546.
22.Stranks, S.D. and H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015. 10(5): p. 391-402.
23.Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 2014. 9(11): p. 927-932.
24.Dou, L.T., et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014. 5.
25.Hu, X., et al., High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. Advanced Functional Materials, 2014. 24(46): p. 7373-7380.
26.Dong, R., et al., High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites. Advanced Materials, 2015. 27(11): p. 1912-+.
27.Lee, Y., et al., High-Performance Perovskite-Graphene Hybrid Photodetector. Advanced Materials, 2015. 27(1): p. 41-46.
28.Lin, Q.Q., et al., Low Noise, IR-Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging. Advanced Materials, 2015. 27(12): p. 2060-2064.
29.Xing, G.C., et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014. 13(5): p. 476-480.
30.Zhang, Q., et al., Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers. Nano Letters, 2014. 14(10): p. 5995-6001.
31.Zhu, H.M., et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 2015. 14(6): p. 636-U115.
32.Perumal, P., et al., Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics, 2016. 4(1): p. 146-155.
33.Tan, Z.K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9(9): p. 687-692.
34.Chin, X.Y., et al., Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 2015. 6.
35.Leijtens, T., et al., Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS nano, 2014. 8(7): p. 7147-7155.
36.Chen, Y., et al., Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS applied materials & interfaces, 2015. 7(8): p. 4471-4475.
37.Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
38.Xing, G.C., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013. 342(6156): p. 344-347.
39.Sutherland, B.R. and E.H. Sargent, Perovskite photonic sources. Nature Photonics, 2016. 10(5): p. 295-302.
40.Schwierz, F., Graphene transistors. Nature nanotechnology, 2010. 5(7): p. 487-496.
41.Neaman, D.A., Semiconductor physics and devices. 1992: Irwin Chicago.
42.Sze, S.M. and K.K. Ng, Physics of Semiconductor Devices. 2006: Wiley.
43.Allain, A., et al., Electrical contacts to two-dimensional semiconductors. Nature materials, 2015. 14(12): p. 1195-1205.
44.Buscema, M., et al., Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015. 44(11): p. 3691-3718.
45.Cowan, A.J. and J.R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society Reviews, 2013. 42(6): p. 2281-2293.
46.Ashcroft, N.W. and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976). Google Scholar, 2010: p. 29.
47.Mott, N. and H. Jones, The Theory of Metals and Alioys. 1936, Clarendon Press, Oxford.
48.Heremans, J.P., et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008. 321(5888): p. 554-557.
49.Nolas, G.S., J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments. Vol. 45. 2013: Springer Science & Business Media.
50.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
51.Yang, R., et al., Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2014. 32(6): p. 061203.
52.Leong, W.S., C.T. Nai, and J.T. Thong, What does annealing do to metal–graphene contacts? Nano letters, 2014. 14(7): p. 3840-3847.
53.Chen, Y., et al., Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Advanced Science, 2016. 3(4).
54.Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
55.Chen, Q., et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 2013. 136(2): p. 622-625.
56.Liu, J., et al., Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS nano, 2016. 10(3): p. 3536-3542.
57.Ha, S.T., et al., Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High‐Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials, 2014. 2(9): p. 838-844.
58.Kalantar-zadeh, K. and B. Fry, Nanotechnology-Enabled Sensors. 2007: Springer.
59.Howland, R. and L. Benatar, A Practical Guide: To Scanning Probe Microscopy.
60.Thornton, J., Scanning Probe Microscopy Training Notebook. 2000.
61.Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
62.Niu, L., et al., Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions. Advanced Materials, 2015. 27(47): p. 7800-7808.
63.Wang, G., et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015. 1(9).
64.Lee, Y., et al., High‐performance perovskite–graphene hybrid photodetector. Advanced materials, 2015. 27(1): p. 41-46.
65.Spina, M., et al., Microengineered CH3NH3PbI3 Nanowire/Graphene Phototransistor for Low‐Intensity Light Detection at Room Temperature. Small, 2015. 11(37): p. 4824-4828.
66.Chen, S.-Y., et al., Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon, 2013. 63: p. 23-29.
67.Chang, P.-H., et al., Ultrahigh Responsivity and Detectivity Graphene–Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Scientific Reports, 2017. 7.
68.Sun, Z., L. Aigouy, and Z. Chen, Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale, 2016. 8(14): p. 7377-7383.
69.Zhao, N., et al., Colloidal PbS quantum dot solar cells with high fill factor. ACS nano, 2010. 4(7): p. 3743-3752.
70.Wu, K., et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014. 16(41): p. 22476-22481.
71.Li, D., et al., Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature communications, 2016. 7.
72.Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature nanotechnology, 2010. 5(10): p. 722-726.
73.Ho, P.H., et al., Wavelength‐Selective Dual p‐and n‐Type Carrier Transport of an Organic/Graphene/Inorganic Heterostructure. Advanced Materials, 2015. 27(2): p. 282-287.
74.Xia, F., et al., The origins and limits of metal-graphene junction resistance. Nature nanotechnology, 2011. 6(3): p. 179-184.
75.Kang, D.H., et al., An Ultrahigh‐Performance Photodetector based on a Perovskite–Transition‐Metal‐Dichalcogenide Hybrid Structure. Advanced Materials, 2016. 28(35): p. 7799-7806.
76.Guo, Y., et al., Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light. The journal of physical chemistry letters, 2015. 6(3): p. 535-539.
77.Radisavljevic, B. and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature materials, 2013. 12(9): p. 815-820.
78.Giannazzo, F., et al., Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization. ACS Applied Materials & Interfaces, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