跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭珮伶
研究生(外文):Pei-Ling Cheng
論文名稱:建立苦茶油中植物固醇組成與含量之分析平台
論文名稱(外文):Establishment of analytical platform for the composition and content of phytosterols in camellia seed oil
指導教授:羅翊禎
指導教授(外文):Yi-Chen Lo
口試委員:呂廷璋王惠珠魏國晉陳宏彰
口試委員(外文):Ting-Jang LuHong-Jhang Chen
口試日期:2017-06-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:127
中文關鍵詞:苦茶油植物固醇三萜類固相萃取液相層析儀串聯質譜
外文關鍵詞:Camellia seed oilphytosteroltriterpenesolid phase extraction (SPE)ultra-performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry (UPLC-APCI-MS/MS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
苦茶油為國人常使用的油脂,其主要的脂肪酸組成與橄欖油相似,其單元不飽和脂肪酸-油酸(oleic acid)的含量達70%以上。然而未精製的植物油中常會含有較高的植物固醇與植物的二次代謝物,如三萜類物質可作為油脂的指標成分。因此本研究希望建立苦茶油中的主要植物固醇及三萜類之組成與含量的分析平台,並了解苦茶油中植物固醇及三萜類的輪廓特徵。實驗利用NH2固相萃取去除極性較低之脂肪酸及酯化態固醇後,收集苦茶油中的游離態、酯化醣苷態和酚酸態之三萜類及植物固醇,經液相層析分離,藉由大氣壓力游離法(APCI)正電模式,以及利用三段式四極桿進行質量分析,並挑選特徵離子及其產生的特徵碎片,與三萜類及植物固醇標準品進行定性及定量,以建立苦茶油中游離態三萜類及植物固醇之種類及含量。同時也利用氣相層析串聯質譜分析苦茶油中植物固醇及三萜類的含量。液相層析串聯二次質譜的實驗結果發現苦茶油中含有游離態三萜類β-amyrin以及∆5-植物固醇的同分異構物。氣相層析串聯質譜的結果顯示苦茶油含有特殊的∆7-植物固醇並以∆7-sitosterol含量最高,其次為三萜類β-amyrin、lanosterol、lupeol及-amyrin為主。此結果與市面上大部分未精製植物油中主要的植物固醇(∆5-sterol)不同,因此可以利用苦茶油中植物固醇組成的特異性作為苦茶油的指標成分。
Camellia seed oil is commonly used in Taiwan. The fatty acid compositions of camellia seed oil are similar to those of olive oil. Particularly, oleic acid is the major component of mono-unsaturated fatty acid. Unrefined vegetable oils often contain plant sterols and their secondary metabolites, such as triterpens which can be compositional fingerprints of vegetable oils. Thus, the aim of this study was to establish the analysis platform to profile the composition and content of the main phytosterols and triterpenes in camellia seed oils as characteristic compounds. Samples were prepared using NH2 solid phase extraction followed by collecting free sterols, steryl ferulates, acylated steryl glycosides and triterpenes. The triterpenes and different types of sterols were separated by reverse phase ultra-performance liquid chromatography (UPLC) and determinated and quantified by tandem mass sepctrometry in positve atmospheric pressure chemical ionization (APCI-MS/MS). Esterified sterols or triterpenes in camellia seed oils were furtherdeterminated by gas chromatography mass spectrometry (GC-MS). The results of UPLC-APCI-MS/MS showed that isomers of ∆5-sterols and a triterpene, β-amyrin, were aboundant in camellia seed oils. In the results of GC-MS, we further confirmed that the phytosterols in camellia seed oils were ∆7-phytosterols, particularly ∆7-sitosterol. β-Amyrin、lanosterol、lupeol and β-amyrin were also the triterpenoid presented in the unrefined camellia seed oil. Our results clearly demonstrated that the profiles of phytoterol and triterpenoids in camellia seed oil are distinct from the major phytosterols (Δ5-sterol) in most unrefined vegetable oils. The unique profile of the phytoterol and triterpenoids can be good markers to identify camellia seed oils.
