跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/14 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉宜叡
研究生(外文):Yi-Jui Liu
論文名稱:加熱溫度及酵母菌生物轉換對苦瓜皂苷之影響
論文名稱(外文):The effects of temperature and yeast biotransformation on saponins of Momordica charantia L.
指導教授:羅翊禎
指導教授(外文):Yi-Chen Lo
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:苦瓜皂苷熱加工酵母菌UPLC-ESI-MS/MS
外文關鍵詞:Momordica charantia L.triterpenoid glucosideUPLC-ESI-MS/MSsaccharomyces cerevisiae
相關次數:
  • 被引用被引用:1
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
苦瓜中的苦瓜皂苷為一群具有生理功能性與苦味的三萜類糖苷分子。先期試驗以山苦瓜粉為原料取代啤酒花進行啤酒釀造,發現發酵後山苦瓜啤酒的苦味消失。本研究假設熱加工與酵母菌轉換是影響苦瓜皂苷之可能因子。為了瞭解酒類加工過程中此類糖苷分子的轉換,本文使用花蓮3號山苦瓜進行苦瓜皂苷萃取,以液相層析串連電灑式質譜UPLC-ESI-MS/MS分析苦瓜皂苷,建立7 種苦瓜皂苷(Momordicoside L、3,7,25-trihydroxycucurbita- 5,23(E)-dien-19-al、Momordicoside K、Momordicine I、Momordicoside I、Momordicoside F2、Momordicoside F1)的定性/定量分析平台,後續再分別探討不同加熱溫度以及酵母菌對苦瓜皂苷的影響。熱穩定性實驗結果顯示:以121 ℃高溫高壓處理後,苦瓜皂苷元3,7,25-trihydroxycucurbita- 5,23(E)-dien-19-al和苦味皂苷momordicoside L顯著受到破壞。在100 ℃, 10 min的加熱條件下,功效成分3,7,25-trihydroxycucurbita- 5,23(E)-dien-19-al和苦味皂苷元momordicine I即有明顯的熱降解。除了上述2種苦瓜皂苷元,其餘5種苦瓜皂苷含量在100 ℃, 20 min的加熱條件下並無變化。以酵母菌轉換結果發現:野生型酵母菌可以降低苦味皂苷momordicine I以及momordicoside K的含量,但momordicoside L卻不被酵母菌轉換。綜合結果顯示特定的苦瓜皂苷同時受到熱與酵母菌的影響。
Saponins from Momordica charantia L. are a class of triterpenoid glucoside molecules which attribute to the bitter flavour and possess the pharmacological properties. In an initial trial, we replaced the hops with wild bitter gourd for beer brewing, and found that the bitter taste disappeared after the yeast fermentation. This study assumes that thermal processing and yeast bioconversion are important factors affecting bitter gourd saponins'' structural variety, especially for saccharide chains. To find out the conversion of glycoside molecules during alcohol processing, we establish a qualitative and quantitative LC-MS/MS platform by used Hualien No.3 wild bitter gourd. A total of seven saponins containing Momordicoside L, 3,7,25-trihydroxycucurbita- 5,23(E)-dien-19-al, Momordicoside K, Momordicine I, Momordicoside I, Momordicoside F2 and Momordicoside F1 were monitored for evaluating the effects of heating temperature and yeast on saponin structure.The results showed that: 3,7,25-trihydroxycucurbita-5, 23 (E) -dien-19-al and momordicoside L were significantly damaged at 121 ℃. 3,7,25-trihydroxycucurbita-5, 23 (E) -dien-19-al and momordicine I have significant decreased when treated with 100 ℃ for 10 min, while the other saponins did not changed. Momordicine I and momordicoside K were converted by saccharomyces cerevisiae, but momordicoside L did not change. To sum up, specific bitter gourd saponins are affected by heat and yeast.
