跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳攸彌
研究生(外文):Yu-Mi Wu
論文名稱:第一原理計算模擬於狄拉克Nodal-Line半金屬鋯矽硫之電性及準粒子干涉
論文名稱(外文):First-Principles Modeling of Electronic Structure and Quasiparticle Scattering Patterns in the Dirac Nodal-Line Semimetal ZrSiS
指導教授:林敏聰林敏聰引用關係
指導教授(外文):Minn-Tsong Lin
口試日期:2017-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:91
中文關鍵詞:狄拉克Nodal-Line半金屬鋯矽硫掃描式穿隧電子顯微鏡掃描式穿隧電子能譜密度泛函理論準粒子干涉
外文關鍵詞:Dirac nodal-line semimetalZrSiSscanning tunneling microscopyscanning tunneling spectroscopydensity functional theoryquasiparticle interference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在線接觸式狄拉克半金屬中,鋯矽硫 (ZrSiS) 的電子結構具有能帶交叉點並在晶格動量空間形成連續閉合的曲線。在我們的工作中,透過密度泛函原理計算以及掃描穿隧式電子顯微/能譜 (STM/STS) 量測的方式,研究鋯矽硫的電子組 態特性和表面型態。藉由觀測材料表面區域狀態密度分佈的準粒子干涉現象 (quasiparticle interference),我們發現針對在不同晶格位置的點缺陷,準粒子散射於動量空間有很大的選擇性。因此透過計算倒空間等能量電子組態分佈 (constant energy contours) 和結合狀態密度 (joint density of states) 來模擬準粒子干涉現象,能夠清楚辨識位於不同晶格位置缺陷電子散射的貢獻,並且顯示不同電子軌域特徵的狀態在動量空間的散射會被抑制。這個觀測能幫助我們更加理解不同缺陷來源造成的散射現象與計算表面電子結構軌域特徵之間的關係。
ZrSiS is a Dirac semimetal hosting high mobility, linearly dispersive quasiparticle bands which intersect at a closed loop in momentum space, known as a Dirac-nodal line. In this work, we investigate the electronic properties and the surface morphology of ZrSiS by combining density functional theory calculations as well as scanning tunneling microscopy and spectroscopy experiments. By visualizing quasiparticle interference (QPI) in the surface local density of states in spectro-microscopy measurements, we observe that there is a strong selectivity of quasiparticle scattering channels in momentum space, depending on the lattice site of the impurity scattering center. Therefore, the calculated orbital-resolved constant-energy contours and QPI patterns at the surface of ZrSiS are presented and show that simulations of QPI mapping allow for the clear distinction of contributions in scattering of defects at different lattice sites. This implies that the scattering between the states with different orbital character is suppressed in momentum space. This observation provides a detailed insight into the relation between calculated orbital characteristics of the surface band and scattering patterns near different impurity center.
List of Figures v
List of Tables xiv
1 Overview 1
2 Introduction 3
2.1 Dirac Nodal-Line Semimetal ZrSiS ............ 3
2.2 Theory of Quasiparticle Interference........... 7
2.3 Prior Studies of Quasiparticle Interference ............... 9
3 Methods 13
3.1 Density Functional Theory...................... 13
3.1.1 The Schro ̈dinger Equation .................... 14
3.1.2 The Thomas-Fermi Model .................... 16
3.1.3 The Hohenberg-Kohn Theorems................. 17
3.1.4 The Kohn-Sham Equations.................... 18
3.1.5 The Exchange Correlation Energy................ 19
3.2 Scanning Tunneling Microscopy .................. 20
3.2.1 The Tunneling Current...................... 21
3.2.2 Bardeen’sMethod ........................ 23
3.2.3 The Tersoff-Hamann Model ................... 25
3.2.4 Scanning Tunneling Spectroscopy ................ 26
3.2.5 Ultra-High Vacuum........................ 28
3.3 Crystal Growth and Preparation Methods ............... 28
4 Surface Morphology and Electronic Properties of ZrSiS 31
4.1 Bulk and Surface Band Structure Calculations ............. 31
4.2 STS Measurements and Density of States Calculations .......... 34
4.3 Identification of Atomic Surface Lattice ............... 36
4.4 Determination of Types of Surface Defects ............... 38
5 Defect-Site Dependence of Quasiparticle Interference 43
5.1 Observations of Defects and QPI by STM ................ 43
5.2 Simulations of QPI Patterns ................. 45
5.2.1 Orbital-Resolved QPI Simulations .............. 45
5.2.2 Comparison with the Measurements............... 46
5.2.3 Observation of m-Conserving Scattering........... 51
5.3 Calculated Charge Density Distributions................. 52
5.4 Discussion............................ 56
6 Conclusion 59
Appendices 62
A Electronic Structures of Bi2Te3−xSex 63
A.1 Bulk and Surface Band Structure Calculations ............. 64
A.2 STS Measurements and Density of States Calculations ........ 68
A.3 Structural Properties of Bi2Te3−xSex ............. 70
B Simulated STM program 74
Bibliography 81
[1] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Reviews of Modern Physics 82, 3045 (2010).
