|
References 1.Moore, G.E., Tech. Dig. Int. Electron Devices Meet. , 1975. 21: p. 11. 2.Novoselov, K., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453. 3.Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology, 2011. 6(3): p. 147-150. 4.Miró, P., M. Audiffred, and T. Heine, An atlas of two-dimensional materials. Chemical Society Reviews, 2014. 43(18): p. 6537-6554. 5.Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191. 6.Novoselov, K.S., Graphene: materials in the flatland (Nobel Lecture). Angewandte Chemie International Edition, 2011. 50(31): p. 6986-7002. 7.Wallace, P.R., The band theory of graphite. Physical Review, 1947. 71(9): p. 622. 8.Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109. 9.Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature communications, 2012. 3: p. 887. 10.Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013. 5(4): p. 263-75. 11.Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805. 12.Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275. 13.Radisavljevic, B., et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011. 6(3): p. 147-50. 14.Yu, Z., et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun, 2014. 5: p. 5290. 15.Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647. 16.Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-+. 17.Docampo, P., et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications, 2013. 4. 18.Liu, M.Z., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-+. 19.Gratzel, M., The light and shade of perovskite solar cells. Nature Materials, 2014. 13(9): p. 838-842. 20.Green, M.A., A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nature Photonics, 2014. 8(7): p. 506-514. 21.Zhou, H.P., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546. 22.Stranks, S.D. and H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology, 2015. 10(5): p. 391-402. 23.Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 2014. 9(11): p. 927-932. 24.Dou, L.T., et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014. 5. 25.Hu, X., et al., High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. Advanced Functional Materials, 2014. 24(46): p. 7373-7380. 26.Dong, R., et al., High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites. Advanced Materials, 2015. 27(11): p. 1912-+. 27.Lee, Y., et al., High-Performance Perovskite-Graphene Hybrid Photodetector. Advanced Materials, 2015. 27(1): p. 41-46. 28.Lin, Q.Q., et al., Low Noise, IR-Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging. Advanced Materials, 2015. 27(12): p. 2060-2064. 29.Xing, G.C., et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014. 13(5): p. 476-480. 30.Zhang, Q., et al., Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers. Nano Letters, 2014. 14(10): p. 5995-6001. 31.Zhu, H.M., et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 2015. 14(6): p. 636-U115. 32.Perumal, P., et al., Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photonics, 2016. 4(1): p. 146-155. 33.Tan, Z.K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9(9): p. 687-692. 34.Chin, X.Y., et al., Lead iodide perovskite light-emitting field-effect transistor. Nature Communications, 2015. 6. 35.Leijtens, T., et al., Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS nano, 2014. 8(7): p. 7147-7155. 36.Chen, Y., et al., Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS applied materials & interfaces, 2015. 7(8): p. 4471-4475. 37.Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344. 38.Xing, G.C., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013. 342(6156): p. 344-347. 39.Sutherland, B.R. and E.H. Sargent, Perovskite photonic sources. Nature Photonics, 2016. 10(5): p. 295-302. 40.Schwierz, F., Graphene transistors. Nature nanotechnology, 2010. 5(7): p. 487-496. 41.Neaman, D.A., Semiconductor physics and devices. 1992: Irwin Chicago. 42.Sze, S.M. and K.K. Ng, Physics of Semiconductor Devices. 2006: Wiley. 43.Allain, A., et al., Electrical contacts to two-dimensional semiconductors. Nature materials, 2015. 14(12): p. 1195-1205. 44.Buscema, M., et al., Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015. 44(11): p. 3691-3718. 45.Cowan, A.J. and J.R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society Reviews, 2013. 42(6): p. 2281-2293. 46.Ashcroft, N.W. and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976). Google Scholar, 2010: p. 29. 47.Mott, N. and H. Jones, The Theory of Metals and Alioys. 1936, Clarendon Press, Oxford. 48.Heremans, J.P., et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008. 321(5888): p. 554-557. 49.Nolas, G.S., J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments. Vol. 45. 2013: Springer Science & Business Media. 50.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669. 51.Yang, R., et al., Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2014. 32(6): p. 061203. 52.Leong, W.S., C.T. Nai, and J.T. Thong, What does annealing do to metal–graphene contacts? Nano letters, 2014. 14(7): p. 3840-3847. 53.Chen, Y., et al., Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Advanced Science, 2016. 3(4). 54.Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398. 55.Chen, Q., et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 2013. 136(2): p. 622-625. 56.Liu, J., et al., Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS nano, 2016. 10(3): p. 3536-3542. 57.Ha, S.T., et al., Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High‐Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials, 2014. 2(9): p. 838-844. 58.Kalantar-zadeh, K. and B. Fry, Nanotechnology-Enabled Sensors. 2007: Springer. 59.Howland, R. and L. Benatar, A Practical Guide: To Scanning Probe Microscopy. 60.Thornton, J., Scanning Probe Microscopy Training Notebook. 2000. 61.Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625. 62.Niu, L., et al., Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions. Advanced Materials, 2015. 27(47): p. 7800-7808. 63.Wang, G., et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015. 1(9). 64.Lee, Y., et al., High‐performance perovskite–graphene hybrid photodetector. Advanced materials, 2015. 27(1): p. 41-46. 65.Spina, M., et al., Microengineered CH3NH3PbI3 Nanowire/Graphene Phototransistor for Low‐Intensity Light Detection at Room Temperature. Small, 2015. 11(37): p. 4824-4828. 66.Chen, S.-Y., et al., Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon, 2013. 63: p. 23-29. 67.Chang, P.-H., et al., Ultrahigh Responsivity and Detectivity Graphene–Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Scientific Reports, 2017. 7. 68.Sun, Z., L. Aigouy, and Z. Chen, Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale, 2016. 8(14): p. 7377-7383. 69.Zhao, N., et al., Colloidal PbS quantum dot solar cells with high fill factor. ACS nano, 2010. 4(7): p. 3743-3752. 70.Wu, K., et al., Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014. 16(41): p. 22476-22481. 71.Li, D., et al., Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature communications, 2016. 7. 72.Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature nanotechnology, 2010. 5(10): p. 722-726. 73.Ho, P.H., et al., Wavelength‐Selective Dual p‐and n‐Type Carrier Transport of an Organic/Graphene/Inorganic Heterostructure. Advanced Materials, 2015. 27(2): p. 282-287. 74.Xia, F., et al., The origins and limits of metal-graphene junction resistance. Nature nanotechnology, 2011. 6(3): p. 179-184. 75.Kang, D.H., et al., An Ultrahigh‐Performance Photodetector based on a Perovskite–Transition‐Metal‐Dichalcogenide Hybrid Structure. Advanced Materials, 2016. 28(35): p. 7799-7806. 76.Guo, Y., et al., Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light. The journal of physical chemistry letters, 2015. 6(3): p. 535-539. 77.Radisavljevic, B. and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature materials, 2013. 12(9): p. 815-820. 78.Giannazzo, F., et al., Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization. ACS Applied Materials & Interfaces, 2017.
|