總目錄
壹、 前言 1
貳、 文獻回顧 2
第一節、 苦瓜 2
第二節、 苦瓜皂苷 2
一、 化學結構 3
二、 生合成路徑 5
三、 生理活性 5
第三節、 苦瓜皂苷的分析方法 7
一、 比色法(Colorimetry) 7
二、 薄層層析法(Thin Layer Chromatography, TLC) 7
三、 高效液相層析法(High performance liquid chromatography, HPLC) 8
第四節、 苦瓜的熱加工 10
第五節、 苦味物質的生物轉換 11
第六節、 酵母菌的β-Glucosidase 16
參、 研究目的與實驗架構 17
肆、 材料與方法 21
第一節、 實驗材料 21
一、 山苦瓜 21
二、 酵母菌菌株 21
第二節、 藥品與試劑 22
一、 苦瓜皂苷標準品 22
二、 化學藥品 22
第三節、 儀器設備 22
第四節、 實驗方法 24
一、 以液相層析串聯質譜儀分析7種苦瓜皂苷 24
二、 不同溫度及不同時間處理下對7種苦瓜皂苷之影響 27
三、 酵母菌生物轉換對7種苦瓜皂苷之影響 27
四、 統計分析 29
伍、 結果與討論 30
第一節、 以液相層析串聯質譜儀定量7種苦瓜皂苷 30
一、 苦瓜皂苷於質譜儀游離界面的參數設定及確認分子離子類型 30
二、 以逆相層析法分離不同型態苦瓜皂苷與苦瓜皂苷元 33
三、 苦瓜皂苷標準品之線性範圍與檢量線製作 35
四、 以固相萃取管分離並純化苦瓜皂苷與苦瓜皂苷元 38
五、 以UPLC-MS/MS定量花蓮3號山苦瓜粉中的7種苦瓜皂苷 40
第二節、 不同溫度及不同時間處理下對7種苦瓜皂苷之影響 43
第三節、 實驗菌株建構 48
一、 成功建構不帶抗抗生素基因的細胞壁缺陷酵母菌株 48
二、 利用生長曲線與1 % 羅漢果皂苷轉換試驗篩選實驗菌株 52
第四節、 酵母菌生物轉換對7種苦瓜皂苷之影響 58
一、 苦瓜萃取物對不同菌株的生長影響 58
二、 以高效能液相層析串聯質譜分析苦瓜皂苷 58
陸、 結論與展望 72
柒、 參考文獻 74
捌、 附錄 79
張中偉; 謝明勇; 王遠興; 王文靜, 比色法測定苦瓜總皂苷. 南昌大學學報 2005, 10
程莉君; 石雪萍, 苦瓜中總皂苷的比色法測定. 食品與機械 2008, 24(2): 123-127
關 健, 童然詢,趙余慶. 薄層掃描法測定不同產地苦瓜中降血糖有效成分苦瓜苷的含量 [J]. 中國現代中藥, 2006, 8(3): 19-21.
王如邦. 探討Saccharomyces cerevisiae kre6∆突變株及Dekkera bruxellensis 對羅漢果皂苷轉化之機制. 國立台灣大學生物資源暨農學院食品科技研究所博士論文, 臺北, 臺灣. 2016
邱群惠. 羅漢果皂苷分析與利用靈芝及酵母菌對其進行生物轉換. 國立台灣大學生物資源暨農學院食品科技研究所博士論文, 臺北, 臺灣. 2013
崔竣傑; 李波; 程蛟文; 胡開林, 苦瓜苦味物質及其生物合成研究進展. 園藝學報 2015, 42, 1707-1718.
馬少妹; 袁愛群; 鄧光輝. 羅漢果水提取物的高效液相色譜分離研究. 分析科學學報. 2007, 23, 340-342
盧鳳來; 劉金磊; 黃永林; 李典鵬. 高效液相色譜法測定羅漢果中的六種葫蘆烷三萜類皂苷. 色譜. 2008, 26, 504-508
Akihisa, T.; Higo, N.; Tokuda, H.; Ukiya, M.; Akazawa, H.; Tochigi, Y.; Kimura, Y.; Suzuki, T.; Nishino, H., Cucurbitane-Type Triterpenoids from the Fruits of Momordica charantia and Their Cancer Chemopreventive Effects. J. Nat. Prod. 2007, 70, 1233-1239.
Arroyo-Lopez, F. N.; Bautista-Gallego, J.; Dominguez-Manzano, J.; Romero-Gil, V.; Rodriguez-Gomez, F.; Garcia-Garcia, P.; Garrido-Fernandez, A.; Jimenez-Diaz, R., Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol 2012, 32, 295-301.
Brockhoff, A.; Behrens, M.; Niv, M. Y.; Meyerhof, W., Structural requirements of bitter taste receptor activation. PNAS 2010, 107(24), 11110-11115.