[2] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 81, 109 (2009).
[3] Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Materials 11, 1023–1027 (2012).
[4] Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Physical Review Letters 104, 106408 (2010).
[5] Young, S. M. et al. Dirac semimetal in three dimensions. Physical Review Letters 108, 140405 (2012).
[6] Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).
[7] Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb). Physical Review B 85, 195320 (2012).
[8] Liu, Z. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).
[9] Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Physical Review B 88, 125427 (2013).
[10] Liu, Z. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Materials 13, 677–681 (2014).
[11] Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Communications 5 (2014).
[12] Yi, H. et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2. arXiv preprint arXiv:1405.5702 (2014).
[13] Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Physical Review Letters 113, 027603 (2014).
[14] Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Physical Review X 5, 031013 (2015).
[15] Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Communications 6, 7373 (2015).
[16] Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Physics 11, 748–754 (2015).
[17] Chang, G. et al. Signatures of Fermi arcs in the quasiparticle interferences of the Weyl semimetals TaAs and NbP. Physical Review Letters 116, 066601 (2016).
[18] Zheng, H. et al. Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378– 1385 (2016).
[19] Borisenko, S. et al. Time-reversal symmetry breaking Weyl state in YbMnBi2. arXiv preprint arXiv:1507.04847 (2015).
[20] Burkov, A., Hook, M. & Balents, L. Topological nodal semimetals. Physical Review B 84, 235126 (2011).
[21] Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nature Communications 7, 10556 (2016).
[22] Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and 3D Dirac line node in ZrSiS. Nature Communications 7, 11696 (2016).
[23] Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Physical Review Letters 115, 126803 (2015).
[24] Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Physical Review B 93, 201104 (2016).
[25] Hu, J. et al. Evidence of Dirac cones with 3D character probed by dHvA oscillations in nodal-line semimetal ZrSiS. arXiv preprint arXiv:1604.01567 (2016).
[26] Wang, X. et al. Evidence of both surface and bulk Dirac bands in ZrSiS and the unconventional magnetoresistance. arXiv preprint arXiv:1604.00108 (2016).
[27] Ali, M. N. et al. Butterfly magnetoresistance, quasi-2D Dirac fermi surface and topological phase transition in ZrSiS. Science Advances 2, e1601742 (2016).
[28] Sankar, R. et al. Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility. Scientific Reports 7, 40603 (2017).
[29] Friedel, J. Metallic alloys. Il Nuovo Cimento (1955-1965) 7, 287–311 (1958).
[30] Byers, J. M. Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic superconductor. Physical Review Letters 71, 3363–3366 (1993).
[31] Hoffman, J. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 295, 466–469 (2002).
[32] Simon, L., Vonau, F. & Aubel, D. A phenomenological approach of joint density of states for the determination of band structure in the case of a semi- metal studied by FT-STS. Journal of Physics: Condensed Matter 19, 355009 (2007).