壹、 前言 1
貳、 文獻回顧 2
第一節、 苦茶油 2
一、 簡介 2
二、 營養成分及生理功效 2
第二節、 植物油中的指標成分 3
第三節、 植物次級代謝物-三萜類及植物固醇 4
一、 簡介 4
二、 化學結構及型態 7
三、 生理活性 9
四、 植物固醇的氧化 11
第四節、 三萜類及植物固醇的分析方法 12
一、 溶劑萃取植物固醇及三萜類 12
二、 化學法水解結合態植物固醇及三萜類的醣苷鍵及酯鍵 12
三、 三萜類及植物固醇分離 13
四、 植物固醇及三萜類的分析與檢測 14
五、 苦茶油中植物固醇及三萜類的分析與檢測 18
參、 研究目的與實驗架構 20
肆、 材料與方法 22
第一節、 實驗材料 22
第二節、 藥品與試劑 24
一、 標準品 24
第三節、 儀器設備 24
第四節、 實驗方法 26
一、 以極致高效能液相層析串聯式質譜儀分析固醇 26
二、 氣相層析串聯質譜分析 28
三、 統計分析 28
伍、 結果與討論 29
第一節、 苦茶油中三萜類及植物固醇的定性及定量 29
一、 極致逆相液相層析串聯質譜法對苦茶油中三萜類及植物固醇的定 性及定量 29
二、 氣相層析串聯質譜法鑑定苦茶油中三萜類及植物固醇 50
第二節、 植物油中三萜類及植物固醇的種類及含量 60
一、 常見植物油中三萜類及植物固醇的種類及含量 60
二、 利用固醇組成配合主成份分析區分苦茶油與其他植物油 62
三、 影響苦茶油中三萜類及植物固醇含量變化的因子 64
四、 苦茶油中游離態植物固醇及三萜類的含量及總量 69
五、 利用UPLC-MS/MS及GC-MS分析苦茶油中游離態植物固醇及三 萜類的含量 71
第三節、 利用固醇組成配合主成份分析鑑定苦茶油是否摻假 73
陸、 結論 77
柒、 參考文獻 78
捌、 附錄 84
第一節、 植物固醇分析數據品管 84
第二節、 植物固醇及三萜類GC-MS質譜碎片 90
第三節、 問答記錄 99
APPENDIX 102
蘇鼎元。2012。糙米及豆類中不同型態植物固醇同步分析方法之建立。國立台灣大學 食品科技研究所碩士論文。台北,台灣。
許芸華。2015。以液相層析串聯質譜儀分析糙米與條類米製品之植物固醇含量。國立台灣大學 食品科技研究所碩士論文。台北,台灣。
柯鈞銓。2016。以超高效液相層析串聯質譜法分析油脂中三酸甘油酯及固醇化合物特徵。國立台灣大學 食品科技研究所碩士論文。台北,台灣。
Abidi, S. L., Chromatographic analysis of plant sterols in foods and vegetable oils. J. Chromatogr. A 2001, 935, 173-201.
Aitzetmuller, K.; Bruhl, L.; Fiebig, H. J., Analysis of sterol content and composition in fats and oils by capillary-gas liquid chromatography using an internal standard. . Fett-Lipid 1998, 100, 429-435.
Ali, H.; Dixit, S.; Ali, D.; Alqahtani, S. M.; Alkahtani, S.; Alarifi, S., Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des. Dev. Ther. 2015, 9, 2793-2800.
Beveridge, T. H. J.; Li, T. S. C.; Drover, J. C. G., Phytosterol content in American ginseng seed oil. J. Agric. Food Chem. 2002, 50, 744-750.
Bligh, E. G.; Dyer, W. J., A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 1959, 37, 911-917.
Bouic, P. J. D., Sterols and sterolins: new drugs for the immune system? Drug Discov. Today 2002, 7, 775-778.
Cheong, B. E.; Zakaria, N. A.; Cheng, A. Y. F.; Teoh, P. L., GC-MS analysis of strobilanthes crispus plants and callus. Transactions on Science and Technology 2016, 3, 155-161.
Cho, I. H.; Kim, Y. S.; Lee, K. W.; Choi, H. K., Determination of differences in the nonvolatile metabolites of pine-mushrooms (Tricholoma matsutake sing.) according to different parts and heating times using H-1 NMR and principal component analysis. J. Microbiol. Biotechnol. 2007, 17, 1682-1687.
Dutta, P. C.; Normen, L., Capillary column gas-liquid chromatographic separation of delta 5-unsaturated and saturated phytosterols. J. Chromatogr. A 1998, 816, 177-184.
Erickson, R. E., Ernest guenther award symposium, 1973 - introduction. J. Agric. Food Chem. 1974, 22, 155-155.
