跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王子政
研究生(外文):Tzu-Cheng Wang
論文名稱:第一原理研究非共線的反鐵磁體Mn3X (X=Rh, Ir, Pt, Ga, Ge, Sn) 中的異常霍爾效應及軌道磁化強度
論文名稱(外文):First principle study of anomalous Hall effect and orbital magnetization in non-collinear antiferromagnets Mn3X (X=Rh, Ir, Pt, Ga, Ge, Sn)
指導教授:郭光宇郭光宇引用關係
指導教授(外文):Guang-Yu Guo
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:59
中文關鍵詞:反鐵磁體軌道磁化強度異常霍爾效應對稱破缺自旋軌道耦合第一原理
外文關鍵詞:Antiferromagnetsorbital magnetizationanomalous Hall effectsymmetry breakingspin-orbit couplingfirst principles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
異常霍爾效應可說是不需要外加磁場的霍爾效應,一般被認為只出現在鐵磁性的導體,而且其強度正比於材料的磁化強度。近年來理論物理學家透過貝里相的概念以及第一原理計算,發現在非平行的反鐵磁系統也可能有不小的異常霍爾效應,起源於系統磁性結構的對稱破缺以及自旋軌道耦合的影響,而有非零的貝里曲率。由於自旋電子學研究的興起,反鐵磁系統有望被應用於自旋電子元件而引起不少注意。此論文透過第一原理密度泛函理論計算,研究非平行的反鐵磁系統Mn3X (X=Ga, Ge, Sn, Ir, Rh, Pt)的電子及磁性結構,在對稱破缺的方向,其異常霍爾電導率約在100到300 (S/cm)間,與常見的鐵磁Fe有相同的數量級。我們也透過軌道磁化強度的現代理論研究這些反>鐵磁系統的軌道磁化強度。對於Mn3Rh、Mn3Ir及Mn3Pt,其軌道磁化強度大小相當於自旋磁化強度。而對Mn3Ga、Mn3Ge及Mn3Sn而言,軌道磁化強度更大於自旋磁化強度,這個結果能解釋在實驗中觀察到的微弱鐵磁現象,可能是來自軌道的貢獻,有別於一般的磁性系統其自旋的貢獻才是主導整個系統的磁化強度。
The anomalous Hall effect (AHE) can be considered as a kind of Hall effect without external magnetic field. It has been thought to be present only in ferromagnetic conductors, with its size being proportional to the net magnetization. Using the Berry phase concept and first principle calculations, physicists recently demonstrated that large AHE may appear in noncollinear antiferromagnets, which is driven by the non-vanishing Berry curvature because of the symmetry breaking of their magnetic configuration and spin-orbit coupling. While the spintronics are becoming promising, the understanding of the antiferromagnets are of interest for its development. In this thesis, we study the electronic and magnetic structure of the noncollinear antiferromagnets Mn3X (X=Ga, Ge, Sn, Ir, Rh, Pt) by first principles density functional theory calculations. At broken-symmetry direction, the anomalous Hall conductivity is about 100 to 300 (S/cm), which has the same order as the normal ferromagnetic iron. We also study their orbital magnetization by modern theory of orbital magnetization. The magnitude of orbital magnetization in Mn3Rh, Mn3Ir and Mn3Pt is equivalent to spin magnetization. As for Mn3Ga, Mn3Ge and Mn3Sn, their orbital magnetization is even larger than spin magnetization. The results could explain that the weak ferromagnetism observed in experiments, is caused by the orbital contribution, instead of the spin contribution that dominates the magnetization in most of the magnetic system.
口試委員會審定書i
誌謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Theoretical background 5
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . . 7
2.1.3 Kohn-Sham ansatz . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Exchange and correlation . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Norm-conserving pseudopotentials . . . . . . . . . . . . . . . . . . . . . 14
2.3 Maximally-localized Wannier function . . . . . . . . . . . . . . . . . . . 17
2.3.1 Wannier function . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Reciprocal representation . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Wannier interpolation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Anomalous Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Anomalous Hall conductivity . . . . . . . . . . . . . . . . . . . 23
2.5 Modern theory of orbital magnetization . . . . . . . . . . . . . . . . . . 25
2.6 Example: bcc-Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Anomalous Hall effect and orbital magnetization in Mn3Ir, Mn3Rh, and Mn3Pt 31
3.1 Crystal structure and magnetic configuration . . . . . . . . . . . . . . . . 31
3.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Symmetry and the Berry curvature . . . . . . . . . . . . . . . . . . . . . 34
3.5 Electronic structure, anomalous Hall effect and orbital magnetization . . . 35
4 Anomalous Hall effect and orbital magnetization in Mn3Ga, Mn3Ge, and Mn3Sn 42
4.1 Crystal structure and magnetic configuration . . . . . . . . . . . . . . . . 42
4.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Symmetry and the Berry curvature . . . . . . . . . . . . . . . . . . . . . 45
4.5 Electronic structure, anomalous Hall effect and orbital magnetization . . . 47
5 Summary 52
Bibliography 54
[1] E. H. Hall, “On the new action of magnetism on a permanent electric current,” Philos. Mag., vol. 10, pp. 301–328, Nov. 1880.