Chang, C. I.; Chen, C. R.; Liao, Y. W.; Cheng, H. L.; Chen, Y. C.; Chou, C. H., Cucurbitane-Type Triterpenoids from Momordica charantia. J. Nat. Prod. 2006, 69, 1168-1171.
Chen, J. C.; Liu, W. Q.; Lu, L.; Qiu, M. H.; Zheng, Y. T.; Yang, L. M.; Zhang, X. M.; Zhou, L.; Li, Z. R., Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry 2009, 70, 133-40.
Chena, J. C.; Lu, L.; Zhanga, X. M.; Zhoua, L.; Li, Z. R.; Qiu, M. H., Eight New Cucurbitane Glycosides, Kuguaglycosides A– H, from the Root of Momordica charantia L. Helvetica Chimica Acta 2008, 91, 920-929.
Cheng, L. Q.; Na, J. R.; Bang, M. H.; Kim, M. K.; Yang, D. C., Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 2008, 69, 218-24.
Chien, P. J.; Sheu, F.; Shyu, Y. T., Monitoring enzymatic debittering in grapefruit juice by high performance liquid chromatography. J. Food Drug Anal. 2001, 9, 115-120
Chiu, C. H.; Wang, R. B.; Lee, C. C.; Lo, Y. C.; Lu, T. J., Biotransformation of Mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J. Agric. Food Chem.2013, 61, 7127-7134.
Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N., Hydrolysis of oleuropein by Lactobacillus plantarum strains. Appl. Environ. Microbiol. 1994, 60, 4142-4147
Cui, J. J.;Li, B.; Cheng J. W.; Hu, K. L., Progress on Bitter Principles and Its Biosynthesis in Bitter Gourd. Acta Horticulturae Sinica 2015, 42, 1707-1718.
Drewnowski, A.; Gomez-Carneros, C., Bitter taste, phytonutrients, and the consumer: a review. Am. J. Clin. Nutr. 2000, 72, 1424-35.
Gauthier, C.; Legault, J.; Girard-Lalancette, K.; Mshvildadze, V.; Pichette, A., Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 2009, 17, 2002-8.
Harinantenaina, L.; Tanaka, M.; Takaoka, S.; Oda, M.; Mogami, O.; Uchida, M.; Asakawa, Y., Momordica charantia Constituents and Antidiabetic Screening of the Isolated Major Compounds. Chem. Pharm. Bull. 2006, 54, 1017-1021.
Horax, R.; Hettiarachchy, N.; Islam, S., Total Phenolic Contents and Phenolic Acid Constituents in 4 Varieties of Bitter Melons (Momordica charantia) and Antioxidant Activities of their Extracts. Journal of Food Science 2005, 70, 275-280.
Hsu, C.; Hsieh, C. L.; Kuo, Y. H.; Huang, C. J., Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. J Agric Food Chem 2011, 59, 4553-61.
Hubert, J.; Berger, M.; Nepveu, F.; Paul, F.; Dayde, J., Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem 2008, 109, 709-21.
Islam, S.; Jalaluddin, M.; Hettiarachchy, N. S., Bio-active compounds of bitter melon genotypes (Momordica charantia L.) in relation to their physiological functions. Functional Foods in Heals and Disease 2011, 2, 61-74.
Jarstfer, M. B.; Zhang, D. L.; Poulter, C.D., Recombinant Squalene Synthase. Synthesis of Non-Head-to-Tail Isoprenoids in the Absence of NADPH. J. Am. Chem. Soc. 2002, 124, 8834-8845.
Joseph, B.; Jini, D., Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease 2013, 3, 93-102.
Keller, A. C.; Ma, J.; Kavalier, A.; He, K.; Brillantesd, A-M. B.; Kennelly, E. J., Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011, 19, 32-37.
Kenny, O.; Smyth, T. J.; Hewage, C. M.; Brunton, N. P., Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem 2013, 141, 4295-302.
Kharel, G. P.; Khanal, D., Drying Optimization and Storage Stability of Bitter Gourd (Momordica charantia L.). Nepal Journal of Science and Technology 2002, 4, 83-86.
Kim, B.-G.; Choi, S.-Y.; Suh, H. J.; Park, H. J., Bitterness Reduction and Enzymatic Transformation of Ginsenosides from Korean Red Ginseng (Panax Ginseng) Extract. Journal of Food Biochemistry 2011, 35, 1267-1282.
