跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳欣
研究生(外文):Hsin Chen
論文名稱:應用石墨烯於自供電超靈敏葡萄糖感測元件
論文名稱(外文):Self-powered Ultrasensitive Glucose Detection Based on Graphene Multi-Heterojunctionks with A Band-Engineering Sieve Layer
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:高靈敏度自供電式非侵入式葡萄糖生物感測器
外文關鍵詞:high sensitivityself-powerednon-invasive glucose sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今糖尿病患者所使用的血糖機是一種侵入式的量測方式,此方式不僅帶給病患許多的不便,也造成許多不必要的浪費。在本研究中,我們製造出以石墨烯/氧化鋅/P型矽基板的異質結構葡萄糖生物感測器,此感測器不同於以往依賴載子傳輸的物理性質變化,其特殊的工作原理是建立於氧化鋅的設計,因為氧化鋅能將載子牽制住不讓載子傳遞至下層的半導體,造就載子能夠最直接改變石墨烯的費米能階,造成整體能帶彎曲程度不同,間接改變跨於整體異質接面的輸出電流。藉由這樣的設計,此感測器的靈敏度極高,其可量測葡萄糖的範圍從0.1 pM到100 μM,如此廣泛的量測範圍比起現今已發表的論文都靈敏許多。另外,在此研究中,我們更運用室光激發此異質結構中的p-n接面來創造出自供電的葡萄糖生物感測器,其結果亦顯示出同樣的靈敏程度。因此,此異質結構葡萄糖生物感測器可被廣泛地運用於醫療,並有很大的機會能發展成被糖尿病患者使用的簡易且無痛血糖監測儀器。
A highly sensitive glucose biosensor based on graphene/ZnO/p-Si heterojunctions is demonstrated. Its sensing mechanism makes use of the large variation in the Fermi energy of graphene upon direct electron transfer of glucose oxidase at the presence of glucose molecules, with a film of ZnO acting as a sieve layer to block the carriers from transferring into the underlying semiconductor layer, resulting in a superb detection sensitivity. Through measurements of the current-voltage characteristics and time dependence of the changed current, this unique structure responds to glucose concentrations from as low as 0.1 pM to 100 μM range, which outperforms the best value ever reported by more than three orders of magnitude. Furthermore, we demonstrate the self-powered capability of this newly designed biosensor at room light illumination level, without compromising its sensitivity and dynamic range of detection. Altogether, this device presents with an excellent performance that surpasses all current glucose detection devices used in medical control, representing a novel possibility for easy and painless monitoring of blood glucose for patients with diabetes mellitus.
口試委員會審定書(I)
致謝(II)
中文摘要(III)
ABSTRACT(IV)
CONTENTS(V)
LIST OF FIGURES(VII)
LIST OF TABLE(VIII)
Chapter 1 Introduction(1)
Chapter 2 Theoretical Background (9)
2.1 Glucose Biosensor Theory (9)
2.2 Graphene, 2D Material (11)
2.3 ZnO Semiconductor (15)
2.4 Schottky Barrier Diodes(18)
Chapter 3 Experimental Details( 24)
3.1 Current-Voltage (I-V) Measurement(24)
3.2 Radio-Frequency (RF) Sputtering(25)
3.3 Thermal Evaporation(27)
3.4 Chemical Vapor Deposition System(29)
3.5 Sample Preparation(31)
Chapter 4 Results and Discussion( 34)
4.1 Device Structures and Characteristics of Component Materials(34)
4.2 Current-Voltage Curve of Device Performance(36)
4.3 Selectivity of Device Performance(42)
4.4 Self-Powered Capability(44)
Chapter 5 Conclusion (50)
Chapter1
[1]D. R. Whiting, L. Guariguatail, C. Weil, J. Shaw, Diabetes Res. Clin. Pract. 2011, 94, 311.
[2]P. Makaram, D. Owens, J. Aceros, Diagnostics 2014, 4, 27.
[3]A. Saini, A. Kumar, V. K. Anand, IJASER 2016, 5, 156.
[4]N. S. Oliver, C. Toumazou, A. E. G. Cass, D. G. Johnston, Diabet. Med. 2009, 26, 197.
[5]G. Rooth, S. Carlstrom, J. Intern. Med. 1970, 187, 455.
[6]C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, J. Chromatogr. B 2004, 810, 269.
[7]M. Righettoni, A. Tricoli, S. E. Pratsinis, Anal. Chem. 2010, 82, 3581.
[8]E. H. Baker, N. Clark, A. L. Brennan, D. A. Fisher, K. M. Gyi, M. E. Hodson, B. J. Philips, D. L. Baines, J. Appl. Physiol. 2007, 102, 1969.