[2] E. H. Hall, “On the “Rotational Coefficient”in nickel and cobalt,” Philos. Mag., vol. 12, pp. 157–172, Sept. 1881.
[3] R. Karplus and J. M. Luttinger, “Hall Effect in Ferromagnetics,” Phys. Rev., vol. 95, pp. 1154–1160, Sept. 1954.
[4] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-S. Wang, E. Wang, and Q. Niu, “First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe,” Phys. Rev. Lett., vol. 92, p. 037204, Jan. 2004.
[5] P. N. Dheer, “Galvanomagnetic Effects in Iron Whiskers,” Phys. Rev., vol. 156, pp. 637–644, Apr. 1967.
[6] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, “Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation,” Phys. Rev. B, vol. 74, p. 195118, Nov. 2006.
[7] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, “Antiferromagnetic spintronics,”Nat Nano, vol. 11, pp. 231–241, Mar. 2016.
[8] I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi, and Y. Tsunoda, “Magnetic neutron scattering study of ordered Mn3Ir,” J. Appl. Phys., vol. 86, pp. 3853–3856, Sept. 1999.
[9] H. Chen, Q. Niu, and A. MacDonald, “Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism,” Phys. Rev. Lett., vol. 112, p. 017205, Jan. 2014.
[10] E. Krén and G. Kádár, “Neutron diffraction study of Mn3Ga,” Solid State Commun., vol. 8, pp. 1653–1655, Oct. 1970.
[11] S. Tomiyoshi and Y. Yamaguchi, “Magnetic Structure and Weak Ferromagnetism of Mn3Sn Studied by Polarized Neutron Diffraction,” J. Phys. Soc. Jpn., vol. 51, pp. 2478–2486, Aug. 1982.
[12] T. Nagamiya, S. Tomiyoshi, and Y. Yamaguchi, “Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge,” Solid State Commun., vol. 42, pp. 385–388, May 1982.
[13] S. Tomiyoshi, Y. Yamaguchi, and T. Nagamiya, “Triangular spin configuration and weak ferromagnetism of Mn3Ge,” J. Magn. Magn. Mater., vol. 31, pp. 629–630, Feb. 1983.
[14] N. Yamada, H. Sakai, H. Mori, and T. Ohoyama, “Magnetic properties of ϵ-Mn3Ge,”Physica B+C, vol. 149, pp. 311–315, Mar. 1988.
[15] P. J. Brown, V. Nunez, F. Tasset, J. B. Forsyth, and P. Radhakrishna, “Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis,”J. Phys.: Condens. Matter, vol. 2, p. 9409, Nov. 1990.
[16] J. W. Cable, N. Wakabayashi, and P. Radhakrishna, “Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge,” Phys. Rev. B, vol. 48, pp. 6159–6166, Sept. 1993.
[17] D. Zhang, B. Yan, S.-C. Wu, J. Kübler, G. Kreiner, S. S. P. Parkin, and C. Felser, “First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z=Ga, Sn and Ge) Heusler compounds,” J Phys Condens Matter, vol. 25, p. 206006, May 2013.
[18] S. Nakatsuji, N. Kiyohara, and T. Higo, “Large anomalous Hall effect in a noncollinear antiferromagnet at room temperature,” Nature, vol. 527, no. 7577, pp. 212–215, 2015.
[19] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, “Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge,” Science Advances, vol. 2, p. e1501870, Apr. 2016.
[20] N. Kiyohara, T. Tomita, and S. Nakatsuji, “Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge,” Phys. Rev. Applied, vol. 5, p. 064009, June 2016.
[21] Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser, and B. Yan, “Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt),” Phys. Rev. B, vol. 95, p. 075128, Feb. 2017.
[22] S. Sharma, S. Pittalis, S. Kurth, S. Shallcross, J. K. Dewhurst, and E. K. U. Gross, “Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory,” Phys. Rev. B, vol. 76, p. 100401, Sept. 2007.
