跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/08 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張皓崴
研究生(外文):Hao-Wei Chang
論文名稱:直鏈澱粉聚合度影響直鏈澱粉脂肪酸複合物之形成
論文名稱(外文):Degree of Polymerizations of Amylose Affects the Formation of Amylose-Fatty Acid Complex
指導教授:葉安義葉安義引用關係
指導教授(外文):An-I Yeh
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:聚合度直鏈澱粉脂肪酸複合物DSCXRDeGI
外文關鍵詞:degree of polymerizationsamylose lipid complexDSCXRDeGI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
直鏈澱粉能與脂肪酸形成具熱穩定性與酵素消化抗性的直鏈澱粉脂肪酸複合物 (ALC),本研究探討不同直鏈澱粉聚合度 (DP) 與ALC的形成和物化特性。
使用初始水解斜率0.93 glucose equivalent conc./hr,水解速率適中的2.5 U ß-amylase以pH 5.5、55 ℃水解0 hr、0.25 hr、1 hr、4 hr 與9 hr,從馬鈴薯直鏈澱粉製得DP 809、702、485、364與207的直鏈澱粉水解物 (hydrolysate, HYD),與用isoamylase去枝馬鈴薯枝鏈澱粉製得DP 38的澱粉水解物,並與棕梠酸複合形成直鏈澱粉脂肪酸複合物 (水解物平均聚合度-ALC)。未複合脂肪酸的直鏈澱粉 (809-HYD) 型態為棉絮狀,DSC圖譜中觀察不到ALC的熱解離峰、偏光顯微鏡觀察下無發光、2θ值4^。~〖30〗^。之XRD圖譜中也無波峰,故判斷809-HYD無ALC形成也無結晶生成,體外消化結果顯示平衡水解率94.51 %,澱粉水解率上升快速 (水解動力常數k = 7.62),快消化性澱粉 (RDS)、慢消化性澱粉 (SDS) 與抗性澱粉 (RS) 分別佔73.95 %、20.55 %與5.50 %,且預估升糖指數 (eGI) 達92.53。
ALC型態為50~100 μm的顆粒,偏光下發光,有結晶生成。702-ALC、485-ALC與364-ALC複合指數約70 %,DSC圖譜觀察到Type I ALC與Type II ALC波峰, 809-ALC、207-ALC與38-ALC只觀察到Type I ALC波峰,以38-ALC的波峰熱解離溫度與焓值最低。二次熱掃描後,38-ALC的波峰消失,其他ALC則波峰焓值都變小,起始解離溫度T_0增加約8 ℃。XRD圖譜顯示38-ALC圖形下積分面積與結晶度最小,其餘ALC無顯著差異,因此38-ALC消化抗性差,平衡水解率為107.46 %、RS為2.36 %、eGI值為86.98。702-ALC、485-ALC與364-ALC平衡水解率約65 %、RS約35 %、eGI值約75,809-ALC與207-ALC的RS含量分別為24.35 %與30.67 %。結果顯示DP 809因分子鏈太長,鏈之間纏繞,干擾ALC形成,水解至DP 702、485、364能形成熱穩定性與消化抗性佳的ALC,DP 207與38因鏈太短,複合物消化抗性變差。
Amylose and fatty acid can form a complex, which is heat stable and enzyme resistant amylose lipid complex (ALC), the purpose of this study was to explore the formation of amylose-lipid complex (ALC) and its physicochemical properties with different degree of polymerizations (DP) of amylose.
amylose hydrolysate (HYD) DP 809, 702, 485, 364 and 207 were prepared from potato amylose being hydrolyzed with an initial slope of 0.93 glucose equivalent conc./hr using 2.5 U ß-amylase (pH5.5, 55 ℃) for 0 hr, 0.25 hr, 1 hr, 4 hr and 9 hr. DP 38 hydrolysate was made from debranched potato amylopectin by isoamylase. The hydrolysate was complexed with palmitic acid to form amylose lipid complex (Average DP of starch hydrolysate-ALC). Potato amylose without complexation (809-HYD) was cotton-like and didn’t display any endothermic peaks, no luminescent observed under polar light and no peaks found in the XRD in the range of 2θ value 4^。~〖30〗^。. Thus, the in vitro digestion showed a high final hydrolysis percentage of 94.51 %, with kinetic constant of 7.62 min^(-1). Rapidly digestible starch, slowly digestible starch and resistant starch contents were 73.95 %, 20.55 % and 5.50 %, respectively, and the estimated glycemic index (eGI) was 92.53.
