(18.210.12.229) 您好!臺灣時間:2021/02/26 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張馨文
研究生(外文):Hsin-Wen Chang
論文名稱:探討酵母菌AMPK—Snf1蛋白表現量的調控機制
論文名稱(外文):Regulation of Yeast AMPK Homolog Snf1 Protein Level
指導教授:羅翊禎
指導教授(外文):Yi-Chen Lo
口試委員:潘敏雄高承福
口試委員(外文):Cheng-Fu Kao
口試日期:2017-06-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:腺苷酸活化蛋白激酶酵母菌Snf1全基因體定序細胞培養穩定同位素胺基酸標記
外文關鍵詞:AMPKyeastSnf1whole genome sequencingSILAC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)為細胞中調控能量代謝的關鍵蛋白,廣泛存在於真核生物中,當其受到腺苷酸活化時,會促進細胞內的分解代謝作用產生能量;而AMPK活性的異常與很多疾病有關,如第二型糖尿病、帕金森氏症、阿茲海默症、癌症。酵母菌中的Snf1 (Sucrose non-fermenting 1)為AMPK的同源蛋白,而Snf1也與細胞內的能量代謝有關。當環境中缺乏葡萄糖時,Snf1會被活化,進而促進基因表現或下游蛋白質的活化,使酵母菌能夠利用環境中其他碳源生長。在先前實驗中發現某酵母菌菌株的Snf1蛋白表現量與正常酵母菌相比明顯較低,因此本實驗想要探討造成該菌株Snf1蛋白表現量下降的原因。利用全基因體定序(Whole genome sequencing)及細胞培養穩定同位素胺基酸標記(Stable Isotope Labeling with Amino acids in Cell culture, SILAC)尋找可能造成Snf1蛋白下降的突變基因或蛋白質,希望能發現目前尚未被找出的Snf1蛋白表現量的調控機制。實驗結果發現,Snf1蛋白表現量較低的菌株其SNF1基因上具有兩個點突變,但經由質體表現該突變蛋白後,Snf1蛋白表現量並無顯著下降的現象。另外,也發現標記Snf1蛋白的TAP (Tandem affinity purification)上存在著一個點突變,目前推測該突變可能是造成Snf1蛋白下降的原因。另一方面,SILAC的實驗結果發現大量表現Hsp104蛋白可能可以回復Snf1蛋白的表現量。因此,我們推論TAP上的點突變可能會去影響Snf1蛋白的結構,進而造成Snf1蛋白降解。
AMPK plays an important role in energy homeostasis, and it is also named as “energy sensor of the cell”. AMPK is highly conserved in eukaryotes, it stimulates catabolism to generate energy in cells upon activation. Abnormality in AMPK regulation may relate to many diseases, such as type 2 diabetes, neurodegenerative diseases, and cancer. The yeast homolog of AMPK Snf1 is required for maintaining energy homeostasis and stress resistance. The SNF1 protein kinase is consist of α, β, and γ subunits, when glucose limitation occurs, α subunit—Snf1 is activated by phosphorylation of T210, and then promotes gene expression to utilize other carbon sources. The phosphorylation level of Snf1 can be altered when mutations occur in SNF1. In this study, I investigated the underlining mechanisms that lead to the reduction of the Snf1 protein level. I used the whole genome sequencing and SILAC (Stable Isotope Labeling with Amino acids in Cell culture) analysis to search the possible gene mutation(s) or protein which may cause the diminishment of the Snf1 protein level. Surprisingly, I identified two specific mutations resided at the C terminus of SNF1 in the Snf1 lowly expressed strain, but my further analysis indicated that these two point mutations within the SNF1 did not induce significant reduction in the Snf1 protein level. I further discovered that the TAP which tagged at the C-terminal of SNF1 carried a novel mutation and I demonstrated that this mutation on TAP is likely responsible for the reduced Snf1 protein level. In addition, SILAC analysis showed that overexpression of Hsp104 may restore the Snf1-TAP protein level. Thus I propose that the newly identified variant of the Snf1-TAP may be structurally altered and lead to an instability and degradation.
