跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/19 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇昱仁
研究生(外文):Yu-Ren Su
論文名稱:基於金字塔微結構的高性能磁感測器
論文名稱(外文):High-Performance Magnetic Sensor Based on Microstructured PDMS
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:42
中文關鍵詞:電阻式磁感測器聚二甲基矽氧烷金字塔微結構銀奈米線穿戴式非觸控式面板
外文關鍵詞:Resistive magnetic sensorPDMSMicro-Pyramid structureAgNWsWearable deviceTouchless panel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電阻式磁感應器測量不同磁場會有不同電阻值,可以監測磁場的大小。然而,當距離增加時,磁場將迅速下降,因此感應器對於測量磁場變化的靈敏度是非常重要的。在本論文中,我們提出了一種新方法,嵌入FeNi50顆粒的金字塔微結構PDMS為基底做成高靈敏度磁感應器。組合幾個關鍵因素使得其有高性能的表現。首先,FeNi50奈米顆粒具有非常高的磁化率。第二,微結構PDMS具有低粘彈性和低彈性阻力的獨特特徵。第三,銀奈米線具有導電性優良的特點,能夠隨磁場變化而非常敏感。第四,這種新設計的元件可以在非常低的工作電壓下工作。因此,磁傳感器可以與太陽能電池結合,甚至可以在室內照明下工作,這對於可穿戴式元件的開發非常有用。此外,我們已經證明,我們的磁傳感器可以與發光二極體結合,又因為磁力為非接觸力,所以可以做成非觸控式面板。
Resistive magnetic sensors measure different resistance values at different magnetic fields, in which the magnitude of the magnetic field can be monitored. However, the magnetic field will decline quickly when the distance increases, so that the sensitivity of the sensor for the measurement of the change of magnetic field is greatly desirable. In this thesis, we propose a new approach by the integration of microstructured PDMS embedded with FeNi50 particles and to form a highly sensitive magnetic sensor. Several key factors combined together makes the performance possible. First, FeNi50 nanoparticles possess a very high magnetic susceptibility. Second, the microstructured PDMS has unique features of low viscoelasticity and low elastic resistance. Third, AgNWs have the characteristics of excellent conductivity, enabling to be very sensitive with the change of magnetic field. Fourth, this newly designed device can be operated under a very low operational voltage. Therefore, the magnetic sensor can be integrated with solar cells, and it even can work under room light illumination, which is very useful for the development of wearable devices. In addition, we have demonstrated that our magnetic sensor can be integrated with light emitting diodes and can be used to create touchless panel.
摘要 ......................................................................................................................... i
Abstract ................................................................................................................. ii
List of Figures ........................................................................................................ v
List of Tables ........................................................................................................ vii
Chapter 1 Introduction ......................................................................................... 1
Reference ...................................................................................................................... 5
Chapter 2 Theoretical background ....................................................................... 7
2.1 Mechanism of pressure sensor ................................................................................ 7
2.1.1 Piezoresistivity ......................................................................................................... 7
2.1.2 Capacitance .............................................................................................................. 8
2.1.3 Pizoelectricity ........................................................................................................ 10
2.2 Critical parameters of pressure sensor ................................................................. 11
Reference .................................................................................................................... 14
Chapter 3 Experimental details and Materials ................................................... 15
3.1 Material ................................................................................................................ 15
3.1.1 Polydimethylsiloxane (PDMS) .............................................................................. 15
3.1.2 FeNi50 ................................................................................................................... 16
3.1.3 Silver nanowire (AgNWs) ..................................................................................... 17
3.2 Experimental setups ............................................................................................. 19
3.2.1 Oxygen Plasma Cleaner ......................................................................................... 19
3.2.2 Spray coating ......................................................................................................... 20
3.3 Sample preparation .............................................................................................. 20
3.3.1 Pyramid mold ......................................................................................................... 20
3.3.2 High sensitive magnetic sensor .............................................................................. 21
Reference .................................................................................................................... 25
Chapter 4 Experiment results and Discussion .................................................... 26
4.1 Characterization of sensor performance .............................................................. 26
4.1.1 Sensitivity of magnetic sensor ............................................................................... 26
4.1.2 Stability and durability .......................................................................................... 28
4.1.3 Response and relaxation time ................................................................................ 30
4.1.4 Bending performance of the device ....................................................................... 32
4.2 Demonstration of magnetic sensor ........................................................................ 34
4.2.1 Integration with solar cell ...................................................................................... 34
iv
4.2.2 Integration with LED ............................................................................................. 36
4.2.3 touchless panel ....................................................................................................... 37
Reference .................................................................................................................... 40
Chapter 5 Summary and Future work ................................................................ 41
1.Di, C.A., F. Zhang, and D. Zhu, Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv Mater, 2013. 25(3): p. 313-30.
2.Byun, J., et al., Fully printable, strain-engineered electronic wrap for customizable soft electronics. Sci Rep, 2017. 7: p. 45328.
3.Zang, Y., et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun, 2015. 6: p. 6269.
4.Wang, C., et al., User-interactive electronic skin for instantaneous pressure visualization. Nat Mater, 2013. 12(10): p. 899-904.
5.Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010. 9(10): p. 859-64.
6.Son, D., et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol, 2014. 9(5): p. 397-404.
7.T. Sekitani , T.Y., U. Zschieschang , H. Klauk , S. Bauer , K. Takeuchi , M. Takamiya , T. Sakurai , T. Someya, Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science, 2009. 326: p. 1516.
8.Graz, I., et al., Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. Journal of Applied Physics, 2009. 106(3): p. 034503.
9.Webb, R.C., et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013. 12(10): p. 938-44.
10.Lipomi, D.J., et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol, 2011. 6(12): p. 788-92.
11.Schwartz, G., et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013. 4: p. 1859.
12.Gong, S., et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014. 5: p. 3132.
13.Kim, D.H.e.a., Epidermal electronics. Science 2011. 333: p. 838–843.
14.Huang, X., et al., Epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases, 2012. 7(1-4): p. 52.
15.Kettlgruber, G., et al., Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. Journal of Materials Chemistry A, 2013. 1(18): p. 5505.
16.Xu, S., et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013. 4: p. 1543.
17.Kaltenbrunner, M., et al., Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012. 3: p. 770.
18.Qi, Y., et al., Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett, 2011. 11(3): p. 1331-6.
19.Lee, M., et al., A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater, 2012. 24(13): p. 1759-64.
20.Blakemore, R., Magnetotactic bacteria. Science advances, 1975. 24: p. 377–379.
21.Midgley, P.A. and R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat Mater, 2009. 8(4): p. 271-80.
22.Kirschvink, J., POLAR EXPLORER. sciencemag, 2016. 352: p. 1508-1514.
23.Hwang, S.W.e.a., A physically transient form of silicon electronics. Science advances, 2012. 337: p. 1640–1644.
24.Zang, Y., et al., Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz., 2015. 2(2): p. 140-156.
25.Zang, Y., et al., Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv Mater, 2015. 27(48): p. 7979-85.
26.Melzer, M., et al., Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012. 24(48): p. 6468-72.
27.Melzer, M., et al., Stretchable magnetoelectronics. Nano Lett, 2011. 11(6): p. 2522-6.
28.Melzer, M., et al., Imperceptible magnetoelectronics. Nat Commun, 2015. 6: p. 6080.
29.Melzer, M., et al., Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv Mater, 2015. 27(8): p. 1333-8.
30.Wang, X., et al., Recent Progress in Electronic Skin. Adv Sci (Weinh), 2015. 2(10): p. 1500169.


