|
Chapter 1 Introduction 1.LeeEduardo, J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K., Contact and edge effects in graphene devices. Nat Nano 2008, 3 (8), 486-490. 2.Mueller, T.; Xia, F.; Avouris, P., Graphene photodetectors for high-speed optical communications. Nature Photonics 2010, 4 (5), 297-301. 3.Park, J.; Ahn, Y. H.; Ruiz-Vargas, C., Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Letters 2009, 9 (5), 1742-1746. 4.Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.-m.; Tsang, J.; Perebeinos, V.; Avouris, P., Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Letters 2009, 9 (3), 1039-1044. 5.Dean, C. R.; Young, A. F.; MericI; LeeC; WangL; SorgenfreiS; WatanabeK; TaniguchiT; KimP; Shepard, K. L.; HoneJ, Boron nitride substrates for high-quality graphene electronics. Nat Nano 2010, 5 (10), 722-726. 6.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308. 7.Haider, G.; Roy, P.; Chiang, C.-W.; Tan, W.-C.; Liou, Y.-R.; Chang, H.-T.; Liang, C.-T.; Shih, W.-H.; Chen, Y.-F., Electrical-Polarization-Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials 2016, 26 (4), 620-628. 8.Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology 2012, 7 (6), 363-368. 9.Sun, Z.; Liu, Z.; Li, J.; Tai, G. a.; Lau, S. P.; Yan, F., Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Advanced Materials 2012, 24 (43), 5878-5883. 10.Tan, W.-C.; Shih, W.-H.; Chen, Y. F., A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials 2014, 24 (43), 6818-6825. 11.Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; Cheng, Y.-B.; Bao, Q., Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials 2015, 3 (10), 1389-1396. 12.Ariyawansa, G.; Rinzan, M. B. M.; Matsik, S. G.; Hastings, G.; Perera, A. G. U.; Liu, H. C.; Buchanan, M.; Sproule, G. I.; Gavrilenko, V. I.; Kuznetsov, V. P., Characteristics of a Si dual-band detector responding in both near- and very-long-wavelength-infrared regions. Applied Physics Letters 2006, 89 (6), 061112. 13.Liu, H. C.; Song, C. Y.; Shen, A.; Gao, M.; Dupont, E.; Poole, P. J.; Wasilewski, Z. R.; Buchanan, M.; Wilson, P. H.; Robinson, B. J.; Thompson, D. A.; Ohno, Y.; Ohno, H., Dual-band photodetectors based on interband and intersubband transitions. Infrared Physics & Technology 2001, 42 (3-5), 163-170. 14.Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X., Plasmon resonance enhanced multicolour photodetection by graphene. 2011, 2, 579. 15.de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Richards, M., Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sensors and Actuators B: Chemical 2008, 134 (2), 945-952. 16.Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292 (5523), 1897. 17.Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan le, D.; Lee, N. E., Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-65.
