跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳亞軒
研究生(外文):Ya-Hsuan Wu
論文名稱:石墨烯與奈米材料複合紫外-可見光光感測器特性之研究
論文名稱(外文):Hybrid ZnO Nanoparticles/Graphene/P3HT UV-Visible Photodetector with High Responsivity and Dual Photocurrent Responses
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:二維材料石墨烯高響應率氧化鋅光偵測器聚(3-己烷基噻吩)異質接面可彎曲元件
外文關鍵詞:two-dimensional materialgraphenehigh photoresponsezincoxidephotodetectorpoly (3-hexylthiophene)heterojunctionflexible device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統的雙波段,多波段或是多色光偵測器,由堆疊兩種或多種吸光材料並透過帶間與帶間躍遷之機制來進行光偵測及訊號的產生,然而其製程繁雜,光響應表現亦不顯著。在此研究中我們將化學氣相沉積法製成之石墨烯置於氧化鋅奈米粒子(ZnO nanoparticles)與聚(3-己烷基噻吩)(P3HT)之間,熱平衡狀態下此兩種材料間形成P-N 異質接面之能帶彎曲,極薄的石墨稀則存在於接面的內建電場中。元件在照光下於個別材料中產生電子電洞對,由於兩個材料之於石墨烯之能帶彎曲不同,不同的載子受到電場驅動進而對石墨稀進行不同的摻雜。
我們成功地利用這樣特殊的異質結構,並且結合了石墨烯的絕佳導電性與半導體量子點的高度光吸收進而達成了高光感度,及在波長小於400 nm和大於400 nm 之光的照射下,分別有著上升光電流與下降光電流的特殊結果。這使得我們的元件不只可以偵測紫外光與可見光的存在,亦可以區分其波長在可見光(> 400 nm)區間或是紫外光區間(< 400 nm),再者由於材料的可彎曲特性,亦使元件可以在彎曲的情況下保持其效果,並在未來能進一步地被應用於穿戴裝置中。
Traditional dual-band, multi-band or multi-color photodetectors are fabricated by stacking two or more light-absorbing materials, which utilize the mechanism of inter-band/inter-band transition for light detection and signal generation, however, the process of fabrication is complex, and the photoresponse is low.
In this study, we proposed a new device composed of a graphene layer synthesized by chemical vapor deposition (CVD) process between ZnO nanoparticles (ZnO NPs) and the poly (3-hexylthiophene) P3HT layer. By using such a three-layered heterojunction combined with the excellent conductivity of graphene and high absorption of semiconductor quantum dots and P3HT, we successfully achieved a photodetector with high sensitivity and dual photoresponses. In addition, this unique structure enables the detector not only to detect a wide spectral range spanning from ultraviolet to visible, but also exhibits dual photoresponses, the visible (> 400 nm) in which a positive photocurrent is obtained, while in the ultraviolet (< 400 nm) a negative photocurrent is measured. The underlying mechanism responsible for these intriguing behaviors has been developed based upon the band alignment of the heterostructure. Besides, due to the flexibility of all the constituents, the device possesses flexible characteristics, which is very useful for the development of the future integrated wearable systems.
論文口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents VI
List of Figures and Tables VIII
Chapter 1 Introduction 1
Reference 3
Chapter 2 Theoretical background 6
2.1 Quantum confinement effect 6
2.2 Photodetectors 9
2.3 Graphene, 2D material 9
2.4 Poly(3-hexylthiophene-2,5-diyl) P3HT 15
2.5 ZnO nanoparticles 16
Reference 19
Chapter 3 Experimental details and sample preparation 23
3.1 Experimental details 23
3.1.1 Chemical vapor deposition system 23
3.1.2 Copper polishment system 25
3.1.3 Device measurement system 26
3.2 Sample preparation 26
3.2.1 P3HT Poly(3-hexylthiophene-2,5-diyl) solution synthesis 26
3.2.2 ZnO nanoparticle synthesis 26
3.2.3 Chemical Vapor Deposition Graphene Sheet 27
3.2.4 Fabrication process of the three-layered photodetector 28
3.2.5 Fabrication process of the flexible three-layered photodetector 28
Reference 30
Chapter 4 Results and discussion 31
4.1 Performance of the photodetector 31
4.1.1 Device Structures and Characteristics of Component Materials 31
4.1.2 Photocurrent, Responsitivity, and Gain 32
4.1.3 The response time 40
4.2 Performance under bending condition 46
Reference 49
Chapter 5 Conclusions 50
Chapter 1 Introduction
1.LeeEduardo, J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K., Contact and edge effects in graphene devices. Nat Nano 2008, 3 (8), 486-490.