1.Rinaldi, A., et al., A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. Sensors (Basel), 2016. 16(12).
2.Bae, S.-H., et al., Graphene-based transparent strain sensor. Carbon, 2013. 51: p. 236-242.
3.Chou, H.H., et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun, 2015. 6: p. 8011.
4.Schwartz, G., et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013. 4: p. 1859.
5.Zang, Y., et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun, 2015. 6: p. 6269.
6.J. Park, M.K., Y. Lee, H. S. Lee, and H. Ko, Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Science advances, 2015. 1: p. 1500661.
7.Wang, S., L. Lin, and Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015. 11: p. 436-462.
8.N. White, P.G.-J., and S. Beeby, A novel thick-film piezoelectric microgenerator. Smart Materials and Structures, 2001. 10: p. 850.
9.Wang, X., et al., Recent Progress in Electronic Skin. Adv Sci (Weinh), 2015. 2(10): p. 1500169.

1.Sekitani, T. and T. Someya, Stretchable, large-area organic electronics. Adv Mater, 2010. 22(20): p. 2228-46.
2.D. S. Lee, S.J.K., J. H. Sohn, I. G. Kim, S. W. Kim, D. W. Sohn, et al, Biocompatibility of a PDMS-coated micro-device: Bladder volume monitoring sensor. Chinese Journal of Polymer Science, 2012. 30: p. 242-249.
3.Schwartz, G., et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013. 4: p. 1859.
4.Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010. 9(10): p. 859-64.
5.Chou, H.H., et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun, 2015. 6: p. 8011.
6.Xu, F. and Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012. 24(37): p. 5117-22.
7.Akter, T. and W.S. Kim, Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl Mater Interfaces, 2012. 4(4): p. 1855-9.
8.Hu, W., et al., Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology, 2012. 23(34): p. 344002.
9.Leem, D.S., et al., Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater, 2011. 23(38): p. 4371-5.
10.Kim, T., et al., Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. Advanced Functional Materials, 2013. 23(10): p. 1250-1255.
11.Madaria, A.R., A. Kumar, and C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011. 22(24): p. 245201.
12.Yu, Z., et al., Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater, 2011. 23(5): p. 664-8.
13.Zang, Y., et al., Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv Mater, 2015. 27(48): p. 7979-85.


1.Seol, M.-L., et al., Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy, 2015. 17: p. 63-71.
2.Zhu, B., et al., Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 2014. 10(18): p. 3625-31.
3.Mannsfeld, S.C., et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010. 9(10): p. 859-64.
4.Yao, H.B., et al., A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv Mater, 2013. 25(46): p. 6692-8.
5.Karnaushenko, D., et al., High-performance magnetic sensorics for printable and flexible electronics. Adv Mater, 2015. 27(5): p. 880-5.
6.Melzer, M., et al., Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater, 2012. 24(48): p. 6468-72.
7.Melzer, M., et al., Imperceptible magnetoelectronics. Nat Commun, 2015. 6: p. 6080.
8.Melzer, M., et al., Elastic magnetic sensor with isotropic sensitivity for in-flow detection of magnetic objects. RSC Advances, 2012. 2(6): p. 2284.
9.Zhang, W., Q. Hao, and G. Xiao, Low-frequency noise in serial arrays of MgO-based magnetic tunnel junctions. Physical Review B, 2011. 84(9).
10.Zang, Y., et al., Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv Mater, 2015. 27(48): p. 7979-85.
11.Szendrei, K., et al., Touchless Optical Finger Motion Tracking Based on 2D Nanosheets with Giant Moisture Responsiveness. Adv Mater, 2015. 27(41): p. 6341-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top