國立臺灣大學碩士學位論文口試委員會審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
CHAPTER I INTRODUCTION 1
1.1 Yeast as a model organism 1
1.2 AMP-activated protein kinase (AMPK) 3
1.2.1 Energy homeostasis 3
1.2.2 Structure and regulation of AMPK 4
1.3 SNF1 protein kinase 6
1.3.1 Structure of SNF1 protein kinase 6
1.3.2 Regulation of SNF1 protein kinase 9
1.4 Three prime untranslated region (3’-UTR) 12
1.4.1 Composition of 3’-UTR 13
1.4.2 Regulation of polyadenylation 15
1.4.3 Regulation of mRNA stability 15
1.4.4 Regulation of translation efficiency 16
1.5 Tandem affinity purification (TAP) 17
CHAPTER II RESEARCH OBJECTIVE 20
CHAPTER III MATERIALS AND METHODS 21
3.1 Materials 21
3.1.1 Yeast strains 21
3.1.2 Plasmids 24
3.1.3 Medium 25
3.1.3.1 YPD medium 25
3.1.3.2 G418 and HPH plates 26
3.1.3.3 Amino acids dropout medium 27
3.1.3.4 5-FOA plate 28
3.1.3.5 LB medium 29
3.1.3.6 Lysis buffer for cell extraction of western blotting 29
3.2 Methods 30
3.2.1 Cell extraction for western blot analysis 30
3.2.2 Western blot analysis 31
3.2.3 Site-directed mutagenesis 32
3.2.4 Construction of pRS315- SNF1-3’-UTR--3xHA 33
3.2.5 Construction of RDKY3615 HXT13 strain 34
3.2.6 Overexpression of pBG1805-yeast ORF-HA 34
CHAPTER IV RESULTS 36
4.1 Snf1 protein level was dramatically decreased in the specific strain 36
4.2 Search for the mechanisms that lead to the reduced Snf1 protein level in the Tzu strain 37
4.2.1 The genomic approach 39
4.2.1.1 Search for the mutation(s) in the genome of the Tzu strain 39
4.2.1.2 Different SNF1-TAP fragments influence Snf1 protein level 41
4.2.1.3 The specific mutation(s) on SNF1 expressed by plasmid 43
4.2.1.4 The relationship between SNF1 and its 3’-untranslated region 45
4.2.1.5 The effect of different C-terminal tagging on SNF1 48
4.2.1.6 Use various antibodies to determine Snf1 protein level 49
4.2.2 The proteomic approach 52
4.2.2.1 Search candidate(s) which protein level decreased in the Tzu strain 52
4.2.2.2 Screen several candidates which may rescue Snf1 protein level 55
4.2.2.3 Snf1 might be rescued by the overexpression of PYC1, PFK1, HSP104, and VAS1 58
CHAPTER V DISCUSSION 62
5.1 The specific mutations on SNF1 62
5.2 The relationship between Snf1 and its C-terminal tagging 63
5.3 Hsp104 may play a role in Snf1 stability 64
5.4 Future perspective 65
CHAPTER VI CONCLUSION 68
CHAPTER VII REFERENCES 70
APPENDIX 77
Abaza, I.; Gebauer, F., Trading translation with RNA-binding proteins. RNA 2008, 14, 404-409.
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A.; Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709-1712.
Barrett, L. W.; Fletcher, S.; Wilton, S. D., Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 2012, 69, 3613-3634.
Bayliss, J. A.; Lemus, M. B.; Stark, R.; Santos, V. V.; Thompson, A.; Rees, D. J.; Galic, S.; Elsworth, J. D.; Kemp, B. E.; Davies, J. S.; Andrews, Z. B., Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson''s Disease. J. Neurosci. 2016, 36, 3049-3063.