Evershed, R. P.; Male, V. L.; Goad, L. J., Strategy for the analysis of steryl esters from plant and animal-tissues. Journal of Chromatography 1987, 400, 187-205.
Feas, X.; Estevinho, L. M.; Salinero, C.; Vela, P.; Sainz, M. J.; Vazquez-Tato, M. P.; Seijas, J. A., Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia Oleifera, C. Reticulata and C. Sasanqua oils. Molecules 2013, 18, 4573-4587.
Folch, J.; Lees, M.; Stanley, G. H. S., A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497-509.
Garcia-Llatas, G.; Rodriguez-Estrada, M. T., Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem. Phys. Lipids 2011, 164, 607-624.
Gurdeniz, G.; Tokatli, F.; Ozen, B., Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics. Eur. J. Lipid Sci. Technol. 2007, 109, 1194-1202.
Hai, Z.; Wang, J., Detection of adulteration in camellia seed oil and sesame oil using an electronic nose. Eur. J. Lipid Sci. Technol. 2006, 108, 116-124.
Itoh, T.; Tamura, T.; Matsumoto, T., Sterols, methylsterols, and triterpene alcohols in three Theaceae and some other vegetable oils. Lipids 1974, 9, 173-184.
Jabeur, H.; Zribi, A.; Makni, J.; Rebai, A.; Abdelhedi, R.; Bouaziz, M., Detection of chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. J. Agric. Food Chem. 2014, 62, 4893-4904.
Kamal-Eldin, A.; Maatta, K.; Toivo, J.; Lampi, A. M.; Piironen, V., Acid-catalyzed isomerization of fucosterol and delta (5)-avenasterol. Lipids 1998, 33, 1073-1077.
Kritchevsky, D.; Chen, S. C., Phytosterols - health benefits and potential concerns: a review. Nutr. Res. 2005, 25, 413-428.
Laakso, P., Analysis of sterols from various food matrices. Eur. J. Lipid Sci. Technol. 2005, 107, 402-410.
Lerma-Garcia, M. J.; Simo-Alfonso, E. F.; Mendez, A.; Lliberia, J. L.; Herrero-Martinez, J. M., Fast separation and determination of sterols in vegetable oils by ultraperformance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection. J. Agric. Food Chem. 2010, 58, 2771-2776.
Li, S. F.; Zhu, X. R.; Zhang, J. H.; Li, G. Y.; Su, D. L.; Shan, Y., Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques. J. Food Sci. 2012, 77, C374-C380.
Lukic, M.; Lukic, I.; Krapac, M.; Sladonja, B.; Pilizota, V., Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening. Food Chem. 2013, 136, 251-258.
Mahato, S. B.; Nandy, A. K.; Roy, G., Triterpenoids. Phytochemistry 1992, 31, 2199-2249.
Martelanc, M.; Vovk, I.; Simonovska, B., Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 6662-6670.
Mathison, B.; Holstege, D., A rapid method to determine sterol, erythrodiol, and uvaol concentrations in olive oil. J. Agric. Food Chem. 2013, 61, 4506-4513.
Miettinen, T. A.; Vuoristo, M.; Nissinen, M.; Jarvinen, H. J.; Gylling, H., Serum, biliary, and fecal cholesterol and plant sterols in colectomized patients before and during consumption of stanol ester margarine. Am. J. Clin. Nutr. 2000, 71, 1095-1102.
Mo, S. Y.; Dong, L. L.; Hurst, W. J.; van Breemen, R. B., Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids 2013, 48, 949-956.
Moreau, R. A.; Powell, M. J.; Hicks, K. B., Extraction and quantitative analysis of oil from commercial corn fiber. J. Agric. Food Chem. 1996, 44, 2149-2154.
Moreau, R. A.; Whitaker, B. D.; Hicks, K. B., Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 2002, 41, 457-500.
Nakagawa, M.; Yamaguchi, T.; Fukawa, H.; Ogata, J.; Komiyama, S.; Akiyama, S.; Kuwano, M., Potentiation by squalene of the cyto-toxicity of anticancer agents against cultured mammalian-cells and murine tumor. Jpn. J. Cancer Res. 1985, 76, 315-320.
Niu, Y. Y.; Luo, H. M.; Sun, C.; Yang, T. J.; Dong, L. L.; Huang, L. F.; Chen, S. L., Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 2014, 533, 295-303.
