|
Abaza, I.; Gebauer, F., Trading translation with RNA-binding proteins. RNA 2008, 14, 404-409. Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A.; Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709-1712. Barrett, L. W.; Fletcher, S.; Wilton, S. D., Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 2012, 69, 3613-3634. Bayliss, J. A.; Lemus, M. B.; Stark, R.; Santos, V. V.; Thompson, A.; Rees, D. J.; Galic, S.; Elsworth, J. D.; Kemp, B. E.; Davies, J. S.; Andrews, Z. B., Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson''s Disease. J. Neurosci. 2016, 36, 3049-3063. Boeke, J. D.; Trueheart, J.; Natsoulis, G.; Fink, G. R., 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987, 154, 164-175. Botstein, D.; Fink, G. R., Yeast: an experimental organism for modern biology. Science 1988, 240, 1439-1443. Botstein, D.; Chervitz, S. A.; Cherry, J. M., Yeast as a model organism. Science 1997, 277, 1259-1260. Cannon, J. F.; Pringle, J. R.; Fiechter, A.; Khalil, M., Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 1994, 136, 485-503. Celenza, J. L.; Carlson, M., Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 1989, 9, 5034-5044. Celenza, J. L.; Eng, F. J.; Carlson, M., Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 1989, 9, 5045-5054. Chavatte, L.; Brown, B. A.; Driscoll, D. M., Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat. Struct. Mol. Biol. 2005, 12, 408-416. Chen, C.; Kolodner, R. D., Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 1999, 23, 81-85. Chen, C. Y.; Shyu, A. B., AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 1995, 20, 465-470. Chen, L.; Jiao, Z. H.; Zheng, L. S.; Zhang, Y. Y.; Xie, S. T.; Wang, Z. X.; Wu, J. W., Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 2009, 459, 1146-1149. Crick, F., Central dogma of molecular biology. Nature 1970, 227, 561-563. Crick, F. H., On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138-163. Crozet, P.; Margalha, L.; Confraria, A.; Rodrigues, A.; Martinho, C.; Adamo, M.; Elias, C. A.; Baena-Gonzalez, E., Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front. Plant Sci. 2014, 5, 190. DiCarlo, J. E.; Norville, J. E.; Mali, P.; Rios, X.; Aach, J.; Church, G. M., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336-4343. Elbing, K.; McCartney, R. R.; Schmidt, M. C., Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. Biochem. J. 2006, 393, 797-805. Fabian, M. R.; Sonenberg, N., The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 2012, 19, 586-593. Fineran, P. C.; Charpentier, E., Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012, 434, 202-209. Fogarty, S.; Hardie, D. G., Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 2010, 1804, 581-591. Forsburg, S. L., The art and design of genetic screens: yeast. Nat. Rev. Genet. 2001, 2, 659-668. Freydank, A. C.; Brandt, W.; Drager, B., Protein structure modeling indicates hexahistidine-tag interference with enzyme activity. Proteins 2008, 72, 173-183. Gebauer, F.; Preiss, T.; Hentze, M. W., From cis-regulatory elements to complex RNPs and back. Cold Spring Harb Perspect. Biol. 2012, 4, a012245. Ghaemmaghami, S.; Huh, W. K.; Bower, K.; Howson, R. W.; Belle, A.; Dephoure, N.; O''Shea, E. K.; Weissman, J. S., Global analysis of protein expression in yeast. Nature 2003, 425, 737-741. Glisovic, T.; Bachorik, J. L.; Yong, J.; Dreyfuss, G., RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008, 582, 1977-1986. Goffeau, A.; Barrell, B. G.; Bussey, H.; Davis, R. W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J. D.; Jacq, C.; Johnston, M.; Louis, E. J.; Mewes, H. W.; Murakami, Y.; Philippsen, P.; Tettelin, H.; Oliver, S. G., Life with 6000 genes. Science 1996, 274, 546, 563-567.