2.Mueller, T.; Xia, F.; Avouris, P., Graphene photodetectors for high-speed optical communications. Nature Photonics 2010, 4 (5), 297-301.
3.Park, J.; Ahn, Y. H.; Ruiz-Vargas, C., Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Letters 2009, 9 (5), 1742-1746.
4.Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.-m.; Tsang, J.; Perebeinos, V.; Avouris, P., Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Letters 2009, 9 (3), 1039-1044.
5.Dean, C. R.; Young, A. F.; MericI; LeeC; WangL; SorgenfreiS; WatanabeK; TaniguchiT; KimP; Shepard, K. L.; HoneJ, Boron nitride substrates for high-quality graphene electronics. Nat Nano 2010, 5 (10), 722-726.
6.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308.
7.Haider, G.; Roy, P.; Chiang, C.-W.; Tan, W.-C.; Liou, Y.-R.; Chang, H.-T.; Liang, C.-T.; Shih, W.-H.; Chen, Y.-F., Electrical-Polarization-Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials 2016, 26 (4), 620-628.
8.Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology 2012, 7 (6), 363-368.
9.Sun, Z.; Liu, Z.; Li, J.; Tai, G. a.; Lau, S. P.; Yan, F., Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Advanced Materials 2012, 24 (43), 5878-5883.
10.Tan, W.-C.; Shih, W.-H.; Chen, Y. F., A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials 2014, 24 (43), 6818-6825.
11.Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; Cheng, Y.-B.; Bao, Q., Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials 2015, 3 (10), 1389-1396.
12.Ariyawansa, G.; Rinzan, M. B. M.; Matsik, S. G.; Hastings, G.; Perera, A. G. U.; Liu, H. C.; Buchanan, M.; Sproule, G. I.; Gavrilenko, V. I.; Kuznetsov, V. P., Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions. Applied Physics Letters 2006, 89 (6), 061112.
13.Liu, H. C.; Song, C. Y.; Shen, A.; Gao, M.; Dupont, E.; Poole, P. J.; Wasilewski, Z. R.; Buchanan, M.; Wilson, P. H.; Robinson, B. J.; Thompson, D. A.; Ohno, Y.; Ohno, H., Dual-band photodetectors based on interband and intersubband transitions. Infrared Physics & Technology 2001, 42 (3-5), 163-170.
14.Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X., Plasmon resonance enhanced multicolour photodetection by graphene. 2011, 2, 579.
15.de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Richards, M., Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sensors and Actuators B: Chemical 2008, 134 (2), 945-952.
16.Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292 (5523), 1897.
17.Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan le, D.; Lee, N. E., Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-65.

Chapter 2 Theoretical background
1.Cahay, M.; Electrochemical Society., Quantum confinement VI : nanostructured materials and devices : proceedings of the international symposium. Electrochemical Society: Pennington, N.J., 2001; p ix, 398 p.
2.Haug, H.; Koch, S. W., Quantum theory of the optical and electronic properties of semiconductors. 4th ed. ed.; World Scientific: Singapore ; River Edge, NJ, 2004.
3. https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/
ex5/bandstructure/.
4.Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology 2012, 7 (6), 363-368.
5.Littlejohn, S. D. a. Electrical properties of graphite nanoparticles in silicone : flexible oscillators and electromechanical sensing. Thesis (Ph.D.), University of Bath, 2012.
6.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-91.
7.Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109-162.
8.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9.
9.Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G., Electrical-Conductivity in Doped Polyacetylene. Phys Rev Lett 1977, 39 (17), 1098-1101.