ALCs exhibited luminesce under the polarized light, indicating that crystals were formed during the amylose lipid complexation. Complex index of 702-ALC, 485-ALC and 364-ALC were about 70 % and showed both the dissociation peaks of Type I ALC and Type II ALC in the DSC thermogram. Nonetheless, only dissociation peaks of Type I ALC were observed for 809-ALC, 207-ALC and 38-ALC. Among all groups of ALCs, 38-ALC has the lowest dissociation temperature and enthalpy. After rescan, endothermic peaks were disappeared or declined in 38-ALC or other ALCs and the onset temperatures of Type I ALC were raised about 8 ℃. 38-ALC showed the least crystallinity among all ALCs, and thus exhibited a relatively high equilibrium starch hydrolyzed ratio of 107.46 % with eGI value of 86.98 and RS contents of approximately 2.36 %. Nevertheless, 702-ALC, 485-ALC and 364-ALC exhibited relatively low equilibrium starch hydrolyzed ratio of about 65 % with eGI value of 75 and RS contents of about 35 %. RS contents of 809-ALC and 207-ALC were 24.35 % and 30.67 %, respectively. Result showed that the long chain of DP 809 might interfere the formation of ALC, because of the chain interaction which caused a steric hindrance for the palmitic acid to complexed into the V helix. Proper chain length of DP 702, 485 and 364 formed ALC, which were heat stable and resistant to digestion. Short chain of DP 207 and 38 exhibited low digestion resistance due to weak van der waal and nonpolar reaction between short chain amylose and fatty acid.
謝誌 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
前言 1
文獻回顧 2
1. 澱粉顆粒與結構 2
2. 澱粉水解相關酵素 9
2.1 α-amylase 9
2.2 ß-amylase 9
2.3 Glucoamylase 9
2.4 Pullulanase 10
2.5 Isoamylase 10
3. 抗性澱粉 12
4. 直鏈澱粉脂質複合物之理化特性 17
4.1 熱穩定性質 17
4.2 結晶性質 20
4.3 抑制澱粉回凝性質 22
4.4 消化性質 22
5. 直鏈澱粉脂質複合物製備方法 24
5.1 常用之方法 24
5.2 酵素法 24
5.3 熱機械法 24
6. 影響直鏈澱粉脂質複合物形成之因子 26
6.1 直鏈澱粉含量及聚合度 26
6.2 脂質種類、長度與飽和度 26
6.3 配位體濃度及溶解度 27
實驗架構 29
材料與方法 30
1. 實驗材料 30
2. 設備 30
3. 實驗方法 31
3.1 澱粉水解 31
3.2 Amylose lipid complex (ALC) 製備 31
3.3 直鏈澱粉水解速率 32
3.4 平均聚合度 32
3.5 複合指數 33
3.6 型態觀察 33
3.7 熱性質分析 33
3.8 結晶性質分析 34
3.9 體外澱粉消化性 34
3.10 統計分析 38
結果與討論 39
1. 馬鈴薯直鏈澱粉水解速率 39
2. 平均聚合度 41
3. 複合指數 43
4. 型態觀察 45
5. 熱性質分析 48
6. 結晶性質分析 53
7. 體外消化 56
結論 62
參考文獻 63
附錄一、棕梠酸DSC圖譜 72
附錄二、各樣品DSC第一次掃描圖譜 73
附錄三、各樣品DSC第二次掃描圖譜 74
附錄四、各樣品XRD圖譜 75
附錄五 76
蔡玫琳、顏名聰、呂正義。1999。溫度對直鏈澱粉-脂肪酸複合物形成之影響。食品科學,26,539-551。
尤智立。2003。是高溫纖維分解菌纖維分解酵素的探討。國立中山大學生物科學研究所碩士論文。
黃慧玉。2009。米食對健康成人升糖指數之影響。靜宜大學食品營養系碩士論文。
林奕廷。2014。油脂對米飯理化特性及澱粉消化性之影響。國立台灣大學食品科技研究所碩士論文。
張亙翔。2014。探討以糯性玉米澱粉製備短鏈第五型抗解澱粉。國立宜蘭大學食品科學系碩士論文。
黃建豪。2015。七種米澱粉微細結構與理化性質之解析。國立台灣大學食品科技研究所碩士論文。
鄭光哲。2016。預煮處理對稻米理化特性與消化性之影響。國立台灣大學食品科技研究所碩士論文。
Ai, Y., Nelson, B., Birt, D.F., Jane, J.L. In vitro and in vivo digestion of octenyl succinic starch. Carbohydr. Polym. 2013, 98, 1266-1271.
