|
1.Di, C.A., F. Zhang, and D. Zhu, Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv Mater, 2013. 25(3): p. 313-30. 2.Byun, J., et al., Fully printable, strain-engineered electronic wrap for customizable soft electronics. Sci Rep, 2017. 7: p. 45328. 3.Zang, Y., et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun, 2015. 6: p. 6269. 4.Wang, C., et al., User-interactive electronic skin for instantaneous pressure visualization. Nat Mater, 2013. 12(10): p. 899-904. 5.Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010. 9(10): p. 859-64. 6.Son, D., et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol, 2014. 9(5): p. 397-404. 7.T. Sekitani , T.Y., U. Zschieschang , H. Klauk , S. Bauer , K. Takeuchi , M. Takamiya , T. Sakurai , T. Someya, Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science, 2009. 326: p. 1516. 8.Graz, I., et al., Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. Journal of Applied Physics, 2009. 106(3): p. 034503. 9.Webb, R.C., et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013. 12(10): p. 938-44. 10.Lipomi, D.J., et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol, 2011. 6(12): p. 788-92. 11.Schwartz, G., et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013. 4: p. 1859. 12.Gong, S., et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014. 5: p. 3132. 13.Kim, D.H.e.a., Epidermal electronics. Science 2011. 333: p. 838–843. 14.Huang, X., et al., Epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases, 2012. 7(1-4): p. 52. 15.Kettlgruber, G., et al., Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. Journal of Materials Chemistry A, 2013. 1(18): p. 5505. 16.Xu, S., et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013. 4: p. 1543. 17.Kaltenbrunner, M., et al., Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012. 3: p. 770. 18.Qi, Y., et al., Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett, 2011. 11(3): p. 1331-6. 19.Lee, M., et al., A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater, 2012. 24(13): p. 1759-64. 20.Blakemore, R., Magnetotactic bacteria. Science advances, 1975. 24: p. 377–379. 21.Midgley, P.A. and R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat Mater, 2009. 8(4): p. 271-80. 22.Kirschvink, J., POLAR EXPLORER. sciencemag, 2016. 352: p. 1508-1514. 23.Hwang, S.W.e.a., A physically transient form of silicon electronics. Science advances, 2012. 337: p. 1640–1644. 24.Zang, Y., et al., Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz., 2015. 2(2): p. 140-156. 25.Zang, Y., et al., Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv Mater, 2015. 27(48): p. 7979-85. 26.Melzer, M., et al., Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012. 24(48): p. 6468-72. 27.Melzer, M., et al., Stretchable magnetoelectronics. Nano Lett, 2011. 11(6): p. 2522-6. 28.Melzer, M., et al., Imperceptible magnetoelectronics. Nat Commun, 2015. 6: p. 6080. 29.Melzer, M., et al., Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv Mater, 2015. 27(8): p. 1333-8. 30.Wang, X., et al., Recent Progress in Electronic Skin. Adv Sci (Weinh), 2015. 2(10): p. 1500169.
1.Rinaldi, A., et al., A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. Sensors (Basel), 2016. 16(12). 2.Bae, S.-H., et al., Graphene-based transparent strain sensor. Carbon, 2013. 51: p. 236-242. 3.Chou, H.H., et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun, 2015. 6: p. 8011. 4.Schwartz, G., et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013. 4: p. 1859. 5.Zang, Y., et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun, 2015. 6: p. 6269. 6.J. Park, M.K., Y. Lee, H. S. Lee, and H. Ko, Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Science advances, 2015. 1: p. 1500661. 7.Wang, S., L. Lin, and Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015. 11: p. 436-462. 8.N. White, P.G.-J., and S. Beeby, A novel thick-film piezoelectric microgenerator. Smart Materials and Structures, 2001. 10: p. 850. 9.Wang, X., et al., Recent Progress in Electronic Skin. Adv Sci (Weinh), 2015. 2(10): p. 1500169.
1.Sekitani, T. and T. Someya, Stretchable, large-area organic electronics. Adv Mater, 2010. 22(20): p. 2228-46. 2.D. S. Lee, S.J.K., J. H. Sohn, I. G. Kim, S. W. Kim, D. W. Sohn, et al, Biocompatibility of a PDMS-coated micro-device: Bladder volume monitoring sensor. Chinese Journal of Polymer Science, 2012. 30: p. 242-249. 3.Schwartz, G., et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013. 4: p. 1859. 4.Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010. 9(10): p. 859-64. 5.Chou, H.H., et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun, 2015. 6: p. 8011. 6.Xu, F. and Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012. 24(37): p. 5117-22. 7.Akter, T. and W.S. Kim, Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl Mater Interfaces, 2012. 4(4): p. 1855-9. 8.Hu, W., et al., Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology, 2012. 23(34): p. 344002. 9.Leem, D.S., et al., Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater, 2011. 23(38): p. 4371-5. 10.Kim, T., et al., Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. Advanced Functional Materials, 2013. 23(10): p. 1250-1255. 11.Madaria, A.R., A. Kumar, and C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011. 22(24): p. 245201. 12.Yu, Z., et al., Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater, 2011. 23(5): p. 664-8. 13.Zang, Y., et al., Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv Mater, 2015. 27(48): p. 7979-85.
1.Seol, M.-L., et al., Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy, 2015. 17: p. 63-71. 2.Zhu, B., et al., Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 2014. 10(18): p. 3625-31. 3.Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010. 9(10): p. 859-64. 4.Yao, H.B., et al., A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv Mater, 2013. 25(46): p. 6692-8. 5.Karnaushenko, D., et al., High-performance magnetic sensorics for printable and flexible electronics. Adv Mater, 2015. 27(5): p. 880-5. 6.Melzer, M., et al., Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012. 24(48): p. 6468-72. 7.Melzer, M., et al., Imperceptible magnetoelectronics. Nat Commun, 2015. 6: p. 6080. 8.Melzer, M., et al., Elastic magnetic sensor with isotropic sensitivity for in-flow detection of magnetic objects. RSC Advances, 2012. 2(6): p. 2284. 9.Zhang, W., Q. Hao, and G. Xiao, Low-frequency noise in serial arrays of MgO-based magnetic tunnel junctions. Physical Review B, 2011. 84(9). 10.Zang, Y., et al., Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv Mater, 2015. 27(48): p. 7979-85. 11.Szendrei, K., et al., Touchless Optical Finger Motion Tracking Based on 2D Nanosheets with Giant Moisture Responsiveness. Adv Mater, 2015. 27(41): p. 6341-8.
|