Kubola, J.; Siriamornpun, S., Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem 2008, 110, 881-90.
Li, W.; Lin, Z.; Yang, C.; Wang, Y.; Qiao, Y., Study on the chemical constituents of Momordica charantia L. leaves and method for their quantitative determination. Biomedical Research 2015, 26, 415-419.
Liaw, C. C.; Huang, H. C.; Hsiao, P. C.; Zhang, L. J.; Lin, Z. H.; Hwang, S. Y.; Hsu, F. L.; Kuo, Y. H., 5beta,19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity. Planta Med 2015, 81, 62-70.
Liu, C. Y.; Zhou, R. X.; Sun, C. K.; Jin, Y. H.; Yu, H. S.; Zhang, T. Y.; Xu, L. Q.; Jin, F. X., Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J Ginseng Res 2015, 39, 221-9.
Liu, J. Q.; Chen, J. C.; Wang, C. F.; Qiu, M. H., New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules 2009, 14, 4804-13.
Lu, K. H.; Tseng, H. C.; Liu, C. T.; Huang, C. J.; Chyuanc J. H.; Sheen, L. Y., Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress andinflammatory responses. Food Funct. 2014, 5, 1027-1037.
Ma, J.; Krynitsky, A. J.; Grundel, E.; Rader, J. I., Quantitative Determination of Cucurbitane-Type Triterpenes and Triterpene Glycosides in Dietary Supplements Containing Bitter Melon (Momordica charantia) by HPLC-MS/MS. Journal of AOAC International 2012, 95, 1597-1608.
Marsilio, V.; Lanza, B.; Pozzi, N., Progress in Table Olive Debittering: Degradation in vitro of Oleuropein and Its Derivatives by Lactobacillus plantarum. Journal of the American Oil Chemists'' Society 1996, 73, 593-597.
Murata, Y.; Yoshikawa, S.; Suzuki, Y. A.; Sugiura, M.; Inuiand, H.; Nakano, Y., Sweetness characteristics of the triterpene glycosides in Siraitia grosvenori. Nippon Shokuhin Kagaku Kogaku Kaishi 2006, 53(10), 527-533.
Nakamura, S.; Murakami, T.; Nakamura, J.; Kobayashi, H.; Matsuda, H.; Yoshikawa, M., Structures of New Cucurbitane-Type Triterpenes and Glycosides, Karavilagenins and Karavilosides, from the Dried Fruit of Momordica charantia L. in Sri Lanka. Chem. Pharm. Bull. 2006, 54, 1545-1550.
Nerurkar, P. V.; Johns, L. M.; Buesa, L. M.; Kipyakwai, G.; Volper, E.; Sato, R.; Shah, P.; Feher, D.; Williams, P.G.; Nerurkar, V. R., Momordica charantia (bitter melon)attenuates high-fat diet-associated oxidative stress and neuroinflammation. Journal of Neuroinflammation 2011, 8.
Nhiem, N. X.; Kiem, P. V.; Minh, C. V.; Ban, N. K.; Cuong, N. X.; Tung, N. H.; Ha, L. M.; Ha, D. T.; Tai, B. H.; Quang, T. H.; Ngoc, T. M.; Kwon, Y. I.; Jang, H. D.; Kim, Y. H., α-Glucosidase Inhibition Properties of Cucurbitane-Type Triterpene Glycosides from the Fruits of Momordica charantia. Chem. Pharm. Bull. 2010, 58, 720-724.
Niu, Y.; Luo, H.; Sun, C.; Yang, T. J.; Dong, L.; Huang, L.; Chen, S., Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 2014, 533, 295-303.
Okabe, H.; Miyahara, Y.; Yamauchi, T., Structures of momordicosides F1, F2, G, I, K and L, novel cucurbitacins in the fruits of Momordica charantia L. Tetrahedron Letters 1982, 23, 77-80.
Okubo, K.; Iijima, M.; Kobayashi, Y.; Yoshikoshi, M.; Uchida, T.; Kudou, S., Components Responsible for the Undesirable Taste of Soybean Seeds. Bioscience, Biotechnology, and Biochemistry 2014, 56, 99-103.
Pawar, R. S.; Krynitsky, A. J.; Rader, J. I., Sweeteners from plants--with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal Bioanal Chem 2013, 405, 4397-407.