Graber, J. H.; Cantor, C. R.; Mohr, S. C.; Smith, T. F., In silico detection of control signals: mRNA 3''-end-processing sequences in diverse species. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14055-14060. Grimminger-Marquardt, V.; Lashuel, H. A., Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 2010, 93, 252-276. Hardie, D. G., AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8, 774-785. Hardie, D. G.; Ross, F. A.; Hawley, S. A., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251-262. Hardie, D. G., AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu. Rev. Nutr. 2014, 34, 31-55. Hardie, D. G.; Ashford, M. L., AMPK: regulating energy balance at the cellular and whole body levels. Physiology 2014, 29, 99-107. Hedbacker, K.; Hong, S. P.; Carlson, M., Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol. Cell. Biol. 2004, 24, 8255-8263. Hedbacker, K.; Carlson, M., Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot. Cell 2006, 5, 1950-1956. Hedbacker, K.; Carlson, M., SNF1/AMPK pathways in yeast. Front. Biosci. 2008, 13, 2408-2420. Hentze, M. W.; Muckenthaler, M. U.; Andrews, N. C., Balancing acts: molecular control of mammalian iron metabolism. Cell 2004, 117, 285-297. Hong, S. P.; Leiper, F. C.; Woods, A.; Carling, D.; Carlson, M., Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8839-8843. Hong, S. P.; Momcilovic, M.; Carlson, M., Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast. J. Biol. Chem. 2005, 280, 21804-21809. Hong, S. P.; Carlson, M., Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 2007, 282, 16838-16845. Horvath, P.; Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327, 167-170. Horwitz, Andrew A.; Walter, Jessica M.; Schubert, Max G.; Kung, Stephanie H.; Hawkins, K.; Platt, Darren M.; Hernday, Aaron D.; Mahatdejkul-Meadows, T.; Szeto, W.; Chandran, Sunil S.; Newman, Jack D., Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems 2015, 1, 88-96.
Janke, C.; Magiera, M. M.; Rathfelder, N.; Taxis, C.; Reber, S.; Maekawa, H.; Moreno-Borchart, A.; Doenges, G.; Schwob, E.; Schiebel, E.; Knop, M., A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004, 21, 947-962. Ji, Z.; Lee, J. Y.; Pan, Z.; Jiang, B.; Tian, B., Progressive lengthening of 3'' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7028-7033. Jiang, R.; Carlson, M., Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 1996, 10, 3105-3115. Kapasi, P.; Chaudhuri, S.; Vyas, K.; Baus, D.; Komar, A. A.; Fox, P. L.; Merrick, W. C.; Mazumder, B., L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol. Cell 2007, 25, 113-126. Latreche, L.; Jean-Jean, O.; Driscoll, D. M.; Chavatte, L., Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine. Nucleic Acids Res. 2009, 37, 5868-5880. Leech, A.; Nath, N.; McCartney, R. R.; Schmidt, M. C., Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot. Cell 2003, 2, 265-273. Liu, S.; Xu, Z.; Leng, H.; Zheng, P.; Yang, J.; Chen, K.; Feng, J.; Li, Q., RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science 2017, 355, 415-420. Ludin, K.; Jiang, R.; Carlson, M., Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 6245-6250. Matoulkova, E.; Michalova, E.; Vojtesek, B.; Hrstka, R., The role of the 3'' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012, 9, 563-576. McCartney, R. R.; Schmidt, M. C., Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 2001, 276, 36460-36466. McCartney, R. R.; Rubenstein, E. M.; Schmidt, M. C., Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr. Genet. 2005, 47, 335-344. Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G., Untranslated regions of mRNAs. Genome Biol. 2002, 3, Reviews0004. Mohanty, A. K.; Wiener, M. C., Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expression Purif. 2004, 33, 311-325.