Boeke, J. D.; Trueheart, J.; Natsoulis, G.; Fink, G. R., 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987, 154, 164-175.
Botstein, D.; Fink, G. R., Yeast: an experimental organism for modern biology. Science 1988, 240, 1439-1443.
Botstein, D.; Chervitz, S. A.; Cherry, J. M., Yeast as a model organism. Science 1997, 277, 1259-1260.
Cannon, J. F.; Pringle, J. R.; Fiechter, A.; Khalil, M., Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 1994, 136, 485-503.
Celenza, J. L.; Carlson, M., Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 1989, 9, 5034-5044.
Celenza, J. L.; Eng, F. J.; Carlson, M., Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 1989, 9, 5045-5054.
Chavatte, L.; Brown, B. A.; Driscoll, D. M., Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat. Struct. Mol. Biol. 2005, 12, 408-416.
Chen, C.; Kolodner, R. D., Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 1999, 23, 81-85.
Chen, C. Y.; Shyu, A. B., AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 1995, 20, 465-470.
Chen, L.; Jiao, Z. H.; Zheng, L. S.; Zhang, Y. Y.; Xie, S. T.; Wang, Z. X.; Wu, J. W., Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 2009, 459, 1146-1149.
Crick, F., Central dogma of molecular biology. Nature 1970, 227, 561-563.
Crick, F. H., On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138-163.
Crozet, P.; Margalha, L.; Confraria, A.; Rodrigues, A.; Martinho, C.; Adamo, M.; Elias, C. A.; Baena-Gonzalez, E., Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front. Plant Sci. 2014, 5, 190.
DiCarlo, J. E.; Norville, J. E.; Mali, P.; Rios, X.; Aach, J.; Church, G. M., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41, 4336-4343.
Elbing, K.; McCartney, R. R.; Schmidt, M. C., Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. Biochem. J. 2006, 393, 797-805.
Fabian, M. R.; Sonenberg, N., The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 2012, 19, 586-593.
Fineran, P. C.; Charpentier, E., Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012, 434, 202-209.
Fogarty, S.; Hardie, D. G., Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 2010, 1804, 581-591.
Forsburg, S. L., The art and design of genetic screens: yeast. Nat. Rev. Genet. 2001, 2, 659-668.
Freydank, A. C.; Brandt, W.; Drager, B., Protein structure modeling indicates hexahistidine-tag interference with enzyme activity. Proteins 2008, 72, 173-183.
Gebauer, F.; Preiss, T.; Hentze, M. W., From cis-regulatory elements to complex RNPs and back. Cold Spring Harb Perspect. Biol. 2012, 4, a012245.
Ghaemmaghami, S.; Huh, W. K.; Bower, K.; Howson, R. W.; Belle, A.; Dephoure, N.; O''Shea, E. K.; Weissman, J. S., Global analysis of protein expression in yeast. Nature 2003, 425, 737-741.
Glisovic, T.; Bachorik, J. L.; Yong, J.; Dreyfuss, G., RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008, 582, 1977-1986.
Goffeau, A.; Barrell, B. G.; Bussey, H.; Davis, R. W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J. D.; Jacq, C.; Johnston, M.; Louis, E. J.; Mewes, H. W.; Murakami, Y.; Philippsen, P.; Tettelin, H.; Oliver, S. G., Life with 6000 genes. Science 1996, 274, 546, 563-567.


Graber, J. H.; Cantor, C. R.; Mohr, S. C.; Smith, T. F., In silico detection of control signals: mRNA 3''-end-processing sequences in diverse species. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14055-14060.
Grimminger-Marquardt, V.; Lashuel, H. A., Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 2010, 93, 252-276.
Hardie, D. G., AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8, 774-785.
Hardie, D. G.; Ross, F. A.; Hawley, S. A., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251-262.
Hardie, D. G., AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu. Rev. Nutr. 2014, 34, 31-55.
