跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白尚平
研究生(外文):Shang-Ping Pai
論文名稱:星系團的重子質量比之二維投影分佈圖
論文名稱(外文):Projected two-dimensional map of baryonic fraction for galaxy clusters
指導教授:吳俊輝吳俊輝引用關係
指導教授(外文):Jiun-Huei Wu
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:天文物理研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:重子質量比宇宙微波背景輻射宇宙學:觀測星系:星系團:觀測:一般星系:星系團:個體(A1689MACSJ0717)星系:星系團:星系團間物質重力透鏡效應
外文關鍵詞:baryonic fractioncosmic microwave backgroundcosmology: observationsgalaxies: clusters: generalgalaxies: clusters: individual (A1689MACSJ0717)galaxies: clusters: intracluster mediumgravitational lensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們提出了一個新方法來製造星系團的重子質量比之二維投影分佈圖。在這個研究裡我們直接使用了 AMiBA13 的 SZ 效應和哈伯天文望遠鏡的重力透鏡效應觀測結果以及以X光觀測的星系團溫度。另外我們比較了實際上觀測的結果與用理論模型估算結果之間的差異。此方法能夠讓我們直接看出星系團的重子質量比在圖上的分佈情況,並且從結果得知我們提出的新方法與實際觀測結果得到的影像品質有直接的關係,若能提高觀測的解析度與視野大小,或是排除觀測結果中的雜訊干擾及造成誤差的因素,此方法都將能呈現更詳細的結果。
We demonstrate a new method to produce the projected 2D baryonic-fraction maps of galaxy clusters. In this work, the projected 2D baryonic-fraction maps are obtained by processing the images from Sunyaev-Zel''dovich effect and the kappa maps from gravitational lensing directly. The data we use are from two sources: (1) Array for Microwave Background Anisotropy (AMiBA) Sunyaev-Zel''dovich effect observations and (2) results from gravitational lensing analysis in Canada France Hawaii Telescope (CFHT) data and Hubble Space Telescope (HST) data of the Cluster Lensing And Supernova survey with Hubble (CLASH) sample combined with X-ray temperature. For the purpose of facilitating comparison, we use numerical simulations to reconstruct the cold dark matter halo in the clusters with NFW model and the intracluster medium (ICM) with KS01 model.
Contents
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
1 Introduction 1
2 Cosmology 3
2.1 The Friedmann–Robertson–Walker (FRW) Model . . . . . . . . . . . . . 3
2.2 Densityparameters ............................. 4
2.3 CosmicDistance .............................. 5
3 Baryonic Fraction of Galaxy Clusters 7
3.1 GravitationalLensing............................ 7
3.1.1 Theory ............................... 7
3.1.2 HubbleSpaceTelescope(HST) .................. 9
3.2 TheSunyaev-Zel’dovichEffect....................... 9
3.2.1 Theory ............................... 9
3.2.2 Array for Microwave Background Anisotropy (AMiBA) . . . . . 11
3.3 ModelsofGalaxyClusters ......................... 11
3.3.1 Navarro–Frenk–WhiteProfile ................... 12
3.3.2 KS01Model ............................ 13
4 Methods for Producing Baryonic-Fractional Maps 17
4.1 Simulation.................................. 17
4.1.1 DataCollection........................... 18
4.1.2 MassMapsfromNFWModel ................... 18
4.1.3 GasMapsfromKS01Model.................... 20
4.1.4 Projected Baryonic-Fractional Maps from Simulations . . . . . . 21
4.2 Observation................................. 22
4.2.1 DataCollection........................... 22
4.2.2 Mass Maps from Convergence and original Mass Maps . . . . . . 24
4.2.3 GasMapsfromSZMaps...................... 26
4.2.4 Projected Baryonic-Fractional Maps from observations . . . . . . 28
4.3 TheprojectedBaryonic-FractionalProfiles. . . . . . . . . . . . . . . . . 30
5 Results 31
5.1 Projected Baryonic-Fractional Maps from Simulations . . . . . . . . . . 31
5.2 Projected Baryonic-Fractional Maps from Observations . . . . . . . . . . 33
5.3 Comparison................................. 36
5.3.1 Comparison with Simulation and Different Clusters . . . . . . . . 36
5.3.2 ComparisonwithPreviousResults................. 40
6 Discussion and Conclusions 41
Bibliography 45
Bibliography
[1] Irina Dvorkin and Yoel Rephaeli. Evolution of the gas mass fraction in galaxy clusters. Monthly Notices of the Royal Astronomical Society,450(1):896–904, 2015.
[2] Anthony H. Gonzalez et al. Galaxy cluster baryon fractions revisited. The Astrophysical Journal, 778(1):14, 2013.
[3] Keiichi Umetsu et al. Mass and hot baryons in massive galaxy clusters from subaru weak-lensing and amiba sunyaev-zel’dovich effect observations. The Astrophysical Journal, 694(2):1643, 2009.
[4] Okabe et al. Universal profiles of the intracluster medium from suzaku x-ray and subaru weak-lensing observations. Publications of the Astronomical Society of Japan, 66(5):99, 2014.
[5] N.Battaglia et al. Weak-lensing mass calibration of the atacama cosmology telescope equatorial sunyaev-zeldovich cluster sample with the canada-france-hawaii telescope stripe 82 survey. Journal of Cosmology and Astroparticle Physics, 2016(08): 013, 2016.