[33] Simon, L., Bena, C., Vonau, F., Cranney, M. & Aubel, D. Fourier-transform scanning tunnelling spectroscopy: the possibility to obtain constant-energy maps and band dispersion using a local measurement. Journal of Physics D: Applied Physics 44, 464010 (2011).
[34] Hasegawa”, Y. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Physical Review Letters 71, 1071–1074 (1993).
[35] Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).
[36] Jeandupeux, O., Bu ̈rgi, L., Hirstein, A., Brune, H. & Kern, K. Thermal damping of quantum interference patterns of surface-state electrons. Physical Review B 59, 15926 (1999).
[37] Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Physical Review Letters 136, B864–B871 (1964).
[38] Burgi, L., Brune, H. & Kern, K. Imaging of electron potential landscapes on Au (111). Physical Review Letters 89, 176801 (2002).
[39] Ashcroft, N. W. & Mermin, N. D. Solid state physics. Saunders College Press 1st edition (1976).
[40] Sprunger, P., Petersen, L., Plummer, E., Lægsgaard, E. & Besenbacher, F. Giant Friedel oscillations on the Be (0001) surface. Science 275, 1764–1767 (1997).
[41] Petersen, L. et al. Direct imaging of the 2-D fermi contour: Fourier transform STM. Physical Review B 57 (1998).
[42] Hofmann, P. et al. Anisotropic two-dimensional Friedel oscillations. Physical Review Letters 79, 265 (1997).
[43] McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ. Nature 422, 592– 596 (2003).
[44] Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe (Se, Te). Science 328, 474–476 (2010).
[45] Yi, M. et al. Unconventional electronic reconstruction in undoped (Ba, Sr) Fe2As2 across the spin density wave transition. Physical Review B 80, 174510 (2009).
[46] Pascual, J. I. et al. Role of spin in quasiparticle interference. Physical Review Letters 93, 196802 (2004).
[47] Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).
[48] Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Physical Review Letters 103, 266803 (2009).
[49] Alpichshev, Z. et al. Stm imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Physical Review Letters 104, 016401 (2010).
[50] Str ́oz ̇ecka, A., Eiguren, A. & Pascual, J. I. Quasiparticle interference around a magnetic impurity on a surface with strong spin-orbit coupling. Physical Review Letters 107, 186805 (2011).
[51] Sessi, P. et al. Scattering properties of the three-dimensional topological insulator Sb2Te3: Coexistence of topologically trivial and nontrivial surface states with opposite spin-momentum helicity. Physical Review B 93, 035110 (2016).
[52] Okada, Y. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Physical Review Letters 106, 206805 (2011).
[53] Sessi, P. et al. Signatures of Dirac fermion-mediated magnetic order. arXiv preprint arXiv:1410.8309 (2014).
[54] Hirayama, H., Aoki, Y. & Kato, C. Quantum interference of Rashba-type spin-split surface state electrons. Physical Review Letters 107, 027204 (2011).
[55] El-Kareh, L., Sessi, P., Bathon, T. & Bode, M. Quantum interference mapping of Rashba-split bloch states in Bi/Ag (111). Physical Review Letters 110, 176803 (2013).
[56] Steinbrecher, M., Harutyunyan, H., Ast, C. R. & Wegner, D. Rashba-type spin splitting from interband scattering in quasiparticle interference maps. Physical Review B 87, 245436 (2013).
[57] Kohsaka, Y., Kanou, M., Takagi, H., Hanaguri, T. & Sasagawa, T. Imaging ambipolar two-dimensional carriers induced by the spontaneous electric polarization of a polar semiconductor BiTeI. Physical Review B 91, 245312 (2015).
[58] El-Kareh, L. et al. A combined experimental and theoretical study of Rashba-split surface states on the Pb/Ag (111) surface. New Journal of Physics 16, 045017 (2014).
[59] Guan, S.-Y. et al. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Science Advances 2, e1600894 (2016).
[60] Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nature Materials 13, 851–856 (2014).