[9]J. Wang, Chem. Rev. 2007, 108, 814.
[10] E. W. Nery, M. Kundys, P. S. Jeleń, M. Jönsson-Niedziółka, Anal. Chem. 2016, 88, 11271.
[11] S. Alwarappan, C. Liu, A. Kumar, C. Li, J. Phys. Chem. C 2010, 114, 12920.
[12] A. Guiseppi-elie, C. Lei, R. H. Baughman, Nanotech. 2002, 13, 559.
[13] S. B. Bankar, M. V. Bule, R. S. Singhal, Biotechnol. Adv. 2009, 27, 489.
[14] Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, Biosens. Bioelectron. 2005, 21, 984.
[15] C. Cai, J. Chen, Anal. Biochem. 2004, 332, 75.
[16] C. Qiu, X. Wang, X. Liu, S. Hou, H. Ma, Electrochim. Acta 2012, 67, 140.
[17] S. Palanisamy, A. T. E. Vilian, S. Chen, Int. J. Electrochem. Sci. 2012, 7, 2153.
[18] A. K. Geim, Science 2009, 324, 1530.
[19] D. A. C. Brownson, C. E. Banks, Analyst 2010, 135, 2768.
[20] F. Wang, L. Liu, W. J. Li, IEEE Trans. Nanobiosci. 2015, 14, 818.
[21] Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S. S. Ahn, J. W. Yang, W. S. Yang, S. Seo, Biosens. Bioelectron. 2012, 37, 82.
[22] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoç, J. Appl. Phys. 2005, 98, 041301.
[23] Z. L. Wang, Mater. Sci. Eng. R-Rep. 2009, 64, 33.
[24] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, Z. L. Wang, Adv. Mater. 2009, 21, 2767.
[25] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, T. Steiner, Mater. Today 2004, 7, 34.
[26] C.-L. Wu, C.-C. Cheng, T.-M. Sun, G. Haider, Y.-R. Liou, W.-J. Tan, C.-W. Chiang, Y.-F. Chen, Appl. Phys. Lett. 2016, 109, 122107.
[27] C. C. Cheng, J. Y. Zhan, Y. M. Liao, T. Y. Lin, Y. P. Hsieh, Y. F. Chen, Appl. Phys. Lett. 2016, 109, 053501.
Chapter2
[1]J. Wang, Chem. Rev. 2008, 108, 814.
[2]W. Zhao, H. Zhang, Q. He, Y. Li, J. Gu, L. Li, H. Li, J. Shi, Chem. Commun. 2011, 47, 9459.
[3]J. M. Raimond, M. Brune, Q. Computation, F. De Martini, C. Monroe, Science 2004, 306, 666.
[4]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
[5]A. K. Geim, Science 2009, 324, 1530.
[6]C. Mattevi, M. J. Chhowalla, Mater. Chem. 2011, 21, 3324.
[7]A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Nano Lett. 2008, 8, 2012.
[8]E. Graphene, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. De. Heer, Science 2006, 312, 1191.
[9]K. V Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. Mcchesney, T. Ohta, S. A.Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
[10]A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
[11]G. N. Dash, S. R. Pattanail, S. Behera, IEEE Electon Devices Soc. 2014, 2, 77.
[12]A. H. C. Neto, Rev. Mod. Phys. 2009, 81 , 109.
[13]M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-herrero, P. Jacquod, B. J. Leroy, Nat. Phys. 2012, 8, 382.
[14]K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V. Dubonos, Nature 2005, 438 , 197.
[15]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 2.
[16]J. K.Wassei, R. B. Kaner, Mater. Today 2010, 13, 52.
[17]E. Industries, B. J. T. Blvd, Solid State Commun. 1998, 105, 399.
[18]D. C. Reynolds, C. W. L. C. Look, J. E. Hoelscher, B. C. C. C. Nause, B. Nemeth, D. C. Reynolds, C. W. Litton, J. Appl. Phys. 2004, 95, 4802.
[19]E. Ohshima, H. Ogino, I. Niikura, K. Maeda, J. Cryst. Growth 2004, 260, 166.
[20]K. Maeda, M. Sato, I. Niikura, Semicond. Sci. Technol. 2005, 20, S49.
[21]F. Quaranta, A. Valentini, F. R. Rizzi, G. Casamassima, V. Amendola, F. Quaranta, A. Valentini, F. F. L. Rizzi, G. Casamassima, J. Appl. Phys. 1993, 74, 244.