Ao, Z., Simsek S., Zhang G., Venkatachalam, M., Reuhs, B.L., Hamaker, B.R. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J. Agric. Food Chem. 2007, 55, 4540-4547.
Asp, N.G. Resistant starch. Eur. J. Clin. Nutr. 1992, 46, Suppl 2:S1.
Bailey, J. M., Whelan, W.J. Physical properties of starch I. Relationship between iodine stain and chain length. J. Biol. Chem. 1961, 236, 969-973.
BeMiller, J.M., Huber, K.C. Carbohydrates. In: Damodaran, S., Parkin, K.L. Fennema, O.R., editors. Fennema‘s Food Chemistry, 4th ed. Boca Raton, FL: CRC. Press, Taylor & Francis, 2008, p.84.
Bhatnagar, S., Hanna, M.A. Amylose lipid complex-formation during single screw extrusion of various corn starches. Cereal Chem. 1994, 71, 582-587.
Bhatnagar, S., Hanna, M.A. Extrusion processing conditions for amylose-lipid complexing. Cereal Chem. 1994, 71, 587–593.
Bhosale, R.G., Ziegler, G.R. Preparation of spherulites from amylose–palmitic acid complexes. Carbohydr. Polym. 2010, 80, 53-64.
Biliaderis C.G., Seneviratne, H.D. On the supermolecular structure and metastability of glycerol monostearate-amylose complex. Carbohydr. Polym. 1990, 13, 185-206.
Biliaderis, C.G. Structural Transitions and Related Physical Properties of Starch. In: Starch: Chemistry and Technology. Third Edition, BeMiller, J.N.; Whistler, R. L. (Eds.), Elsevier Inc., 2009; pp. 323.
Biliaderis, C. G.; Galloway, G., Crystallization behavior of amylose-V complexes: structure-property relationships. Carbohydrate Research 1989, 189, 31-48.
Biliaderis, C.; Page, C.; Maurice, T., Non-equilibrium melting of amylose-V complexes. Carbohydrate Polymers 1986, 6, 269-288.
Bodinham, C.L., Smith, L., Thomas, E.L., Bell, J.D., Swann, J.R., Costabile, A., Rusell-Jones, D., Umpleby, A.M., Robertson, M.D. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr. Connect. 2014, 3, 75-84.
Brennan, C.S., Harris, N., Smith, D., Shewry, P.R. Structural differences in the mature endosperms of good and poor malting barley cultivars. J. Cereal Sci. 1996, 24, 171-177.
Buléon, A., Colonna, P., Planchot, V., Ball, S. Starch granules: Starch and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85-112.
Dona, A. C.; Pages, G.; Gilbert, R. G.; Kuchel, P. W. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr. Polym. 2010, 80, 599-617.
Eerlingen, R.C. Deceuninck, M., Delcour, J.A. Enzyme-resistant starch 0.2. Influence of amylose chain length on resistant starch formation. Cereal Chem. 1993, 70, 345-350.