[61] Gyenis, A. et al. Imaging electronic states on topological semimetals using scanning tunneling microscopy. New Journal of Physics 18, 105003 (2016).
[62] Kourtis, S., Li, J., Wang, Z., Yazdani, A. & Bernevig, B. A. Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals. Physical Review B 93, 041109 (2016).
[63] Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).
[64] Butler, C. J. et al. Quasiparticle scattering in the Rashba semiconductor BiTeBr: The roles of spin and defect lattice site. ACS Nano 10, 9361–9369 (2016).
[65] Fermi, E. Un metodo statistico per la determinazione di alcune priorieta dell’atomo. Atti Accademia Nazionale dei Lincei, Rendiconti 6, 602–607 (1927).
[66] Thomas, L. H. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 23, 542–548 (1927).
[67] Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Physical Review Letter 140, A1133–A1138 (1965).
[68] Perdew, J. P. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23, 5048–5079 (1981).
[69] Dirac, P. A. M. Note on exchange phenomena in the thomas atom. Proceedings of the Cambridge Philosophical Society 26, 376 (1930).
[70] Wigner, E. The transition state method. Transactions of the Faraday Society 34, 29–41 (1938).
[71] Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Physical Review Letters 45, 566–569 (1980).
[72] Perdew, J. P. Generalized gradient approximation made simple. Physical Review Letters 77, 3865–3868 (1996).
[73] Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surface Science 126, 236–244 (1983).
[74] Bardeen, J. Tunnelling from a many-particle point of view. Physical Review Letters 6, 57–59 (1961).
[75] Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope.
Physical Review B 31, 805–813 (1985).
[76] Kresse, G. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical Review B 54, 11169–11186 (1996).
[77] Blo ̈chl, P. E. Projector augmented-wave method. Physical Review B 50, 17953–17979 (1994).
[78] Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Physical Review 139, A796 (1965).
[79] Hybertsen, M. S. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B 34, 5390–5413 (1986).
[80] Medeiros, P. V. C. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Physical Review B 89 (2014).
[81] Medeiros, P. V. C. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Physical Review B 91, 041116 (2015).
[82] Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Physical Revew B 76, 045302 (2007).
[83] Hsieh, D. et al. A topological Dirac insulator in a quantum spin hall phase. Nature 452, 970–974 (2008).
[84] Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics 5, 438–442 (2009).
[85] Chen, Y. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).
[86] Hsieh, D. et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Physical Review Letters 103, 146401 (2009).
[87] Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics 5, 398–402 (2009).
[88] Miyamoto, K. et al. Topological surface states with persistent high spin polarization across the Dirac point in Bi2Te2Se and Bi2Se2Te. Physical Review Letters 109, 166802 (2012).
[89] Nurmamat, M. et al. Unoccupied topological surface state in Bi2Te2Se. Physical Review B 88, 081301 (2013).
[90] Nakajima, S. The crystal structure of Bi2Te3−xSex. Journal of Physics and Chemistry of Solids 24, 479–485 (1963).
[91] Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics 6, 584–588 (2010).
[92] Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey. Nature Communications 3, 636 (2012).
[93] Chen, C. et al. Tunable Dirac fermion dynamics in topological insulators. Scientific Reports 3, 2411 (2013).
[94] Tung, Y. et al. Growth and characterization of molecular beam epitaxy- grown Bi2Te3−xSex topological insulator alloys. Journal of Applied Physics 119, 055303 (2016).
[95] Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).
[96] Hor, Y. S. et al. P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Physical Review B 79, 195208 (2009).
[97] Klimeˇs, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter 22, 022201 (2009).
[98] Klimeˇs, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Physical Review B 83, 195131 (2011).
[99] Vanpoucke, D. E. & Brocks, G. Formation of Pt-induced Ge atomic nanowires on Pt/Ge (001): A density functional theory study. Physical Review B 77, 241308 (2008).
[100] Butler, C. J. et al. Observation of surface superstructure induced by systematic vacancies in the topological Dirac semimetal Cd3As2. Physical Review B 95, 081410 (2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