Oliveira, P. A. D.; Turatti, I. C. C.; Oliveira, D. C. R. D., Comparative analysis of triterpenoids from Mikania cordifolia collected from four different locations. Revista Brasileira de Ciências Farmacêuticas 2006, 42, 547-552.
Ostlund, R. E., Phytosterols in human nutrition. Annu. Rev. Nutr. 2002, 22, 533-549.
Pan, J. J.; Bugni, T. S.; Poulter, C. D., Recombinant squalene synthase. Synthesis of cyclopentyl non-head-to-tail triterpenes. J. Org. Chem. 2009, 74, 7562-7565.
Patterson, G. W., Relation between structure and retention time of sterols in gas chromatography. Anal. Chem. 1971, 43, 523-526.
Patterson, G. W.; Xu, S.; Salt, T. A., Sterols of caryophyllales with emphasis on amaranthaceae. Phytochemistry 1991, 30, 523-526.
Pedersen, T. R.; Kjekshus, J.; Berg, K.; Olsson, A. G.; Wilhelmsen, L.; Wedel, H.; et al., Cholesterol lowering and the use of healthcare resources - Results of the Scandinavian Simvastatin Survival Study. Circulation 1996, 93, 1796-1802.
Perez-Camino, M. C.; Cert, A., Quantitative determination of hydroxy pentacyclic triterpene acids in vegetable oils. J. Agric. Food Chem. 1999, 47, 1558-1562.
Phillips, D. R.; Rasbery, J. M.; Bartel, B.; Matsuda, S. P. T., Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 2006, 9, 305-314.
Phillips, K. M.; Ruggio, D. M.; Bailey, J. A., Precise quantitative determination of phytosterols, stanols, and cholesterol metabolites in human serum by capillary gas-liquid chromatography. J. Chromatogr. B 1999a, 732, 17-29.
Phillips, K. M.; Tarrago-Trani, M. T.; Stewart, K. K., Phytosterol content of experimental diets differing in fatty acid composition. Food Chem. 1999b, 64, 415-422.
Phillips, K. M.; Ruggio, D. M.; Toivo, J. I.; Swank, M. A.; Simpkins, A. H., Free and esterified sterol composition of edible oils and fats. J. Food Compos. Anal. 2002, 15, 123-142.
Phillips, K. M.; Ruggio, D. M.; Ashraf-Khorassani, M., Analysis of steryl glucosides in foods and dietary supplements by solid-phase extraction and gas chromatography. J. Food Lipids 2005, 12, 124-140.
Piironen, V.; Lindsay, D. G.; Miettinen, T. A.; Toivo, J.; Lampi, A. M., Plant sterols: biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939-966.
Plat, J.; Kerckhoffs, D.; Mensink, R. P., Therapeutic potential of plant sterols and stanols. Curr. Opin. Lipidology 2000, 11, 571-576.
Pollak, O. J., Reduction of blood cholesterol in man. Circulation 1953, 7, 702-706.
Poulli, K. I.; Mousdis, G. A.; Georgiou, C. A., Rapid synchronous fluorescence method for virgin olive oil adulteration assessment. Food Chem. 2007, 105, 369-375.
Qizhi, L.; Yonghui, H.; Haiyan, Z.; Bedgood, D. R.; Prenzler, P. D.; Robards, K., The quality and volatile-profile changes of camellia oil (Camellia oleifera Abel) following bleaching. Eur. J. Lipid Sci. Technol. 2008, 110, 768-775.
Rohman, A.; Man, Y. B. C., The use of Fourier transform mid infrared (FT-MIR) spectroscopy for detection and quantification of adulteration in virgin coconut oil. Food Chem. 2011, 129, 583-588.
Rozenberg, R.; Ruibal-Mendieta, N. L.; Petitjean, G.; Cani, P.; Delacroix, D. L.; Delzenne, N. M.; Meurens, M.; Quetin-Leclercq, J.; Habib-Jiwan, J. L., Phytosterol analysis and characterization in spelt (Triticum aestivum ssp spelta L.) and wheat (T aestivum L.) lipids by LC/APCI-MS. J. Cereal Sci. 2003, 38, 189-197.
Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M., The story of beta-sitosterol-a review. European Journal of Medicinal Plants 2014, 4, 590-609.