Eliasson, A.C. Interactions between starch and lipids studied by DSC. Thermochim. Acta. 1994, 246, 343-356.
Eliasson, A.C., Finstad, H., Ljunger G. A study of starch-lipid interaction form some native and modified maize starches. Starch. 1988, 40, 95–100.
Eliasson, A.C., Krog, N. Physical properties of amylose-monoglyceride complexes. J. Cereal Sci. 1985, 3, 239-248.
Englyst, H.N., Kingman, S.M., Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, 33-50.
Faisant, N., Champ, M, Colonna, P., Buléon, A., Molis, C., Langkilde, A.M., Schweizer, T., Flourie, B., Galmiche, J.P. Structural features of resistant starch at the end of the human small intestine. Eur. J. Clin. Nutr. 1993, 47, 285-296.
Fanta, G.F., Felker, F.C., Shogren, R.L., Salch, J.H. Effect of fatty acid structure on the morphology of spherulites formed from jet cooked mixtures of fatty acids and defatted cornstarch. Carbohydr. Polym. 2006, 66, 60–70.
Fanta, G.F., Shogren, R.L., Salch, J.H. Steam jet cooking of high-amylose starch-fatty acid mixtures. An investigation of complex formation. Carbohydr. Polym. 1999, 38, 1-6.
Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., Zhang, D., Xia, H., Xu, Z., Jie, Z., Su, L., Li, X., Li, X., Li, J., Xiao, L., Huber-Scho¨nauer, U., Niederseer, D., Xu, X., Al-Aama, J.Y., Yang, H., Wang, J., Kristiansen, K., Arumugam, M., Tilg, H., Datz, C., Wang, J. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 2015, 6, 6528.
French, D. in W. J. WHELAN (Ed.), Biochemistry of Carbohydrates, Butterworths University. Park Press, 1975, 267-335.
Frohberg, C., Quanz, M. Use of linear poly-alpha-1,4- glucans as Resistant starch. US patent app. 10/577, 073, 2004.
Gelders, G.G., Duyck, J.P., Goesaert, F., Delcour, J.A. Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydr. Polym. 2005, 60, 379-389.
Gelders, G.G., Goesaert, H., Delcour, J.A. Potato phosphorylase catalyzed synthesis of amylose-lipid complexes. Biomacromolecules. 2005, 6, 2622–2629.
Gilbert, G.A., Spragg, S.P. Iodimetric determination of amylose. Carbohydr. Chem. 1964, 4, 168~169.
Goddart, M.S., Young, G., Marcus, R. The effect of amylose content on insulin and glucose responses to ingested rice. Am. J. Clin. Nutr. 1984, 39, 388-392.
Godet, M.C., Bizot, H., Buléon, A. Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths. Carbohydr. Polym. 1995, 21, 41–52.
Godet, M.C., Tran, V., Colonna, P., Buléon, A., Pezolet, M. Inclusion exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length. Int. J. Biol. Macromol. 1995, 17, 405-408.
Goñi, I., Garcia-Alonso, A., Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427-437.
Hasjim, J., Jane, J. L. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch. J. Food Sci. 2009, 74, C556-C562.
Hasjim J., Lee, S.O., Hendrich, S., Setiawan, S., Ai, Y., Jane, J.L. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 2010, 87(4), 257-262.
Hibi, Y., Kitamura, S., Kuge, T. Effect of lipids on the retrogradation of cooked rice. Cereal Chem. 1990, 67, 7-10.
Hii, S.L., Tan, J.S., Ling, T.C., Ariff, A.B. Pulllanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 2012, 1-12.
Hizukuri, S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 1986, 147, 342-347.
Hizukuri, S., Takeda, Y., Yasuda, M. Multi-branched nature of amylose and the action of debranching enzyme. Carbohydr. Res. 1981, 94, 205-213.
Hizukuri, S., Shirasaka, K., Juliano, B.O. Phosphorus and amylose branching in rice starch granules. Starch. 1983, 35, 348-350.
Hizukuri, S. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr. Res. 1985, 141, 295-306.
