|
[1] Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Reviews of Modern Physics 82, 3045 (2010). [2] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 81, 109 (2009). [3] Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Materials 11, 1023–1027 (2012). [4] Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Physical Review Letters 104, 106408 (2010). [5] Young, S. M. et al. Dirac semimetal in three dimensions. Physical Review Letters 108, 140405 (2012). [6] Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). [7] Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb). Physical Review B 85, 195320 (2012). [8] Liu, Z. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014). [9] Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Physical Review B 88, 125427 (2013). [10] Liu, Z. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Materials 13, 677–681 (2014). [11] Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Communications 5 (2014). [12] Yi, H. et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2. arXiv preprint arXiv:1405.5702 (2014). [13] Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Physical Review Letters 113, 027603 (2014). [14] Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Physical Review X 5, 031013 (2015). [15] Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Communications 6, 7373 (2015). [16] Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Physics 11, 748–754 (2015). [17] Chang, G. et al. Signatures of Fermi arcs in the quasiparticle interferences of the Weyl semimetals TaAs and NbP. Physical Review Letters 116, 066601 (2016). [18] Zheng, H. et al. Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378– 1385 (2016). [19] Borisenko, S. et al. Time-reversal symmetry breaking Weyl state in YbMnBi2. arXiv preprint arXiv:1507.04847 (2015). [20] Burkov, A., Hook, M. & Balents, L. Topological nodal semimetals. Physical Review B 84, 235126 (2011). [21] Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nature Communications 7, 10556 (2016). [22] Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and 3D Dirac line node in ZrSiS. Nature Communications 7, 11696 (2016). [23] Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Physical Review Letters 115, 126803 (2015). [24] Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Physical Review B 93, 201104 (2016). [25] Hu, J. et al. Evidence of Dirac cones with 3D character probed by dHvA oscillations in nodal-line semimetal ZrSiS. arXiv preprint arXiv:1604.01567 (2016). [26] Wang, X. et al. Evidence of both surface and bulk Dirac bands in ZrSiS and the unconventional magnetoresistance. arXiv preprint arXiv:1604.00108 (2016). [27] Ali, M. N. et al. Butterfly magnetoresistance, quasi-2D Dirac fermi surface and topological phase transition in ZrSiS. Science Advances 2, e1601742 (2016). [28] Sankar, R. et al. Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility. Scientific Reports 7, 40603 (2017). [29] Friedel, J. Metallic alloys. Il Nuovo Cimento (1955-1965) 7, 287–311 (1958). [30] Byers, J. M. Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic superconductor. Physical Review Letters 71, 3363–3366 (1993). [31] Hoffman, J. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 295, 466–469 (2002). [32] Simon, L., Vonau, F. & Aubel, D. A phenomenological approach of joint density of states for the determination of band structure in the case of a semi- metal studied by FT-STS. Journal of Physics: Condensed Matter 19, 355009 (2007). [33] Simon, L., Bena, C., Vonau, F., Cranney, M. & Aubel, D. Fourier-transform scanning tunnelling spectroscopy: the possibility to obtain constant-energy maps and band dispersion using a local measurement. Journal of Physics D: Applied Physics 44, 464010 (2011). [34] Hasegawa”, Y. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Physical Review Letters 71, 1071–1074 (1993). [35] Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993). [36] Jeandupeux, O., Bu ̈rgi, L., Hirstein, A., Brune, H. & Kern, K. Thermal damping of quantum interference patterns of surface-state electrons. Physical Review B 59, 15926 (1999). [37] Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Physical Review Letters 136, B864–B871 (1964). [38] Burgi, L., Brune, H. & Kern, K. Imaging of electron potential landscapes on Au (111). Physical Review Letters 89, 176801 (2002). [39] Ashcroft, N. W. & Mermin, N. D. Solid state physics. Saunders College Press 1st edition (1976). [40] Sprunger, P., Petersen, L., Plummer, E., Lægsgaard, E. & Besenbacher, F. Giant Friedel oscillations on the Be (0001) surface. Science 275, 1764–1767 (1997). [41] Petersen, L. et al. Direct imaging of the 2-D fermi contour: Fourier transform STM. Physical Review B 57 (1998). [42] Hofmann, P. et al. Anisotropic two-dimensional Friedel oscillations. Physical Review Letters 79, 265 (1997). [43] McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ. Nature 422, 592– 596 (2003). [44] Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe (Se, Te). Science 328, 474–476 (2010). [45] Yi, M. et al. Unconventional electronic reconstruction in undoped (Ba, Sr) Fe2As2 across the spin density wave transition. Physical Review B 80, 174510 (2009). [46] Pascual, J. I. et al. Role of spin in quasiparticle interference. Physical Review Letters 93, 196802 (2004). [47] Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009). [48] Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Physical Review Letters 103, 266803 (2009). [49] Alpichshev, Z. et al. Stm imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Physical Review Letters 104, 016401 (2010). [50] Str ́oz ̇ecka, A., Eiguren, A. & Pascual, J. I. Quasiparticle interference around a magnetic impurity on a surface with strong spin-orbit coupling. Physical Review Letters 107, 186805 (2011). [51] Sessi, P. et al. Scattering properties of the three-dimensional topological insulator Sb2Te3: Coexistence of topologically trivial and nontrivial surface states with opposite spin-momentum helicity. Physical Review B 93, 035110 (2016). [52] Okada, Y. