跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑋瀚
研究生(外文):Ui-Han Zhang
論文名稱:磁流體與波型態的暗物質
論文名稱(外文):Magnetohydrodynamcis and Wave Dark Matter
指導教授:闕志鴻
指導教授(外文):Tzihong Chiueh
口試日期:2017-07-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:152
中文關鍵詞:磁流體動力學繪圖處理單元自適網格解析度調整波形態暗物質輻射主宰時期軸子模型
外文關鍵詞:magnetohydrodynamicsgraphic-processing-unitadaptive-mesh-refinementwave dark matterradiation-dominant eraaxion model.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
GAMER 是一個利用繪圖處理單元(Graphic-processing-unit, GPU) 加
速及自適網格解析度調整(Adaptive-Mesh-Refinement, AMR) 的天文物理應用模擬程式。此程式已順利擴展成可以數值模擬磁流體動力學
(Magnetohydrodynamics, MHD)。磁流體動力學的數值模擬演算法是
具有限制傳輸(Constraint transport, CT) 技術的逆流邊角傳輸(Cornertransport-upwind, CTU) 演算法。另一方面,散度保持算符(Divergentpreserving operator) 保證了自適網格解析度調整中磁場的零散度條件。模擬結果顯示磁流體GAMER 程式跟其他高解析度均勻網格模擬一樣準確。我們引進一個新的三維測試問題。在此問題中磁場滿足阿諾德-貝爾特拉米-柴爾德里斯(Arnold-Beltrami-Childress) 樣態。這樣的電漿組態一開始會變成有片狀電流密度的紊流,但最後將收斂到最低能量的平衡態。此測試問題很適合檢驗本程式的效能。本程式在單一K20X 的繪圖處理單元下每秒可以演化2×10^7個網格,比藍水(Blue Waters) 超級電腦上的一顆擁有16個核心的中央處理單元(Center-processing-unit, CPU) 快25倍。我們同時發現當使用1024 個藍水超級電腦的計算節點,此程式的平行效率可高達70個百分點。
我們分析在輻射主宰時期的波形態暗物質,或者稱作 ψ 暗物質之線性微擾。在此分析中,暗物質微擾的演化可分成四個階段。其中在質量震盪(Mass oscillation) 之後的晚期階段,長波的 ψ 暗物質微擾幾乎和冷暗物質(Cold dark matter, CDM) 模型雷同。然而對於中短波的情況,在整個演化過程中,沒有一個階段跟冷暗物質一樣。我們同時討論餘弦型態純量場勢能的軸子模型(Axion model)。軸子模型的演化幾乎與 ψ 暗物質相同。但當軸子初始角度非常靠近勢能的頂端,有三個新特徵會顯現。其中最新穎的特徵是在某些波數的範圍內,頻譜會比冷暗物質高。這樣的差異可能會非常大以致於造成紅移10 以上的高紅移宇宙有顯著的改變。亞視界(Sub-horizon) 的擾動可以被馬蒂厄(Mathieu) 方程式準確地描述且受到參數不穩定(Parametric instability)的影響。這解釋了此新穎的特徵。
GAMER, a Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement Astrophysical code, is extended to support magnetohydrodynamics (MHD), where the solver features the corner-transport-upwind (CTU) scheme with the constraint transport (CT) technique. The divergent preserving operator for adaptive mesh refinement (AMR) is applied to reinforce the divergence-free constraint on the magnetic field. Numerical results show GAMER-MHD is as robust as those given by high-resolution uniform-grid runs. We explore a new 3D MHD test, where the magnetic field assumes the Arnold-Beltrami-
Childress (ABC) configuration, temporarily becomes turbulent with current sheets and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance can reach 2×10^7 cell-updates/sec for K20X and is 25 times faster than a single 16-core CPU on the Blue Waters supercomputer. We also demonstrate a parallel efficiency of 70% using 1024 nodes on Blue Waters.
Linear perturbations of the wave dark matter, or ψ dark matter ( ψ DM), in the radiation-dominant era are analyzed. We identify four phases of evolution for ψ DM perturbations. While in late stages after mass oscillation long-wave ψ DM perturbations are almost identical to cold dark matter (CDM) perturbations except that intermediate-to-short waves that bear no resemblance with those of CDM throughout the whole evolutionary history. We also discuss the axion model with a cosine field potential. The evolution of axion models are almost identical to those of ψ DM, but three new features are found in the extreme case where the initial axion angle is near the field potential top. A particularly novel new feature is the spectral excess relative to the CDM model in some wave number range, where the excess may be so large that landscapes of high-redshift universe beyond z = 10 can be significantly altered. The sub-horizon perturbations are accurately described by Mathieu''s equation and subjected to parametric instability, which explains this novel feature.
