|
[1] E. H. Hall, “On the new action of magnetism on a permanent electric current,” Philos. Mag., vol. 10, pp. 301–328, Nov. 1880. [2] E. H. Hall, “On the “Rotational Coefficient”in nickel and cobalt,” Philos. Mag., vol. 12, pp. 157–172, Sept. 1881. [3] R. Karplus and J. M. Luttinger, “Hall Effect in Ferromagnetics,” Phys. Rev., vol. 95, pp. 1154–1160, Sept. 1954. [4] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-S. Wang, E. Wang, and Q. Niu, “First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe,” Phys. Rev. Lett., vol. 92, p. 037204, Jan. 2004. [5] P. N. Dheer, “Galvanomagnetic Effects in Iron Whiskers,” Phys. Rev., vol. 156, pp. 637–644, Apr. 1967. [6] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, “Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation,” Phys. Rev. B, vol. 74, p. 195118, Nov. 2006. [7] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, “Antiferromagnetic spintronics,”Nat Nano, vol. 11, pp. 231–241, Mar. 2016. [8] I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi, and Y. Tsunoda, “Magnetic neutron scattering study of ordered Mn3Ir,” J. Appl. Phys., vol. 86, pp. 3853–3856, Sept. 1999. [9] H. Chen, Q. Niu, and A. MacDonald, “Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism,” Phys. Rev. Lett., vol. 112, p. 017205, Jan. 2014. [10] E. Krén and G. Kádár, “Neutron diffraction study of Mn3Ga,” Solid State Commun., vol. 8, pp. 1653–1655, Oct. 1970. [11] S. Tomiyoshi and Y. Yamaguchi, “Magnetic Structure and Weak Ferromagnetism of Mn3Sn Studied by Polarized Neutron Diffraction,” J. Phys. Soc. Jpn., vol. 51, pp. 2478–2486, Aug. 1982. [12] T. Nagamiya, S. Tomiyoshi, and Y. Yamaguchi, “Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge,” Solid State Commun., vol. 42, pp. 385–388, May 1982. [13] S. Tomiyoshi, Y. Yamaguchi, and T. Nagamiya, “Triangular spin configuration and weak ferromagnetism of Mn3Ge,” J. Magn. Magn. Mater., vol. 31, pp. 629–630, Feb. 1983. [14] N. Yamada, H. Sakai, H. Mori, and T. Ohoyama, “Magnetic properties of ϵ-Mn3Ge,”Physica B+C, vol. 149, pp. 311–315, Mar. 1988. [15] P. J. Brown, V. Nunez, F. Tasset, J. B. Forsyth, and P. Radhakrishna, “Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis,”J. Phys.: Condens. Matter, vol. 2, p. 9409, Nov. 1990. [16] J. W. Cable, N. Wakabayashi, and P. Radhakrishna, “Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge,” Phys. Rev. B, vol. 48, pp. 6159–6166, Sept. 1993. [17] D. Zhang, B. Yan, S.-C. Wu, J. Kübler, G. Kreiner, S. S. P. Parkin, and C. Felser, “First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z=Ga, Sn and Ge) Heusler compounds,” J Phys Condens Matter, vol. 25, p. 206006, May 2013. [18] S. Nakatsuji, N. Kiyohara, and T. Higo, “Large anomalous Hall effect in a noncollinear antiferromagnet at room temperature,” Nature, vol. 527, no. 7577, pp. 212–215, 2015. [19] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, “Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge,” Science Advances, vol. 2, p. e1501870, Apr. 2016. [20] N. Kiyohara, T. Tomita, and S. Nakatsuji, “Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge,” Phys. Rev. Applied, vol. 5, p. 064009, June 2016. [21] Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser, and B. Yan, “Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt),” Phys. Rev. B, vol. 95, p. 075128, Feb. 2017. [22] S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J. K. Dewhurst, and E. K. U. Gross, “Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory,” Phys. Rev. B, vol. 76, p. 100401, Sept. 2007. [23] D. Xiao, J. Shi, and Q. Niu, “Berry Phase Correction to Electron Density of States in Solids,” Phys. Rev. Lett., vol. 95, p. 137204, Sept. 2005. [24] D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, “Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals,” Phys. Rev. B, vol. 74, p. 024408, July 2006. [25] J. Shi, G. Vignale, D. Xiao, and