[23] D. Xiao, J. Shi, and Q. Niu, “Berry Phase Correction to Electron Density of States in Solids,” Phys. Rev. Lett., vol. 95, p. 137204, Sept. 2005.
[24] D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, “Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals,” Phys. Rev. B, vol. 74, p. 024408, July 2006.
[25] J. Shi, G. Vignale, D. Xiao, and Q. Niu, “Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems,” Phys. Rev. Lett., vol. 99, p. 197202, Nov. 2007.
[26] T. Thonhauser, “Theory of orbital magnetization in solids,” Int. J. Mod. Phys. B, vol. 25, pp. 1429–1458, Apr. 2011.
[27] D. Ceresoli, U. Gerstmann, A. P. Seitsonen, and F. Mauri, “First-principles theory of orbital magnetization,” Phys. Rev. B, vol. 81, p. 060409, Feb. 2010.
[28] M. G. Lopez, D. Vanderbilt, T. Thonhauser, and I. Souza, “Wannier-based calculation of the orbital magnetization in crystals,” Phys. Rev. B, vol. 85, p. 014435, Jan. 2012.
[29] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann. Phys., vol. 389, pp. 457–484, Jan. 1927.
[30] L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Cambridge Philos. Soc., vol. 23, pp. 542–548, Jan. 1927.
[31] E. Fermi, “A statistical method for the determination of some properties of the atom,” Rend. Accad. Naz. Lincei, vol. 6, p. 602, 1927.
[32] P. a. M. Dirac, “Note on Exchange Phenomena in the Thomas Atom,” Math. Proc. Cambridge Philos. Soc., vol. 26, pp. 376–385, July 1930.
[33] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, pp. B864–B871, Nov. 1964.
[34] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, pp. A1133–A1138, Nov. 1965.
[35] D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic Method,” Phys. Rev. Lett., vol. 45, pp. 566–569, Aug. 1980.
[36] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct. 1996.
[37] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys., vol. 64, pp. 1045–1097, Oct. 1992.
[38] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Phys. Rev. Lett., vol. 43, pp. 1494–1497, Nov. 1979.
[39] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, “Optimized pseudopotentials,” Phys. Rev. B, vol. 41, pp. 1227–1230, Jan. 1990.
[40] D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B, vol. 88, p. 085117, Aug. 2013.
[41] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, “Maximally localized Wannier functions: Theory and applications,” Rev. Mod. Phys., vol. 84, pp. 1419–1475, Oct. 2012.
[42] E. I. Blount, “Formalisms of Band Theory,” Solid State Phys., vol. 13, pp. 305–373, Jan. 1962.
[43] E. M. Pugh, “Hall Effect and the Magnetic Properties of Some Ferromagnetic Materials,” Phys. Rev., vol. 36, pp. 1503–1511, Nov. 1930.
[44] E. M. Pugh and T. W. Lippert, “Hall e.m.f. and Intensity of Magnetization,” Phys. Rev., vol. 42, pp. 709–713, Dec. 1932.
[45] M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proc. Roy. Soc. London Ser. A: Mathematical, Physical and Engineering Sciences, vol. 392, pp. 45–57, Mar. 1984.
[46] D. Xiao, M.-C. Chang, and Q. Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys., vol. 82, pp. 1959–2007, July 2010.
[47] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, Davide Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, Anton Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, Stefano Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter, vol. 21, p. 395502, Sept. 2009.
[48] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, pp. 5188–5192, June 1976.
[49] H. Danan, A. Herr, and A. J. P. Meyer, “New determinations of the saturation magnetization of nickel and iron,” J. Appl. Phys, vol. 39, pp. 669–670, Dec. 1968.
[50] A. J. P. Meyer and G. Asch, “Experimental g′ and g Values of Fe, Co, Ni, and Their Alloys,” J. Appl. Phys., vol. 32, pp. S330–S333, Mar. 1961.
[51] E. Krén, G. Kádár, L. Pál, J. Sólyom, and P. Szabó, “Magnetic structures and magnetic transformations in ordered Mn3(Rh, Pt) alloys,” Physics Letters, vol. 20, pp. 331–332, Mar. 1966.
[52] H. Kurt, K. Rode, H. Tokuc, P. Stamenov, M. Venkatesan, and J. M. D. Coey, “Exchange-biased magnetic tunnel junctions with antiferromagnetic ε-Mn3Ga,” Appl. Phys. Lett., vol. 101, p. 232402, Dec. 2012.
[53] H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. P. S. Parkin, and B. Yan, “Topological weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn,” New Journal of Physics, vol. 19, p. 015008, Jan. 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top