Momcilovic, M.; Carlson, M., Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. J. Biol. Chem. 2011, 286, 23544-23551. Muckenthaler, M.; Gray, N. K.; Hentze, M. W., IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 1998, 2, 383-388. Nath, N.; McCartney, R. R.; Schmidt, M. C., Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition. J. Biol. Chem. 2002, 277, 50403-50408. Ogawa, T.; Tsubakiyama, R.; Kanai, M.; Koyama, T.; Fujii, T.; Iefuji, H.; Soga, T.; Kume, K.; Miyakawa, T.; Hirata, D.; Mizunuma, M., Stimulating S-adenosyl-l-methionine synthesis extends lifespan via activation of AMPK. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 11913-11918. Pang, T.; Xiong, B.; Li, J. Y.; Qiu, B. Y.; Jin, G. Z.; Shen, J. K.; Li, J., Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits. J. Biol. Chem. 2007, 282, 495-506. Pesole, G.; Mignone, F.; Gissi, C.; Grillo, G.; Licciulli, F.; Liuni, S., Structural and functional features of eukaryotic mRNA untranslated regions. Gene 2001, 276, 73-81. Pichon, X.; Wilson, L. A.; Stoneley, M.; Bastide, A.; King, H. A.; Somers, J.; Willis, A. E., RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 2012, 13, 294-304. Proudfoot, N. J.; Brownlee, G. G., 3'' non-coding region sequences in eukaryotic messenger RNA. Nature 1976, 263, 211-214. Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Séraphin, B., The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods 2001, 24, 218-229. Pullmann, R., Jr.; Kim, H. H.; Abdelmohsen, K.; Lal, A.; Martindale, J. L.; Yang, X.; Gorospe, M., Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol. Cell. Biol. 2007, 27, 6265-6278. Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M.; Seraphin, B., A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999, 17, 1030-1032. Rubenstein, E. M.; McCartney, R. R.; Zhang, C.; Shokat, K. M.; Shirra, M. K.; Arndt, K. M.; Schmidt, M. C., Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J. Biol. Chem. 2008, 283, 222-230.
Ruiz, A.; Xu, X.; Carlson, M., Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 6349-6354. Ruiz, A.; Liu, Y.; Xu, X.; Carlson, M., Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 8652-8657. Ruiz, A.; Xu, X.; Carlson, M., Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae. J. Biol. Chem. 2013, 288, 31052-31058. Sander, J. D.; Joung, J. K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347-355. Sanz, P.; Alms, G. R.; Haystead, T. A.; Carlson, M., Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 2000, 20, 1321-1328. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675. Slaymaker, I. M.; Gao, L.; Zetsche, B.; Scott, D. A.; Yan, W. X.; Zhang, F., Rationally engineered Cas9 nucleases with improved specificity. Science 2016, 351, 84-88. Sreenivasan, A.; Kellogg, D., The elm1 kinase functions in a mitotic signaling network in budding yeast. Mol. Cell. Biol. 1999, 19, 7983-7994. Studer, R. A.; Dessailly, B. H.; Orengo, C. A., Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. 2013, 449, 581-594. Theil, E. C.; Eisenstein, R. S., Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs). J. Biol. Chem. 2000, 275, 40659-40662. Tu, J.; Carlson, M., The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14, 6789-6796. Tu, J.; Carlson, M., REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995, 14, 5939-5946. Verghese, J.; Abrams, J.; Wang, Y.; Morano, K. A., Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 2012, 76, 115-158. Vincent, O.; Townley, R.; Kuchin, S.; Carlson, M., Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 2001, 15, 1104-1114. Wiedenheft, B.; Sternberg, S. H.; Doudna, J. A., RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482, 331-338.
Wilson, W. A.; Hawley, S. A.; Hardie, D. G., Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 1996, 6, 1426-1434. Woods, A.; Munday, M. R.; Scott, J.; Yang, X.; Carlson, M.; Carling, D., Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 1994, 269, 19509-19515. Xu, X.; Song, Y.; Li, Y.; Chang, J.; zhang, H.; An, L., The tandem affinity purification method: An efficient system for protein complex purification and protein interaction identification. Protein Expression Purif. 2010, 72, 149-156. Zubiaga, A. M.; Belasco, J. G.; Greenberg, M. E., The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 1995, 15, 2219-2230.
|