Chapter 2 Theoretical background 1.Cahay, M.; Electrochemical Society., Quantum confinement VI : nanostructured materials and devices : proceedings of the international symposium. Electrochemical Society: Pennington, N.J., 2001; p ix, 398 p. 2.Haug, H.; Koch, S. W., Quantum theory of the optical and electronic properties of semiconductors. 4th ed. ed.; World Scientific: Singapore ; River Edge, NJ, 2004. 3. https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ ex5/bandstructure/. 4.Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology 2012, 7 (6), 363-368. 5.Littlejohn, S. D. a. Electrical properties of graphite nanoparticles in silicone : flexible oscillators and electromechanical sensing. Thesis (Ph.D.), University of Bath, 2012. 6.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-91. 7.Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109-162. 8.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9. 9.Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G., Electrical-Conductivity in Doped Polyacetylene. Phys Rev Lett 1977, 39 (17), 1098-1101. 10.Ghosh, T.; Gopal, A.; Saeki, A.; Seki, S.; Nair, V. C., p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties. Physical Chemistry Chemical Physics 2015, 17 (16), 10630-10639. 11.Pei, J.; Yu, W.-L.; Ni, J.; Lai, Y.-H.; Huang, W.; Heeger, A. J., Thiophene-Based Conjugated Polymers for Light-Emitting Diodes: Effect of Aryl Groups on Photoluminescence Efficiency and Redox Behavior. Macromolecules 2001, 34 (21), 7241-7248. 12.Reddinger, J. L.; Reynolds, J. R., A Novel Polymeric Metallomacrocycle Sensor Capable of Dual-Ion Cocomplexation. Chemistry of Materials 1998, 10 (1), 3-5. 13.Dodabalapur, A.; Torsi, L.; Katz, H. E., Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics. Science 1995, 268 (5208), 270. 14.Yamamoto, T.; Sanechika, K.; Yamamoto, A., Preparation of thermostable and electric-conducting poly(2,5-thienylene). Journal of Polymer Science: Polymer Letters Edition 1980, 18 (1), 9-12. 15.Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688. 16.Espitia, P. J. P.; Soares, N. d. F. F.; Coimbra, J. S. d. R.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A., Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology 2012, 5 (5), 1447-1464. 17.Manzoor, U.; Islam, M.; Tabassam, L.; Rahman, S. U., Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method. Physica E: Low-dimensional Systems and Nanostructures 2009, 41 (9), 1669-1672. 18.Du, C.-F.; Lee, C.-H.; Cheng, C.-T.; Lin, K.-H.; Sheu, J.-K.; Hsu, H.-C., Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction. Nanoscale Research Letters 2014, 9 (1), 446-446. 19.de Lacy Costello, B. P. J.; Ewen, R. J.; Ratcliffe, N. M.; Richards, M., Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sensors and Actuators B: Chemical 2008, 134 (2), 945-952. 20.Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292 (5523), 1897. 21.Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan le, D.; Lee, N. E., Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-65. 22.Xuan, W.; He, M.; Meng, N.; He, X.; Wang, W.; Chen, J.; Shi, T.; Hasan, T.; Xu, Z.; Xu, Y.; Luo, J. K., Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer. 2014, 4, 7206. 23.Guo, W.; Xu, S.; Wu, Z.; Wang, N.; Loy, M. M.; Du, S., Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013, 9 (18), 3031-6. 24.Jacobsson, T. J.; Edvinsson, T., Quantum Confined Stark Effects in ZnO Quantum Dots Investigated with Photoelectrochemical Methods. J Phys Chem C 2014, 118 (22), 12061-12072. 25.Kumar, H.; Rani, R., Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route. International Letters of Chemistry, Physics and Astronomy 2013, Vol. 14, 26-36.
Chapter 3 Experimental details and sample preparation 1.McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L., Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). The Journal of Organic Chemistry 1993, 58 (4), 904-912. 2.McCullough, R. D.; Lowe, R. D., Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). Journal of the Chemical Society, Chemical Communications 1992, (1), 70-72. 3.Spanhel, L.; Anderson, M. A., Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society 1991, 113 (8), 2826-2833. 4.Meulenkamp, E. A., Synthesis and Growth of ZnO Nanoparticles. The Journal of Physical Chemistry B 1998, 102 (29), 5566-5572. 5.Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L.-D.; Margeat, O.; Ackermann, J.; Fahlman, M., Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. Journal of Materials Chemistry A 2014, 2 (41), 17676-17682.
Chapter 4 Results and discussion 1.Shearer, C. J.; Slattery, A. D.; Stapleton, A. J.; Shapter, J. G.; Gibson, C. T., Accurate thickness measurement of graphene. Nanotechnology 2016, 27 (12), 125704. 2.Tan, W.-C.; Shih, W.-H.; Chen, Y. F., A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate. Advanced Functional Materials 2014, 24 (43), 6818-6825. 3.Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N., Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 2011, 23 (45), 5419-24. 4.Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy le, T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan le, D.; Lee, N. E., Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-65.
|