[22]S. Ã. Heinze, A. Krtschil, J. Bla, T. Hempel, P. Veit, A. Dadgar, J. Christen, A. Krost, J. Cryst. Growth 2007, 308, 170.
[23]S. Deiter, D. Forster, F. Bertram, J. Cryst. Growth 2004, 272, 800.
[24]T. Ã. Ive, C. G. Van De Walle, U. K. Mishra, S. P. Denbaars, J. S. Speck, J. Cryst. Growth 2008, 310, 3407.
[25]T. Ive, T. Ben, A. Murai, H. Asamizu, U. Mishra, S. P. Denbaars, J. S. Speck, G. Zno, I. Zno, Phys. status solidi 2008, 5, 3091.
[26]A. Janotti, C. G. Van De. Walle, REPORTS Prog. Phys. 2009, 72, 126501.
[27]A. Mang, Solid State Commun. 1995, 94, 251.
[28]B. Telephone, D. G. Thomas, M. Hill, J. Phys. Chem. Solids 1960, 15, 86.
[29]D. C. Reynolds, D. C. Look, B. Jogai, Phys. Rev. B 1999, 60, 2340.
[30]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. Cho, H. Morkoç, J. Appl. Phys. 2005, 98, 41301.
[31]A. Umar, B. Kim, J. Kim,; Z. L. Wang, J. Phys. Condens. MATTER 2004, 16, R829.
[32]E. Topoglidis, A. E. G. Cass, B. O’Regan, J. R. Durrant, J. Electroanal. Chem. 2001, 517, 20.
[33]Z. Dai, G. Shao, J. Hong, J. Bao, J. Shen, Biosens. Bioelectron. 2009, 24, 1286.
[34]T. Kavitha, A. I.Gopalan, K. P. Lee, S. Y. Park, Carbon 2012, 50, 2994.
[35]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
Chapter4
[1] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, C. Casiraghi, Nano Lett. 2012, 12, 3925.
[2] C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, S. B. Cronin, Nano Lett. 2011, 11, 1863.
[3] C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, S. J. Pearton, Appl. Phys. Lett. 2011, 99, 243502.
[4] K.-Y. Hwa, B. Subramani, Biosens. Bioelectron. 2014, 62, 127.
[5] Z. Li, L. Sheng, A. Meng, C. Xie, K. Zhao, Microchim. Acta 2016, 183, 1625.
[6] S. Palanisamy, A. T. E. Vilian, S. Chen, Int. J. Electrochem. Sci. 2012, 7, 2153.
[7] M. Y. Elahi, A. A. Khodadadi, Y. Mortazavi, J. Electrochem. Soc. 2014, 161, B81.
[8] M. Zhang, C. Liao, C. H. Mak, P. You, C. L. Mak, F. Yan, Sci. Rep. 2015, 5, 8311.
[9] Z. Luo, L. Yuwen, Y. Han, J. Tian, X. Zhu, L. Weng, L. Wang, Biosens. Bioelectron. 2012, 36, 179.
[10] K. Yang, G. W. She, H. Wang, X. M. Ou, X. H. Zhang, C. S. Lee, S. T. Lee, J. Phys. Chem. C 2009, 113, 20169.
[11] Y. Lei, X. Yan, N. Luo, Y. Song, Y. Zhang, Colloids Surf., A 2010, 361, 169.
[12] Y. T. Wang, L. Yu, Z. Q. Zhu, J. Zhang, J. Z. Zhu, C. H. Fan, Sens. Actuator B-Chem. 2009, 136, 332.
[13] J. Liu, X. Wang, T. Wang, D. Li, F. Xi, J. Wang, E. Wang, ACS Appl. Mater. Interfaces 2014, 6, 19997.
[14] X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206.
[15] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, W. Huang, Appl. Phys. Lett. 2006, 89, 123902.
[16] Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, L. Jin, Biosens. Bioelectron. 2010, 26, 275.
[17] Y. Wang, R. Yuan, Y. Chaia, W. Li, Y. Zhuo, Y. Yuan, J. Li, Journal Mol. Catal. B, Enzym. 2011, 71, 146.
[18] H. Wu, J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I. A. Aksay, Y. Lin, Talanta 2009, 80, 403.
[19] G. Qi, K. Jia, C. Fu, S. Xu, W. Xu, J. Opt. 2015, 17, 114020.
[20] F. Kang, X. Hou, K. Xu, Nanotech. 2015, 26, 405707.
[21] H. Jiang, Z. Chen, H. Cao, Y. Huang, Analyst 2012, 137, 5560.
[22] S. Chen, X. Hai, X.-W. Chen, J.-H. Wang, Anal. Chem. 2014, 86, 6689.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top