Q. Niu, “Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems,” Phys. Rev. Lett., vol. 99, p. 197202, Nov. 2007. [26] T. Thonhauser, “Theory of orbital magnetization in solids,” Int. J. Mod. Phys. B, vol. 25, pp. 1429–1458, Apr. 2011. [27] D. Ceresoli, U. Gerstmann, A. P. Seitsonen, and F. Mauri, “First-principles theory of orbital magnetization,” Phys. Rev. B, vol. 81, p. 060409, Feb. 2010. [28] M. G. Lopez, D. Vanderbilt, T. Thonhauser, and I. Souza, “Wannier-based calculation of the orbital magnetization in crystals,” Phys. Rev. B, vol. 85, p. 014435, Jan. 2012. [29] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann. Phys., vol. 389, pp. 457–484, Jan. 1927. [30] L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Cambridge Philos. Soc., vol. 23, pp. 542–548, Jan. 1927. [31] E. Fermi, “A statistical method for the determination of some properties of the atom,” Rend. Accad. Naz. Lincei, vol. 6, p. 602, 1927. [32] P. a. M. Dirac, “Note on Exchange Phenomena in the Thomas Atom,” Math. Proc. Cambridge Philos. Soc., vol. 26, pp. 376–385, July 1930. [33] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, pp. B864–B871, Nov. 1964. [34] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, pp. A1133–A1138, Nov. 1965. [35] D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic Method,” Phys. Rev. Lett., vol. 45, pp. 566–569, Aug. 1980. [36] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct. 1996. [37] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys., vol. 64, pp. 1045–1097, Oct. 1992. [38] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett., vol. 43, pp. 1494–1497, Nov. 1979. [39] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, “Optimized pseudopotentials,” Phys. Rev. B, vol. 41, pp. 1227–1230, Jan. 1990. [40] D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B, vol. 88, p. 085117, Aug. 2013. [41] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, “Maximally localized Wannier functions: Theory and applications,” Rev. Mod. Phys., vol. 84, pp. 1419–1475, Oct. 2012. [42] E. I. Blount, “Formalisms of Band Theory,” Solid State Phys., vol. 13, pp. 305–373, Jan. 1962. [43] E. M. Pugh, “Hall Effect and the Magnetic Properties of Some Ferromagnetic Materials,” Phys. Rev., vol. 36, pp. 1503–1511, Nov. 1930. [44] E. M. Pugh and T. W. Lippert, “Hall e.m.f. and Intensity of Magnetization,” Phys. Rev., vol. 42, pp. 709–713, Dec. 1932. [45] M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proc. Roy. Soc. London Ser. A: Mathematical, Physical and Engineering Sciences, vol. 392, pp. 45–57, Mar. 1984. [46] D. Xiao, M.-C. Chang, and Q. Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys., vol. 82, pp. 1959–2007, July 2010. [47] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, Davide Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, Anton Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, Stefano Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter, vol. 21, p. 395502, Sept. 2009. [48] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, pp. 5188–5192, June 1976. [49] H. Danan, A. Herr, and A. J. P. Meyer, “New determinations of the saturation magnetization of nickel and iron,” J. Appl. Phys, vol. 39, pp. 669–670, Dec. 1968. [50] A. J. P. Meyer and G. Asch, “Experimental g′ and g Values of Fe, Co, Ni, and Their Alloys,” J. Appl. Phys., vol. 32, pp. S330–S333, Mar. 1961. [51] E. Krén, G. Kádár, L. Pál, J. Sólyom, and P. Szabó, “Magnetic structures and magnetic transformations in ordered Mn3(Rh, Pt) alloys,” Physics Letters, vol. 20, pp. 331–332, Mar. 1966. [52] H. Kurt, K. Rode, H. Tokuc, P. Stamenov, M. Venkatesan, and J. M. D. Coey, “Exchange-biased magnetic tunnel junctions with antiferromagnetic ε-Mn3Ga,” Appl. Phys. Lett., vol. 101, p. 232402, Dec. 2012. [53] H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. P. S. Parkin, and B. Yan, “Topological weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn,” New Journal of Physics, vol. 19, p. 015008, Jan. 2017.
|