Hoover, R., Hadziyev, D. Characterization of potato starch and its monoglyceride complexes. Starch. 1981, 33, 290-300.
Hu, Y., Le Leu, R.K., Christopherson, C.T., Somashekar, R., Conlon, M.A., Meng, X.Q., Winter, J.M., Woodman, R.J., McKinnon, R., Young, G.P. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis. 2016, 37(4), 366-375.
Kaneko, Y., Kadokawa, J. Vine-twining polymerization: A new preparation method for well-defined supramolecules composed of amylose and synthetic polymers. Chem. Rec. 2005, 5, 36–46.
Karkalas, J., Ma, S., Morrison, W.R., Pethrick, R.A. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydr. Res. 1995, 268, 233-247.
Kiatponglarp, W., Tongta, S., Rolland-Sabaté, A., Buléon, A. Crystallization and chain reorganization of debranched rice starches in relation to resistant starch formation. Carbohydr. Polym. 2015, 122, 108-114.
Koizumi, K., Fukuda, M. Estimation of the distributions of chain length of amylopectins by high-performance liquid chromatography with pulsed amperometric detection. J. Chromatogr. A. 1991, 585, 233-238.
Krog, N., Jensen, B.N. Interaction of monoglycerides in different physical states with amylose and their anti-firming effects in bread. J. Food Technol. 1970, 5, 77-87.
Le Leu, R.K., Brown, I.L., Hu, Y., Esterman, A., Young, G.P. Suppression of azoxymethane-induced colon cancer development in rats by dietary resistant starch. Cancer Biol. Ther. 2007, 6, 1621-1626.
Lebail, P., Buléon, A., Shiftan, D., Marchessault, R.H. Mobility of lipid in complexes of amylose-fatty acids by deuterium and C-13 solid state NMR. Carbohydr. Polym. 2000, 43, 317-326.
Lesmes, U., Barchechath, J., Shimoni, E. Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innov. Food Sci. Emerg. Technol. 2008, 9, 507–515.
Liebl, W., Stemplinger, I., Ruile, P. Properties and gene structure of the Thermotoga maritima alpha-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium. J. Bacteriol. 1997, 179, 941-948.
Lin, C.H., Chang, D.M., Wu, D.J., Peng, H.Y., Chuang, L.M. Assessment of blood glucose regulation and safety of resistant starch formula-based diet in healthy normal and subjects with type 2 diabetes. Medicine. 2015, 94, e1332.
Luckett, C.R., Wang, Y.J. Effects of ß-amylolysis on the resistant starch formation of debranched corn starches. J. Agric. Food Chem. 2012, 60, 4751-4757.
Meng, S., Ma, Y., Sun, D.W., Wang, L., Liu, T. Properties of starch-palmitic acid complexes prepared by high pressure homogenization. J. Cereal Sci. 2014, 59, 25-32.
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing Sugar. Anal. Chem. 1959, 31, 426-428.
Nimz, O., Gessler, K., Usón, I., Sheldrick, G.M., Saenger, W. Inclusion complexes of V-amylose with undecanoic acid and dodecanol at atomic resolution: X-ray structures with cycloamylose containing 26 d-glucoses (cyclohexaicosaose) as host. Carbohydr. Res. 2004, 339, 1427-1437.
Nomura, S., Kyutoku, T., Shimomura, .,Kaneko, Y., Kodokawa, J. Preparation of inclusion complexes composed of amylose and biodegradable poly(glycolicacid-co-ε-caprolactone) by vine-twining polymerization and their lipase-catalyzed hydrolysis behavior. Polym. J. 2011, 43, 971-977.
Obiro, W.C., Ray, S.S., Emmambux, M.N. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev. Int. 2012, 28, 412-483.
Oriani, V.B., Alvim, I.D., Consoli, L., Molina, G., Pastore, G.M., Hubinger, M.D. Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Res. Int. 2016, 80, 41-49.
Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000, 31, 135-152.
Putseys, J.A., Lamberts, L., Delcour, J.A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51, 238-247.