Hardie, D. G.; Ashford, M. L., AMPK: regulating energy balance at the cellular and whole body levels. Physiology 2014, 29, 99-107.
Hedbacker, K.; Hong, S. P.; Carlson, M., Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol. Cell. Biol. 2004, 24, 8255-8263.
Hedbacker, K.; Carlson, M., Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot. Cell 2006, 5, 1950-1956.
Hedbacker, K.; Carlson, M., SNF1/AMPK pathways in yeast. Front. Biosci. 2008, 13, 2408-2420.
Hentze, M. W.; Muckenthaler, M. U.; Andrews, N. C., Balancing acts: molecular control of mammalian iron metabolism. Cell 2004, 117, 285-297.
Hong, S. P.; Leiper, F. C.; Woods, A.; Carling, D.; Carlson, M., Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8839-8843.
Hong, S. P.; Momcilovic, M.; Carlson, M., Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast. J. Biol. Chem. 2005, 280, 21804-21809.
Hong, S. P.; Carlson, M., Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 2007, 282, 16838-16845.
Horvath, P.; Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327, 167-170.
Horwitz, Andrew A.; Walter, Jessica M.; Schubert, Max G.; Kung, Stephanie H.; Hawkins, K.; Platt, Darren M.; Hernday, Aaron D.; Mahatdejkul-Meadows, T.; Szeto, W.; Chandran, Sunil S.; Newman, Jack D., Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems 2015, 1, 88-96.


Janke, C.; Magiera, M. M.; Rathfelder, N.; Taxis, C.; Reber, S.; Maekawa, H.; Moreno-Borchart, A.; Doenges, G.; Schwob, E.; Schiebel, E.; Knop, M., A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004, 21, 947-962.
Ji, Z.; Lee, J. Y.; Pan, Z.; Jiang, B.; Tian, B., Progressive lengthening of 3'' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7028-7033.
Jiang, R.; Carlson, M., Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 1996, 10, 3105-3115.
Kapasi, P.; Chaudhuri, S.; Vyas, K.; Baus, D.; Komar, A. A.; Fox, P. L.; Merrick, W. C.; Mazumder, B., L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol. Cell 2007, 25, 113-126.
Latreche, L.; Jean-Jean, O.; Driscoll, D. M.; Chavatte, L., Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine. Nucleic Acids Res. 2009, 37, 5868-5880.
Leech, A.; Nath, N.; McCartney, R. R.; Schmidt, M. C., Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot. Cell 2003, 2, 265-273.
Liu, S.; Xu, Z.; Leng, H.; Zheng, P.; Yang, J.; Chen, K.; Feng, J.; Li, Q., RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science 2017, 355, 415-420.
Ludin, K.; Jiang, R.; Carlson, M., Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 6245-6250.
Matoulkova, E.; Michalova, E.; Vojtesek, B.; Hrstka, R., The role of the 3'' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012, 9, 563-576.
McCartney, R. R.; Schmidt, M. C., Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 2001, 276, 36460-36466.
McCartney, R. R.; Rubenstein, E. M.; Schmidt, M. C., Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr. Genet. 2005, 47, 335-344.
Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G., Untranslated regions of mRNAs. Genome Biol. 2002, 3, Reviews0004.
Mohanty, A. K.; Wiener, M. C., Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expression Purif. 2004, 33, 311-325.

Momcilovic, M.; Carlson, M., Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. J. Biol. Chem. 2011, 286, 23544-23551.
Muckenthaler, M.; Gray, N. K.; Hentze, M. W., IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 1998, 2, 383-388.
Nath, N.; McCartney, R. R.; Schmidt, M. C., Purification and characterization of Snf1 kinase complexes containing a defined Beta subunit composition. J. Biol. Chem. 2002, 277, 50403-50408.