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Physical Review Letters 106, 206805 (2011). [53] Sessi, P. et al. Signatures of Dirac fermion-mediated magnetic order. arXiv preprint arXiv:1410.8309 (2014). [54] Hirayama, H., Aoki, Y. & Kato, C. Quantum interference of Rashba-type spin-split surface state electrons. Physical Review Letters 107, 027204 (2011). [55] El-Kareh, L., Sessi, P., Bathon, T. & Bode, M. Quantum interference mapping of Rashba-split bloch states in Bi/Ag (111). Physical Review Letters 110, 176803 (2013). [56] Steinbrecher, M., Harutyunyan, H., Ast, C. R. & Wegner, D. Rashba-type spin splitting from interband scattering in quasiparticle interference maps. Physical Review B 87, 245436 (2013). [57] Kohsaka, Y., Kanou, M., Takagi, H., Hanaguri, T. & Sasagawa, T. Imaging ambipolar two-dimensional carriers induced by the spontaneous electric polarization of a polar semiconductor BiTeI. Physical Review B 91, 245312 (2015). [58] El-Kareh, L. et al. A combined experimental and theoretical study of Rashba-split surface states on the Pb/Ag (111) surface. New Journal of Physics 16, 045017 (2014). [59] Guan, S.-Y. et al. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Science Advances 2, e1600894 (2016). [60] Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nature Materials 13, 851–856 (2014). [61] Gyenis, A. et al. Imaging electronic states on topological semimetals using scanning tunneling microscopy. New Journal of Physics 18, 105003 (2016). [62] Kourtis, S., Li, J., Wang, Z., Yazdani, A. & Bernevig, B. A. Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals. Physical Review B 93, 041109 (2016). [63] Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016). [64] Butler, C. J. et al. Quasiparticle scattering in the Rashba semiconductor BiTeBr: The roles of spin and defect lattice site. ACS Nano 10, 9361–9369 (2016). [65] Fermi, E. Un metodo statistico per la determinazione di alcune priorieta dell’atomo. Atti Accademia Nazionale dei Lincei, Rendiconti 6, 602–607 (1927). [66] Thomas, L. H. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 23, 542–548 (1927). [67] Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Physical Review Letter 140, A1133–A1138 (1965). [68] Perdew, J. P. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23, 5048–5079 (1981). [69] Dirac, P. A. M. Note on exchange phenomena in the thomas atom. Proceedings of the Cambridge Philosophical Society 26, 376 (1930). [70] Wigner, E. The transition state method. Transactions of the Faraday Society 34, 29–41 (1938). [71] Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Physical Review Letters 45, 566–569 (1980). [72] Perdew, J. P. Generalized gradient approximation made simple. Physical Review Letters 77, 3865–3868 (1996). [73] Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surface Science 126, 236–244 (1983). [74] Bardeen, J. Tunnelling from a many-particle point of view. Physical Review Letters 6, 57–59 (1961). [75] Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Physical Review B 31, 805–813 (1985). [76] Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169–11186 (1996). [77] Blo ̈chl, P. E. Projector augmented-wave method. Physical Review B 50, 17953–17979 (1994). [78] Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Physical Review 139, A796 (1965). [79] Hybertsen, M. S. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B 34, 5390–5413 (1986). [80] Medeiros, P. V. C. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Physical Review B 89 (2014). [81] Medeiros, P. V. C. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Physical Review B 91, 041116 (2015). [82] Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Physical Revew B 76, 045302 (2007). [83] Hsieh, D. et al. A topological Dirac insulator in a quantum spin hall phase. Nature 452, 970–974 (2008). [84] Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics 5, 438–442 (2009). [85] Chen, Y. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009). [86] Hsieh, D. et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Physical Review Letters 103, 146401 (2009). [87] Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics 5, 398–402 (2009). [88] Miyamoto, K. et al. Topological surface states with persistent high spin polarization across the Dirac point in Bi2Te2Se and Bi2Se2Te. Physical Review Letters 109, 166802 (2012). [89] Nurmamat, M. et al. Unoccupied topological surface state in Bi2Te2Se. Physical Review B 88, 081301 (2013). [90] Nakajima, S. The crystal structure of Bi2Te3−xSex. Journal of Physics and Chemistry of Solids 24, 479–485 (1963). [91] Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics 6, 584–588 (2010). [92] Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey. Nature Communications 3, 636 (2012). [93] Chen, C. et al. Tunable Dirac fermion dynamics in topological insulators. Scientific Reports 3, 2411 (2013). [94] Tung, Y. et al. Growth and characterization of molecular beam epitaxy- grown Bi2Te3−xSex topological insulator alloys. Journal of Applied Physics 119, 055303 (2016). [95] Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010). [96] Hor, Y. S. et al. P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Physical Review B 79, 195208 (2009). [97] Klimeˇs, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter 22, 022201 (2009). [98] Klimeˇs, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Physical Review B 83, 195131 (2011). [99] Vanpoucke, D. E. & Brocks, G. Formation of Pt-induced Ge atomic nanowires on Pt/Ge (001): A density functional theory study. Physical Review B 77, 241308 (2008). [100] Butler, C. J. et al. Observation of surface superstructure induced by systematic vacancies in the topological Dirac semimetal Cd3As2. Physical Review B 95, 081410 (2017).
|