10.Ghosh, T.; Gopal, A.; Saeki, A.; Seki, S.; Nair, V. C., p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties. Physical Chemistry Chemical Physics 2015, 17 (16), 10630-10639.
11.Pei, J.; Yu, W.-L.; Ni, J.; Lai, Y.-H.; Huang, W.; Heeger, A. J., Thiophene-Based Conjugated Polymers for Light-Emitting Diodes:  Effect of Aryl Groups on Photoluminescence Efficiency and Redox Behavior. Macromolecules 2001, 34 (21), 7241-7248.
12.Reddinger, J. L.; Reynolds, J. R., A Novel Polymeric Metallomacrocycle Sensor Capable of Dual-Ion Cocomplexation. Chemistry of Materials 1998, 10 (1), 3-5.
13.Dodabalapur, A.; Torsi, L.; Katz, H. E., Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics. Science 1995, 268 (5208), 270.
14.Yamamoto, T.; Sanechika, K.; Yamamoto, A., Preparation of thermostable and electric-conducting poly(2,5-thienylene). Journal of Polymer Science: Polymer Letters Edition 1980, 18 (1), 9-12.
15.Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688.
16.Espitia, P. J. P.; Soares, N. d. F. F.; Coimbra, J. S. d. R.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A., Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology 2012, 5 (5), 1447-1464.
17.Manzoor, U.; Islam, M.; Tabassam, L.; Rahman, S. U., Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method. Physica E: Low-dimensional Systems and Nanostructures 2009, 41 (9), 1669-1672.
18.Du, C.-F.; Lee, C.-H.; Cheng, C.-T.; Lin, K.-H.; Sheu, J.-K.; Hsu, H.-C., Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction. Nanoscale Research Letters 2014, 9 (1), 446-446.
19.de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Richards, M., Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sensors and Actuators B: Chemical 2008, 134 (2), 945-952.
20.Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292 (5523), 1897.
21.Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan le, D.; Lee, N. E., Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-65.
22.Xuan, W.; He, M.; Meng, N.; He, X.; Wang, W.; Chen, J.; Shi, T.; Hasan, T.; Xu, Z.; Xu, Y.; Luo, J. K., Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer. 2014, 4, 7206.
23.Guo, W.; Xu, S.; Wu, Z.; Wang, N.; Loy, M. M.; Du, S., Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013, 9 (18), 3031-6.
24.Jacobsson, T. J.; Edvinsson, T., Quantum Confined Stark Effects in ZnO Quantum Dots Investigated with Photoelectrochemical Methods. J Phys Chem C 2014, 118 (22), 12061-12072.
25.Kumar, H.; Rani, R., Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route. International Letters of Chemistry, Physics and Astronomy 2013, Vol. 14, 26-36.

Chapter 3 Experimental details and sample preparation
1.McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L., Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). The Journal of Organic Chemistry 1993, 58 (4), 904-912.
2.McCullough, R. D.; Lowe, R. D., Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). Journal of the Chemical Society, Chemical Communications 1992, (1), 70-72.
3.Spanhel, L.; Anderson, M. A., Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society 1991, 113 (8), 2826-2833.
4.Meulenkamp, E. A., Synthesis and Growth of ZnO Nanoparticles. The Journal of Physical Chemistry B 1998, 102 (29), 5566-5572.
5.Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L.-D.; Margeat, O.; Ackermann, J.; Fahlman, M., Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. Journal of Materials Chemistry A 2014, 2 (41), 17676-17682.

Chapter 4 Results and discussion
1.Shearer, C. J.; Slattery, A. D.; Stapleton, A. J.; Shapter, J. G.; Gibson, C. T., Accurate thickness measurement of graphene. Nanotechnology 2016, 27 (12), 125704.
2.Tan, W.-C.; Shih, W.-H.; Chen, Y. F., A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials 2014, 24 (43), 6818-6825.
3.Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N., Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 2011, 23 (45), 5419-24.
4.Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan le, D.; Lee, N. E., Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-65.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