Putseys, J.A., Liesbeth, J.D., Lieve, L., Hans, G.;, Delcour, J.A. Production of tailor made short chain amylose–lipid complexes using varying reaction conditions. Carbohydr. Polym. 2009, 78, 854–861.
Quiang L. Understanding starched and their role in foods. In Cui. Food carbohydrate. Boca Raton, FL:CRC Press. 2005, 309-356.
Raphaelides, S., Karkalas, J. Thermal dissociation of amylose-fatty acid complexes. Carbohydr. Res. 1988, 172, 65-82.
Rappenecker, G., Zugenmaier, P. Detailed refinement of the crystal structure of Vh-amylose. Carbohydr. Res. 1981, 89, 11-19.
Rundle, R. E., Baldwin, R. R. The configuration of starch and the starch-iodine complex. I. The dichroism of flow of starch-iodine solutions. J. Am. Chem. Soc. 1943, 65, 554–558.
Rusell, P.L. The aging of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 1987, 6, 147-158.
Sajilata M.G., Singhal, R.S., Kulkarni, P.R. Resistant starch-a review. Comp. Rev. Food Sci. F. 2006, 5, 1-17.
Seigner, C., Prodanov, E., Marchis-Mouren, G. The determination of subsite binding energies of porcine pancreatic α-amylase by comparing hydrolytic activity towards substrates. Biochim. Biophys. Acta. 1987. 913, 200-209.
Seneviratne, H.D., Biliaderis, C.G. Action of α-amylases on amylose-lipid complex superstructures. J. Cereal Sci. 1991, 13,129-143.
Shi, M., Gu, F., Wu, J., Yu, S., Gao, Q. Preparation, physicochemical properties, and in vitro digestibility of cross-linked resistant starch from pea starch. Starch. 2013, 65, 947-953.
Star, A., Steuerman, D.W., Heath, J.R., Stoddart, J.F. Starched carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, No. 14.
Sun, Q., Spiegelman, D., van Dam, R.M., Holmes, M.D., Malik, V.S., Willett, W.C., Hu, F.B. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch. Intern Med. 2010, 170, 961-969.
Tester, R.F., Karkalas, J.,Qi. X. Starch-Composition, fine structure and architecture. J. Cereal Sci. 2004, 39,151-165.
Tester, R.F., Karkalas, K., J.,Qi. Starch structure and digestibility Enzyme-Substrate relation. World Poultry Sci. J. 2004, 60, 186-195.
Topping, D.L., Clifton, P.M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031-1064.
Tufvesson, F., Eliasson, A.C. Formation and crystallization of amylose-monoglyceride complex in a starch matrix. Carbohydr. Polym. 2000, 43, 359-365.
Tufvesson, F., Wahlgren, M., Eliasson, A.C. Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch. 2003, 55, 61-71.
Tufvesson, F., Wahlgren, M., Eliasson, A.C. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids. Starch. 2003, 55, 138-149.
Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 2002, 94, 137-155.
Wang, J., Tang, X.J., Chen, P.S., Huang, H.H. Changes in resistant starch from two banana cultivars during postharvest storage. Food Chem. 2014, 156, 319-325.
Wang, S., Blazek, J., Gilbert, E., Copeland, L. New insights on the mechanism of acid degradation of pea starch. Carbohydr. Polym. 2012, 87, 1941-1949.
Wokadala, O.C., Ray, S.S. Emmambux, M.N. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes. Carbohydr. Polym. 2012, 11, 339-344.
Yotsawimonwat, S., Sriroth, K., S., Kaewvichit, S., Piyachomkwan, K., Jane, J-L., Sirithunyalug, J. Effect of pH on complex formation between debranched waxy rice starch and fatty acids. Int. J. Biol. Macromol. 2008, 43, 94–99.
Zhang, B., Huang, Q., Luo, F.X., Fu, X. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocolloid. 2012, 28, 174-181.
Zobel, H.F. Starch crystal transformations and their industrial importance. Starch. 1988, 40, 1-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