誌謝v
摘要vii
Abstract ix
1 Introduction 1
I MAGNETOHYDRODYNAMICS WITH PARALLEL GRAPHICPROCESSING-
UNIT-ACCERALATED ADAPTIVE MESH REFINEMENT
CODE 3
2 GAMER-MHD 5
3 MHD Equations 9
4 Numerical Algorithm 13
4.1 MHD Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Hybrid MPI/OpenMP/GPUs Parallelization . . . . . . . . . . . . . . . . 17
5 Numerical Results 19
5.1 Accuracy Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1 Linear Wave Test . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Shock Tube Test . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Orszag and Tang Vortex Test . . . . . . . . . . . . . . . . . . . . 24
5.1.4 Blast Wave Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.5 Magnetic field with ABC pattern . . . . . . . . . . . . . . . . . . 34
5.2 Performance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 GPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . 43
6 Conclusions for Part I 51
II LINEAR WAVE DARK MATTER PERTURBATIONS 53
7 Brief Review of Wave Dark Matter 55
8 Governing Equations 59
9 Free Particle Model 63
9.1 Passive Evolution and Asymptotic Solutions . . . . . . . . . . . . . . . . 63
9.1.1 Phase (i): After mass oscillation 2H; k ≪ ma . . . . . . . . . . . 64
9.1.2 Phase (ii): Before mass oscillation . . . . . . . . . . . . . . . . . 70
9.2 Evolution of Perturbations in Full Treatment . . . . . . . . . . . . . . . . 72
9.2.1 Neutrino Decoupling . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2.2 Photon Fluid Equation of State . . . . . . . . . . . . . . . . . . . 73
9.2.3 Baryon-Photon Drag . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2.4 Matter Self-Gravity . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.3 Critical Mode, Matter Power Spectrum and Sub-Horizon Dynamics . . . 76
9.4 Adiabatic Perturbations for Superhorizon Modes . . . . . . . . . . . . . 81
10 Axion Model 83
10.1 Abrupt Growth of δθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.2 Parametric Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.3 Numerical Solution and General Nonlinear Model . . . . . . . . . . . . . 94
11 Conclusions for Part II 99
12 Discussion and Perspective 101
A Linear Stability Analysis of the ABC Magnetic Field Configuration 105
B Passive Evolution 115
C Full Treatment Evolution 131
D Particle Mass Dependence 137
E General Dispersion Relation 141
Bibliography 145
M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, New York, 1964.
P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results xiii. cosmological parameters. Astron. Astrophys., 594:A13, 2016.
N. C. Amorisco, A. Agnello, and N. W. Evans. The core size of the fornax dwarf spheroidal. Mon. Not. R. Astron. Soc., 429:L89–L93, 2013.
E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. Marsh, and J. Baur. Constraining the mass of light bosonic dark matter using sdss lyman-forest. arXiv:1702.02116, 2017.
V. I. Arnold. ur la topologie des ecoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris, 261:17–21, 1965.
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell. String axiverse. Phys. Rev. D, 81:123530, 2010.
S. A. Balbus. Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys., 41:555–597, 2003.
S. A. Balbus and J. F. Hawley. A powerful local shear instability in weakly magnetized disks. i- linear analysis. Astrophys. J., 376:214–222, 1991.
D. Balsara, D. Ward-Thompson, and R. M. Crutcher. A turbulent mhd model for molecular clouds and a new method of accretion on to star-forming cores. Mon. Not. R. Astron. Soc., 327:715–720, 2001.
D. S. Balsara. Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys., 174:614–648, 2001.
R. D. Blandford and D. G. Payne. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc., 199:883–903, 1982.
P. Bode, J. P. Ostriker, and N. Turok. Halo formation in warm dark matter models. Astrophys. J., 556:93–107, 2001.
M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. Too big to fail? the puzzling darkness of massive milky way subhaloes. Mon. Not. R. Astron. Soc., 415:L40–L44, 2011.
E. Calabrese and D. N. Spergel. Ultra-light dark matter in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc., 460:4397–4402, 2016.
S.-R. Chen, H.-Y. Schive, and T. T Chiueh. Jeans analysis for dwarf spheroidal galaxies in wave dark matter. Mon. Not. R. Astron. Soc., 468:1338–1348, 2017.
S. Childress. New solutions of the kinematic dynamo problem. J. Math. Phys., 11:3063–3071, 1970.
T. Chiueh. Why is the dark axion mass 10^22 ev? arXiv:1409.0380, 2014.
P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. J. Comput.Phys., 87:171–200, 1990.
R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann., 100:32–74, 1928.