Ogawa, T.; Tsubakiyama, R.; Kanai, M.; Koyama, T.; Fujii, T.; Iefuji, H.; Soga, T.; Kume, K.; Miyakawa, T.; Hirata, D.; Mizunuma, M., Stimulating S-adenosyl-l-methionine synthesis extends lifespan via activation of AMPK. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 11913-11918.
Pang, T.; Xiong, B.; Li, J. Y.; Qiu, B. Y.; Jin, G. Z.; Shen, J. K.; Li, J., Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits. J. Biol. Chem. 2007, 282, 495-506.
Pesole, G.; Mignone, F.; Gissi, C.; Grillo, G.; Licciulli, F.; Liuni, S., Structural and functional features of eukaryotic mRNA untranslated regions. Gene 2001, 276, 73-81.
Pichon, X.; Wilson, L. A.; Stoneley, M.; Bastide, A.; King, H. A.; Somers, J.; Willis, A. E., RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 2012, 13, 294-304.
Proudfoot, N. J.; Brownlee, G. G., 3'' non-coding region sequences in eukaryotic messenger RNA. Nature 1976, 263, 211-214.
Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Séraphin, B., The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods 2001, 24, 218-229.
Pullmann, R., Jr.; Kim, H. H.; Abdelmohsen, K.; Lal, A.; Martindale, J. L.; Yang, X.; Gorospe, M., Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol. Cell. Biol. 2007, 27, 6265-6278.
Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M.; Seraphin, B., A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999, 17, 1030-1032.
Rubenstein, E. M.; McCartney, R. R.; Zhang, C.; Shokat, K. M.; Shirra, M. K.; Arndt, K. M.; Schmidt, M. C., Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J. Biol. Chem. 2008, 283, 222-230.

Ruiz, A.; Xu, X.; Carlson, M., Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 6349-6354.
Ruiz, A.; Liu, Y.; Xu, X.; Carlson, M., Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 8652-8657.
Ruiz, A.; Xu, X.; Carlson, M., Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae. J. Biol. Chem. 2013, 288, 31052-31058.
Sander, J. D.; Joung, J. K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347-355.
Sanz, P.; Alms, G. R.; Haystead, T. A.; Carlson, M., Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 2000, 20, 1321-1328.
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.
Slaymaker, I. M.; Gao, L.; Zetsche, B.; Scott, D. A.; Yan, W. X.; Zhang, F., Rationally engineered Cas9 nucleases with improved specificity. Science 2016, 351, 84-88.
Sreenivasan, A.; Kellogg, D., The elm1 kinase functions in a mitotic signaling network in budding yeast. Mol. Cell. Biol. 1999, 19, 7983-7994.
Studer, R. A.; Dessailly, B. H.; Orengo, C. A., Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. 2013, 449, 581-594.
Theil, E. C.; Eisenstein, R. S., Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs). J. Biol. Chem. 2000, 275, 40659-40662.
Tu, J.; Carlson, M., The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14, 6789-6796.
Tu, J.; Carlson, M., REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995, 14, 5939-5946.
Verghese, J.; Abrams, J.; Wang, Y.; Morano, K. A., Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 2012, 76, 115-158.
Vincent, O.; Townley, R.; Kuchin, S.; Carlson, M., Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 2001, 15, 1104-1114.
Wiedenheft, B.; Sternberg, S. H.; Doudna, J. A., RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482, 331-338.

Wilson, W. A.; Hawley, S. A.; Hardie, D. G., Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 1996, 6, 1426-1434.
Woods, A.; Munday, M. R.; Scott, J.; Yang, X.; Carlson, M.; Carling, D., Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 1994, 269, 19509-19515.
Xu, X.; Song, Y.; Li, Y.; Chang, J.; zhang, H.; An, L., The tandem affinity purification method: An efficient system for protein complex purification and protein interaction identification. Protein Expression Purif. 2010, 72, 149-156.
Zubiaga, A. M.; Belasco, J. G.; Greenberg, M. E., The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 1995, 15, 2219-2230.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