跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂俊寬
研究生(外文):CHUN-KUAN LU
論文名稱:磁旋行波放大器之穩定性分析
論文名稱(外文):Stability Analysis of Gyrotron Traveling-Wave Amplifier
指導教授:朱國瑞朱國瑞引用關係
指導教授(外文):Kwo-Ray Chu
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:磁旋行波放大器電子迴旋脈射磁旋管
外文關鍵詞:Gyro-TWTelectron cyclotron maserscaling down effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Gyro-TWT是所謂的磁旋行波放大器,其目的在於放大輸入波功率。Gyro-TWT操作原理是藉由電子在外部的固定磁場下,因勞倫茲力產生的磁旋現象,使電子攜帶有自身旋轉頻率,而在電子頻率和外部輸入電磁波頻率接近時,電子和電磁波會開始產生交互作用,並開始有能量的交換,使原本在電子裡的能量轉移到電磁波中,產生功率放大的效果。而其中對流不穩定和絕對不穩定會造成Gyro-TWT是否能穩定操作的關鍵。為了探討這兩種不穩定對系統造成的影響,本論文將針對[1]論文的放大效率及結果重現、並探討調變各種參數對於起振電流的變化。本系統為TE01模式(mode)並固定操作頻率在93.5GHz、第一次及第二次諧振模之分佈式損耗磁旋行波放大器進行理論上的分析。本系統採用分佈式損耗作用段,藉由改變壁上損耗段ρ、Velocity Ratio α、操作電場B0、速率分佈,目的在抑制這些可能產生的不穩定模式。而在本論文中,同時也展示了當磁旋管微縮時,導致電磁波看到的損耗量(Attenuation)放大的效應。並藉由損耗段和非損耗段組成的線路中呈現的場形,可以解釋不同模式的起振電流對於調變電子和結構參數的變化。
Gyrotron traveling-wave amplifier (gyro-TWT) is a millimeter wave amplifier, the basic mechanism is followed by ECM (electron cyclotron maser). The absolute and convective instabilities will cause oscillation of mode in waveguide, and the oscillation makes the gyro-TWT unstable. To discuss the different oscillation, this thesis reproduces saturated power and gain in [1]. By changing the different parameters in waveguide, electron and magnetic field, we can get a variation of start-oscillation current (Ist)[2] to analyze stability of gyro-TWT. The simulation system in this paper is operating in the TE01 mode at the fundamental cyclotron harmonic. In this thesis we also show that scaling down the size of waveguide has the effect of magnifying wall loss (attenuation of mode), and it makes start-oscillation current (Ist) be larger.
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖表目錄 VI
第一章 緒論 1
A. 磁旋行波放大器介紹 2
B. 電子迴旋脈射(Electron Cyclotron Maser)物理機制 6
B-1. 同調(synchronism): 6
B-2. 群聚(bunching): 7
I. 方位角群聚(Azimuthal bunching): 7
II. 軸向群聚(Axial bunching): 8
C. 分佈式損耗 磁旋行波放大器 10
第二章 不穩定狀態及振盪的介紹和計算理論模型 13
A. 絕對不穩定(convective instability)和對流不穩定(absolute instability) 13
B. 磁旋行波放大器中的振盪(Oscillations) 15
B-1. global reflective oscillation: 15
B-2. localized reflective oscillation: 15
B-3. absolute instability: 15
C. 場方程式 (Field Equations) 17
D. 電子動力學 (Electron Dynamics) 20
E. 電子初始分佈 (Initial Electron Distribution) 22
F. 邊界條件 (Boundary Conditions) 24
第三章 調變各種參數影響起振電流的探討 25
A. [1]之結果重製 26
B. TE01(1)、TE02(2)、TE21(1)、TE11(1)模式 29
C. 管壁電阻率(resistance) 31
D. 損耗段和銅作用段之長度 32
E. 速率分布(Velocity Spread) 35
F. 磁場 37
G. Velocity Ratio 39
H. 波導管尺度微縮的效應(Scaling Down) 41
第四章 結論 44
文獻參考 46
附錄 51
[1] Ran Yan, Yong Tang, and Yong Luo, “Design and Experimental Study of a High-Gain W-Band Gyro-TWT With Nonuniform Periodic Dielectric Loaded Waveguide,” IEEE Trans. Electron Devices, vol. 61, no. 12, pp. 2564–2569, July. 2014.
[2] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling-wave amplifier,” IEEE Trans. Plasma. Sci., vol. 27, pp. 391–404, Apr. 1999.
[3] Khanh T. Nguyen, P. Calame, Dean E. Pershing, Bruce G. Danly, Morag Garven, Baruch Levush, Senior Member, IEEE, and THOMAS M. Antonsen, Jr., Member, IEEE “Design of a Ka-Band Gyro-TWT for radar applications” IEEE Transactions on electron devices, Vol. 48, NO. 1, January 2001.