H. Davoudiasl and C. W. Murphy. Fuzzy dark matter from infrared confining dynamics. Phys. Rev. Lett., 118:141801, 2017.
A. Diez-Tejedor and D. J. Marsh. Cosmological production of ultralight dark matter axions. arXiv:1702.02116, 2017.
S. A. E. G. Falle. Self-similar jets. Mon. Not. R. Astron. Soc., 250:581–596, 1991.
J. Ferreira. Magnetically-driven jets from keplerian accretion discs. Astron. Astrophys., 319:340–359, 1997.
B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. Flash : An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J., Suppl. Ser., 131:273–334, 2000.
K. Fukumura, F. Tombesi, D. Kazanas, C. Shrader, E. Behar, and I. Contopoulos. Magnetically driven accretion disk winds and ultra-fast outflows in pg 1211+143. Astrophys. J., 805:17, 2015.
T. A. Gardiner and J. M. Stone. An unsplit godunov method for ideal mhd via constrained transport in three dimensions. J. Comput. Phys., 227:4123–4141, 2008.
G. Gilmore, M. I. Wilkinson, R. F. G. Wyse, J. T. Kleyna, A. Koch, N. W. Evans, and E. K. Grebel. The observed properties of dark matter on small spatial scales. Astrophys. J., 663:948–959, 2007.
K. Glazebrook, C. Schreiber, I. labbé, T. Nanayakkara, G. G. Kacprzak, P. A. Oesch, C. Papovich, L. R. Spitler, C. M. S. Straatman, K.-V. H. Tran, and et al. A massive, quiescent galaxy at a redshift of 3:717. Nature, 544:71–74, 2017.
T. Goerdt, B. Moore, J. I. Read, J. Stadel, and M. Zemp. Does the fornax dwarf spheroidal have a central cusp or core? Mon. Not. R. Astron. Soc., 368:1073–1077, 2006.
R. Hlozek, D. Grin, D. J. Marsh, and P. G. Ferreira. A search for ultralight axions using precision cosmological data. Phys. Rev. D, 91:103512, 2015.
W. Hu and N. Sugiyama. Small-scale cosmological perturbations: An analytic approach. Astrophys. J., 471:542–570, 1996.
W. Hu, R. Barkana, and A. Gruzinov. Fuzzy cold dark matter: The wave properties of ultralight particles. Phys. Rev. Lett., 85:1158–1161, 2000.
L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten. Ultralight scalars as cosmological dark matter. Phys. Rev. D, 95:043541, 2017a.
L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten. Ultralight scalars as cosmological dark matter. Phys. Rev. D, 95:043541, 2017b.
V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D. Becker. First constraints on fuzzy dark matter from lyman- forest data and hydrodynamical simulations. arXiv:1703.04683, 2017.
D. Kazanas, K. Fukumura, E. Behar, I. Contopoulos, and C. Shrader. Toward a unifed agn structure. Astron. Rev., 7:92–123, 2012.
A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada. Where are the missing galactic satellites? Astrophys. J., 522:82–92, 1999.
R. M. Kulsrud and S. W. Anderson. The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field. Astrophys. J., 396:606–630, 1992.
R. M. Kulsrud, R. Cen, J. P. Ostriker, and D. Ryu. The protogalactic origin for cosmic magnetic fields. Astrophys. J., 480:481–491, 1997.
Z.-Y. Li and C. F. McKee. Hydromagnetic accretion shocks around low-mass protostars. Astrophys. J., 464:373–386, 1996.
P. Londrillo and L. D. Zanna. High-order upwind schemes for multidimensional magnetohydrodynamics. Astrophys. J., 530:508–524, 2000.
V. Lora and J. Magaña. Is sextans dwarf galaxy in a scalar field dark matter halo? J. Cosmology Astropart. Phys., 09:011–, 2014.
C.-P. Ma and E. Bertschinger. Cosmological perturbation theory in the synchronous and conformal newtonian gauges. Astrophys. J., 455:7–25, 1995.
A. V. Macciò, S. Paduroiu, D. Anderhalden, A. Schneider, and B. Moore. Cores in warm dark matter haloes: a catch 22 problem. Mon. Not. R. Astron. Soc., 424:1105–1112, 2012.
D. J. Marsh. Axion cosmology. Phys. Rep., 643:1–79, 2016.
D. J. Marsh and J. Silk. A model for halo formation with axion mixed dark matter. Mon. Not. R. Astron. Soc., 437:2652–2663, 2014.
D. J. E. Marsh and A. R. Pop. Axion dark matter, solitons and the cusp–core problem. Mon. Not. R. Astron. Soc., 451:2479–2492, 2015.
C. F. McKee. Theory of star formation. Annu. Rev. Astron. Astrophys., 45:565–687, 2007.
B. Moore. Evidence against dissipationless dark matter from observations of galaxy haloes. Nature, 370:629–631, 1994.
B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi. Dark matter substructure within galactic halos. Astrophys. J., 524:L19–L22, 1999.