[6] N. G. Czakon et al. Galaxy cluster scaling relations between bolocam sunyaev- zel’dovich effect and chandra x-ray measurements. The Astrophysical Journal, 806(1):18, 2015.
[7] Yin-Zhe Ma et al. Probing the diffuse baryon distribution with the lensing-tsz cross- correlation. Journal of Cosmology and Astroparticle Physics, 2015(09):046, 2015.
[8] J. Sayers et al. Sunyaev-zel’dovich-measured pressure profiles from the bolocam x-ray/sz galaxy cluster sample. The Astrophysical Journal, 768(2):177, 2013.
[9] Planck Collaboration Ade, P.A.R. et al. Planck2015 results-xiii.cosmological parameters. Astronomy and Astrophysics, 594:A13, 2016.
[10] Matthias Bartelmann and Peter Schneider. Weak gravitational lensing. Physics Re- ports, 340(4):291 – 472, 2001.
[11] John E. Carlstrom, Gilbert P. Holder, and Erik D. Reese. Cosmology with the sunyaev-zel’dovich effect. Annual Review of Astronomy and Astrophysics, 40(1): 643–680, 2002.
[12] Naoki Itoh, Yasuharu Kohyama, and Satoshi Nozawa. Relativistic corrections to the sunyaev-zeldovich effect for clusters of galaxies. The Astrophysical Journal, 502(1): 7, 1998.
[13] Paul T. P. Ho et al. The yuan-tseh lee array for microwave background anisotropy. The Astrophysical Journal, 694(2):1610, 2009.
[14] Jiun-Huei Proty Wu et al. Array for microwave background anisotropy: Observations, data analysis, and results for sunyaev-zel’dovich effects. The Astrophysical Journal, 694(2):1619, 2009.
[15] Guo-Chin Liu et al. Contamination of the central sunyaev-zel’dovich decrements in amiba galaxy cluster observations. The Astrophysical Journal, 720(1):608, 2010.
[16] Yu-Wei Liao et al. Amiba: Sunyaev-zel’dovich effect-derived properties and scaling relations of massive galaxy clusters. The Astrophysical Journal, 713(1):584, 2010.
[17] Kai-Yang Lin et al. Amiba : System performance. The Astrophysical Journal, 694(2): 1629, 2009.
[18] Hiroaki Nishioka et al. Tests of amiba data integrity. The Astrophysical Journal, 694(2):1637, 2009.
[19] Chih-Wei Locutus Huang et al. Amiba: Scaling relations between the integrated compton-y and x-ray-derived temperature, mass, and luminosity. The Astrophysical Journal, 716(1):758, 2010.
[20] E Jullo, J-P Kneib, M Limousin, Á Elíasdóttir, P J Marshall, and T Verdugo. A bayesian approach to strong lensing modelling of galaxy clusters. New Journal of Physics, 9(12):447, 2007.
[21] Simon D.M. White Julio F. Navarro, Carlos S. Frenk. The structure of cold dark matter halos. The Astrophysical Journal, 462:563 – 575, 1996.
[22] E. Komatsu and U. Seljak. Universal gas density and temperature profile. Monthly Notices of the Royal Astronomical Society, 327(4):1353–1366, 2001.
[23] E. Komatsu and U. Seljak. The sunyaev–zel’dovich angular power spectrum as a probe of cosmological parameters. Monthly Notices of the Royal Astronomical Society, 336(4):1256–1270, 2002.
[24] Elinor Medezinski et al. Clash: Complete lensing analysis of the largest cosmic lens macs j0717.5+3745 and surrounding structures. The Astrophysical Journal, 777(1): 43, 2013.
[25] Adi Zitrin et al. Hubble space telescope combined strong and weak lensing analysis of the clash sample: Mass and magnification models and systematic uncertainties. The Astrophysical Journal, 801(1):44, 2015.
[26] Marceau Limousin et al. Combining strong and weak gravitational lensing in abell 1689. The Astrophysical Journal, 668(2):643, 2007.
[27] Kai-Yang Lin et al. Amiba: Cluster sunyaev-zel’dovich effect observations with the expanded 13-element array. The Astrophysical Journal, 830(2):91, 2016.
[28] Edward Anders and Nicolas Grevesse. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1):197 – 214, 1989.[29] Mauro Sereno, Stefano Ettori, Keiichi Umetsu, and Alessandro Baldi. Mass, shape and thermal properties of abell 1689 using a multiwavelength x-ray, lensing and sunyaev–zel’dovich analysis. Monthly Notices of the Royal Astronomical Society, 428(3):2241–2254, 2013.
[30] Mauro Sereno and Adi Zitrin. Triaxial strong-lensing analysis of the z >= 0.5 macs clusters: the mass–concentration relation. Monthly Notices of the Royal Astronomical Society, 419(4):3280–3291, 2012.
[31] Cheng-Jiun Ma et al. The spatial distribution of galaxies of different spectral types in the massive intermediate-redshift cluster macs j0717.5+3745. The Astrophysical Journal, 684(1):160, 2008.
[32] H. Ebeling, E. Barrett, and D. Donovan. Discovery of a large-scale filament connected to the massive galaxy cluster macs j0717.5+3745 at z = 0.55. The Astrophysical Journal Letters, 609(2):L49, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top