[4] K. R. Chu, “ Overview of research on the gyrotron traveling-wave amplifier ” IEEE Trans. Plasma Sci., vol. 30, pp. 903–908, June 2002.
[5] V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, “A quarter century of gyrotron research and development,” IEEE Trans. Plasma Sci., vol. 25, pp. 1322–1335, Dec. 1997.
[6] K. L. Felch, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, “Characteristics and applications of fast-wave gyrodevices,” Proc. IEEE, vol. 87, pp. 752–781, May 1999.
[7] J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read, “The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves,” IEEE J. Quantum Electron., vol. QE-15, pp. 848–853, 1979.
[8] J. L. Seftor, A. T. Drobot, and K. R. Chu, “An investigation of a magnetron injection gun suitable for use in cyclotron resonance masers,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1609–1616, 1979.
[9] L. R. Barnett, K. R. Chu, J. M. Baird, V. L. Granatstein, and A. T. Drobot, “Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier,” in IEDM Tech. Dig., 1979, pp. 164–167.
[10] R. S. Symons, H. R. Jory, and S. J. Hegji, “An experimental gyro-TWT,” in IEDM Tech. Dig., 1979, pp. 676–679.
[11] P. E. Ferguson and R. S. Symons, “A C-band gyro-TWT,” in IEDM Tech. Dig., 1980, pp. 310–313.
[12] R. S. Symons, H. R. Jory, S. J. Hegji, and P. E. Ferguson, “An experimental gyro-TWT,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 181–184, 1981.
[13] P. E. Ferguson, G. Valier, and R. S. Symons, “Gyrotron-TWT operating characteristics,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 794–799, 1981.
[14] H. R. Jory, private communication.
[15] Y. Y. Lau and K. R. Chu, “Gyrotron traveling wave amplifier—A proposed wideband fast wave amplifier,” Int. J. Infrared Millim. Waves, vol.2, pp. 415–425, 1981.
[16] K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, “Theory of a wideband distributed gyrotron traveling wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 866–871, 1981.
[17] L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granatstein, “An experimental wideband gyrotron traveling-wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 872–875, 1981.
[18] L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C. C. Tu, “Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube,” Phys. Rev. Lett., vol. 63, pp. 1062–1065, 1989.
[19] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and H. Y. Chen, “A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment,” IEEE Trans. Electron Devices, vol. 37, pp. 1557–1560, June1990.
[20] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and C. S. Kou, “Recent development in millimeter wave gyro-TWT research at NTHU,” in IEDM Tech. Dig., 1990, pp. 699–702.
[21] K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, “Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier,” Phys. Rev. Lett., vol. 74, pp. 1103–1106, 1995.
[22] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier,” Phys. Rev. Lett., vol. 81, pp. 4760–4763, 1998.
[23] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling-wave amplifier,” IEEE Trans. Plasma. Sci., vol. 27, pp. 391–404, Apr. 1999.
[24] M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, IEEE Trans. Plasma Sci. 30, 885 (2002).
[25] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Phys. Rev. Lett. 75, 4322 (1995).
[26] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 24, 700 (1996).
[27] C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 26, 500 (1998).
[28] H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, Jr., Phys. Plasmas 11, 2935 (2004).
[29] G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, and R. K. Parker, Phys. Rev. Lett. 74, 2399 (1995).
[30] H. Guo, S. H. Chen, V. L. Granatstein, J. Rogers, G. S. Nusinovich, M. Waters, B. Levush, and W. J. Chen, Phys. Rev. Lett. 79, 515 (1997).
[31] J. Rodgers, H. Guo, G. S. Nusinovich, and V.L. Granatstein, IEEE Trans. Electron Devices 48, 2434 (2001).
[32] K. R. Chu, H. Guo, and V. L. Granatstein, Phys. Rev. Lett. 78, 4661 (1997).
[33] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, IEEE Trans. Plasma Sci. 26, 508 (1998).
[34] G. G. Denisov, V. L. Bratman, A. W. Gross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, Phys. Rev. Lett. 81, 5680 (1998).
[35] V. L. Bratman, A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, Phys. Rev. Lett. 84, 2746 (2000).
[36] Sirigiri, J. R., M. A. Shapiro, and R. J. Temkin, in IVEC 2002 of the third IEEE Int. Vacuum Electronics Conf., p. 83, 2002.
[37] J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett. 90, 258302 (2003).
[38] K. R. Chu and J. L. Hirshfield, Phys. of Fluids 21, 461 (1978).
[39] K. R. Chu, SENIOR MEMBER, IEEE , AND ANTHONY T. LIN “ Gain and bandwidth of the Gyro-TWT and carm amplifiers” IEEE Trans. On Plasma Science, Vol. 16, No. 2, April 1988
[40] R. J. Briggs, “Electron-Stream Interaction with Plasmas” Chapter 2
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top