D. J. Mortlock, S. J. Warren, B. P. Venemans, M. Patel, P. C. Hewett, R. G. McMahon, C. Simpson, T. Theuns, E. A. Gonzáles-Solares, A. Adamson, and et al. A luminous quasar at a redshift of z = 7:085. Nature, 474:616–619, 2011.
S. Naoz and R. Narayan. Generation of primordial magnetic fields on linear overdensity scales. Phys. Rev. Lett., 111:051303, 2013.
J. F. Navarro, C. S. Frenk, and S. D. M. White. A universal density profile from hierarchical clustering. Astrophys. J., 490:493–508, 1997.
S. A. Orszag and C.-M. Tang. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech., 90:129–143, 1979.
E. Papastergis, R. Giovanelli, M. P. Haynes, and F. Shankar. Is there a “too big to fail” problem in the field? Astron. Astrophys., 574:A113, 2015.
E. N. Parker. Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res., 4:509–520, 1957.
C. E. Parnell and A. L. Haynes. Three-dimensional magnetic reconnection. Astrophysics and Space Science Proceedings, 19:261–276, 2010.
G. Pelletier and R. E. Pudritz. Hydromagnetic disk winds in young stellar objects and active galactic nuclei. Astrophys. J., 394:117–138, 1992.
H. E. Petschek. Magnetic field annihilation. NASA Special Publication, 50:425, 1964.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes: the Art of Scientific Computing, 3rd Edition. Cambridge University Press, 2007.
R. E. Pudritz, M. J. Hardcastle, and D. C. Gabuzda. Magnetic fields in astrophysical jets: From launch to termination. Space Sci. Rev., 169:27–72, 2012.
L. Rayleigh. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14:170–177, 1883.
M. N. Rosenbluth, R. Y. Dagazian, and P. H. Rutherford. onlinear properties of the internal m = 1 kink instability in the cylindrical tokamak. Phys. Fluids, 16:1894–1902, 1973.
D. Ryu and T. W. Jones. Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow. Astrophys. J., 442:228–258, 1995.
H.-Y. Schive and T. Chiueh. Halo abundance and assembly history with extreme-axion wave dark matter at z~4. arXiv:1706.03723, 2017.
H.-Y. Schive, Y.-C. Tsai, and T. Chiueh. Gamer: A graphic processing unit accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J., Suppl. Ser., 186:457–484, 2010.
H.-Y. Schive, U.-H. Zhang, and T. Chiueh. Directionally unsplit hydrodynamic schemes with hybrid mpi/openmp/gpu parallelization in amr. Int. J. High Perform. Comput. Appl., 26:367–377, 2012.
H.-Y. Schive, T. Chiueh, and T. Broadhurst. Cosmic structure as the quantum interference of a coherent dark wave. Nature Phys., 10:496–499, 2014.
H.-Y. Schive, T. Chiueh, T. Broadhurst, and K.-W. Huang. Contrasting galaxy formation from quantum wave dark matter, dm, with cdm, using planck and hubble data. Astrophys. J., 818:89, 2016.
J. Schober, D. R. G. Schleicher, and R. S. Klessen. Magnetic field amplification in young galaxies. Astron. Astrophys., 560:A87, 2013.
F. H. Shu, Z.-Y. Li, and A. Allen. Does magnetic levitation or suspension define the masses of forming stars? Astrophys. J., 601:930–951, 2004.
D. Stepanovs, C. Fendt, and S. Sheikhnezami. Modeling mhd accretion-ejection: Episodic ejections of jets triggered by a mean-field disk dynamo. Astrophys. J., 796:29, 2014.
J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon. Athena: A new code for astrophysical mhd. Astrophys. J., Suppl. Ser., 178:137–177, 2008.
P. Svrček and E. Witten. Axions in string theory. JHEP, 06:051, 2006.
P. A. Sweet. The neutral point theory of solar flares. In L. B., editor, Electromagnetic Phenomena in Cosmical Physics, volume 6 of IAU Symposium, page 123, 1958.
G. I. Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London Ser. A, 201:192–196, 1950.
J. B. Taylor. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys., 58: 741–763, 1986.
E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: a practical introduction, 2nd Edition. Springer, New York, 1999.
M. Torrilhon. Exact solver and uniqueness conditions for riemann problems of ideal magnetohydrodynamics. In technical report 2002-06, Zurich: Seminar for Applied Mathematics, ETH, 2002.
M. Torrilhon. Non-uniform convergence of finite volume schemes for riemann problems of ideal magnetohydrodynamics. J. Comput. Phys., 2003:73–94, 2003.
L. Visinelli. Light axion-like dark matter must have anthropic origins. arXiv:1703.08798, 2017.
M. G. Walke and J. Peñarrubia. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J., 742:20, 2011.
T. P. Woo and T. Chiueh. High-resolution simulation on structure formation with extremely light bosonic dark matter. Astrophys. J., 697:850–861, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top