Phillips, D. R.; Rasbery, J. M.; Bartel, B.; Matsuda, S. P., Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 2006, 9, 305-14.
Psani, M.; Kotzekidou, P., Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World Journal of Microbiology and Biotechnology 2006, 22, 1329-1336.
Puri, M.; Marwaha, S. S.; Kothari, R. M.; Kennedy, J. F., Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering. Critical Reviews in Biotechnology 2008, 16, 145-155.
Sahota, P. P.; Kaur, N.,Characterization of enzyme naringinase and the production of debittered low alcoholic kinnow (Citrus raticulata blanco) beverage. International Journal of Advanced Research 2015, 3, 1220-123.
Schmidt, S.; Rainieri, S.; Witte, S.; Matern, U.; Martens, S., Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 2011, 77, 1751-7.
Shah, S.; Hussain, M.; Aslam, M.; Rivera, G., Natural Products; Pharmacological Importance of Family Cucurbitaceae: A Brief Review. Mini-Reviews in Medicinal Chemistry 2014, 14, 694-705.
Sutanto, H.; Himawan, E.; Kusumocahyo, S. P., Ultrasound Assisted Extraction of Bitter Gourd Fruit (Momordica charantia) and Vacuum Evaporation to Concentrate the Extract. Procedia Chemistry 2015, 16, 251-257.
Tan, M. J.; Ye, J. M.; Turner, N.; Hohnen-Behrens, C.; Ke, C. Q.; Tang, C. P.; Chen, T.; Weiss, H. C.; Gesing, E. R.; Rowland, A.; James, D. E.; Ye, Y., Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008, 15, 263-73.
Upreti, M.; Strassburger, K.; Chen, Y. L.; Wu, S.; Prakash, I., Solubility enhancement of steviol glycosides and characterization of their inclusion complexes with gamma-cyclodextrin. Int J Mol Sci 2011, 12, 7529-53.
Wang, L.; Yang, Z.; Lu, F.; Liu, J.; Song, Y.; Li, D., Cucurbitane glycosides derived from mogroside IIE: structure-taste relationships, antioxidant activity, and acute toxicity. Molecules 2014, 19, 12676-89.
Wang, R. B.; Lin, P. Y.; Huang, S. T.; Chiu, C. H.; Lu, T. J.; Lo, Y. C., Hyperproduction of β-Glucanase Exg1 Promotes the Bioconversion of Mogrosides in Saccharomyces cerevisiae Mutants Defective in Mannoprotein Deposition. J. Agric. Food Chem. 2015, 63, 10271-10279.
Wang, S.;Tang, L.; Guo, Y.; Yan, F.; Chen, F., Determination of Momordicoside A in Bitter Melon by High-Performance Liquid Chromatography after Solid-Phase Extraction. Chromatographia 2001, 53, 372-374.
Wang, Y. H.; Avula, B.; Liu, Y.; Khan, L.A., Determination and Quantitation of Five Cucurbitane Triterpenoids in Momordica Charantia by Reversed-Phase High-Performance Liquid Chromatography With Evaporative Light Scattering Detection. J. Chromatogr. Sci. 2008, 46, 133-136.
Wardhani, T.; Abadi, A. L.; Himawan, T.; Am, A., Composition of Water Extract from Wild Bitter Gourd (Momordica charantia L.) Fruit for application as Antifeedant and Mortality Test on Armyworm Larvae (Spodoptera litura Fab.). Journal of Biology and Life Science 2015, 6, 172.
Werner, S. R.; Morgan, J. A., Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. J Biotechnol 2009, 142, 233-41.
Ullah, M.; Chy, F. K.; Sarkar, S. K.; Islam, M. K.; Absar N., Nutrient and Phytochemical Analysis of Four Varieties of Bitter Gourd (Momordica charantia) Grown in Chittagong Hill Tracts, Bangladesh. Asian Journal of Agricultural Research 2011, 5, 186-193.
Zhang, J.; Huang, Y.; Kikuchi, T.; Tokuda, H.; Suzuki, N.; Inafuku, K. I.; Miura, M.; Motohashi, S.; Suzuki, T.; Akihisa T., Cucurbitane Triterpenoids from the Leaves of Momordica charantia, and Their Cancer Chemopreventive Effects and Cytotoxicities. Chemistry & biodiversity 2012, 9, 428-440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top