Sakouhi, F.; Absalon, C.; Harrabi, S.; Vitry, C.; Sebei, K.; Boukhchina, S.; Fouquet, E.; Kallel, H., Dynamic accumulation of 4-desmethylsterols and phytostanols during ripening of Tunisian Meski olives (Olea europea L.). Food Chem. 2009, 112, 897-902.
Seo, H. Y.; Ha, J.; Shin, D. B.; Shim, S. L.; No, K. M.; Kim, K. S.; Lee, K. B.; Han, S. B., Detection of corn oil in adulterated sesame oil by chromatography and carbon isotope analysis. J. Am. Oil Chem. Soc. 2010, 87, 621-626.
Su, M. H.; Shih, M. C.; Lin, K. H., Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369-373.
Thompson, R. H.; Patterson, G.; Thompson, M. J.; Slover, H. T., Separation of pairs of C-24 epimeric sterols by glass-capillary gas-liquid-chromatography. Lipids 1981, 16, 694-699.
Toivo, J.; Lampi, A. M.; Aalto, S.; Piironen, V., Factors affecting sample preparation in the gas chromatographic determination of plant sterols in whole wheat flour. Food Chem. 2000, 68, 239-245.
Vela, P.; Salinero, C.; Sainz, M. J., Phenological growth stages of Camellia japonica. Ann. Appl. Biol. 2013, 162, 182-190.
Verleyen, T.; Forcades, M.; Verhe, R.; Dewettinck, K.; Huyghebaert, A.; De Greyt, W., Analysis of free and esterified sterols in vegetable oils. J. Am. Oil Chem. Soc. 2002a, 79, 117-122.
Verleyen, T.; Sosinska, U.; Ioannidou, S.; Verhe, R.; Dewettinck, K.; Huyghebaert, A.; De Greyt, W., Influence of the vegetable oil refining process on free and esterified sterols. J. Am. Oil Chem. Soc. 2002b, 79, 947-953.
Villasenor, I. M.; Angelada, J.; Canlas, A. P.; Echegoyen, D., Bioactivity studies on beta-sitosterol and its glucoside. Phytother. Res. 2002, 16, 417-421.
Wang, X.; Zeng, Q.; Verardo, V.; del Mar Contreras, M., Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach. Food Chem. 2017, 233, 302-310.
Wei, C. C.; Yen, P. L.; Chang, S. T.; Cheng, P. L.; Lo, Y. C.; Liao, V. H. C., Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the transcription factor daf-16/foxo in Caenorhabditis elegans. PLoS One 2016, 11, 15.
Wenzl, T.; Prettner, E.; Schweiger, K.; Wagner, F. S., An improved method to discover adulteration of Styrian pumpkin seed oil. J. Biochem. Biophys. Methods 2002, 53, 193-202.
Wewer, V.; Dombrink, I.; vom Dorp, K.; Dormann, P., Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J. Lipid Res. 2011, 52, 1039-1054.
Winkler-Moser, J., Gas chromatographic analysis of plant sterols. The American Oil Chemists Society Lipid Library 2011, 27.
Winkler, J. K.; Rennick, K. A.; Eller, F. J.; Vaughn, S. F., Phytosterol and tocopherol components in extracts of corn distiller''s dried grain. J. Agric. Food Chem. 2007, 55, 6482-6486.
Wretensjo, I.; Karlberg, B., Characterization of sterols in refined borage oil by GC-MS. J. Am. Oil Chem. Soc. 2002, 79, 1069-1074.
Xie, J.; Liu, T. S.; Yu, Y. X.; Song, G. X.; Hu, Y. M., Rapid detection and quantification by GC-MS of camellia seed oil adulterated with soybean oil. J. Am. Oil Chem. Soc. 2013, 90, 641-646.
Xu, B. C.; Zhang, L. X.; Wang, H.; Luo, D. L.; Li, P. W., Characterization and authentication of four important edible oils using free phytosterol profiles established by GC-GC-TOF/MS. Anal. Methods 2014, 6, 6860-6870.
Zhao, X.; Ma, F.; Li, P. W.; Li, G. M.; Zhang, L. X.; Zhang, Q.; Zhang, W.; Wang, X. P., Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC-MS/MS. Food Chem. 2015, 176, 465-471.
Zou, M. Q.; Zhang, X. F.; Qi, X. H.; Ma, H. L.; Dong, Y.; Liu, C. W.; Guo, X.; Wang, H., Rapid authentication of olive oil adulteration by raman spectrometry. J. Agric. Food Chem. 2009, 57, 6001-6006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top