跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳芝吟
研究生(外文):Chih-Yin Chen
論文名稱:福爾摩沙峽谷與澎湖峽谷以及高屏斜坡沉積物細菌的分離和特性研究
論文名稱(外文):Isolation and characterization of sediment bacteria from Formosa and Penghu submarine canyons and Kaoping slope
指導教授:謝文陽
口試委員:李重義陳卓昇李宗徽簡文達
口試日期:2017-01-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:沉積物平板計數法高屏斜坡福爾摩沙峽谷澎湖峽谷16S rRNA
外文關鍵詞:SedimenPlate count methodKaoping slopeFormosa submarine canyonPenghu submarine canyon16S rRNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究的目標在於進行台灣西南海域福爾摩沙峽谷與澎湖峽谷以及高屏斜坡等樣區沉積物中細菌的分離與特性探討。以平板計數法 (plate count method) 估得這三個樣區細菌生菌數介於5.8 × 103 – 3.7 × 104 cfu/g wet wt. (菌落數/每克沉積物)。從三樣區沉積物分離出菌株數分別為福爾摩沙峽谷54株、澎湖峽谷41株、高屏斜坡13株,三者合計108株。分離株生理、生化特性檢測結果顯示革蘭氏陰性和陽性細菌分佔其中29.6 % 及70.4 %,所有分離株皆可生長於pH 6 – 8及25 – 30℃,皆呈觸酶陽性反應,皆無法產生吲哚;牠們多可生長於42 ℃ (89.8 %),且多可藉由硝酸還原或脫氮進行無氧生長 (95.4 %)。根據生理、生化特性差異挑選13 株分群代表株進行16S rRNA基因定序比對,結果顯示這些分離株分別為屬於Marinobacter (1株)、Pseudoalteromonas (2株)、Halomonas (2株)、Halobacillus(1 株)、Staphylococcus(1株)、Fictibacillus(1 株)Lysinibacillus(1 株)以及Bacillus(4株)等屬菌種。整體而言,福爾摩沙峽谷、澎湖峽谷以及高屏斜坡沉積物所含細菌以厚壁菌門 (Firmicutes) 中芽孢桿菌屬 (Bacillus) 比例最高 (50.0 %);其次是變形菌門 (Proteobacteria)中γ – 變形菌綱 (Gammaproteobacteria)的假交替單胞菌屬Pseudoalteromonas (22.2 %)。另外,福爾摩沙峽谷、澎湖峽谷及高屏斜坡三樣點沉積物中細菌組成相似,樣本中皆能發現Pseudoalteromonas、Halomonas、Bacillus及Fictibacillus等四屬菌株,Marinobacter屬菌株僅在高屏斜坡樣本被分離出,而Halobacillus則僅在澎湖峽谷樣本中發現。
The aim of this study was isolation and characterization of bacteria in the sediments of Formosa and Penghu submarine canyons and Kaoping slope. The bacterial abundance in the sediments ranged from 5.8 × 103 to 3.7 × 104 cfu/gwet wt. by plate count method. One hundred and eight bacterial strains were isolated from the sediments in the three areas : Formosa submarine canyon (54 strains), Penghu submarine canyon (41 strains) and Kaoping slope (13 strains). The results of the physiological and biochemical tests showed that 29.6 % of the strains were gram negative bacteria and 70.4 % of the strains were gram positive bacteria. All of the strains could grow at pH 6 – 8 and 25 – 30 °C, but all of them could not produce indole; most of the strains (89.8 %) were catalyst positive reactive and most of them (95.4 %) could carry out the nitrate reduction or denitrification under anarobic condtions. Moreover, 89.8 % of the isolated strains could grow at 42 °C. According to the physiological and biochemical characteristics, 13 strains were selected by primary classification for the consequent phylogenetic analysis of the 16S rRNA gene. The sequence results showed that these representivestrains belonged to Marinobacter (1 strain), Pseudoalteromonas (2 strains), Halomonas (2 strains), Halobacillus (1 strain), Staphylococcus (1 strain), Fictibacillus (1 strain), Lysinibacillus (1 strain) and Bacillus (4 strain). The bacterial communities in the sediments of Formosa and Penghu submarine canyons and Kaoping slope mainly dominated by Bacillus (50.0 %) in the phylum Fimicute and followed by Pseudoalteromonas (22.2 %) of the class Gammaproteobacteria in the phylum Proteaobacteria. Moreover, the bacterial composition of three samples in Formosa submarine canyon, Pehghu submarine canyon and Kaoping slope were similar. Pseudoalteromonas, Halomonas, Bacillus and Fictibacillus were found in these three samples. The strains of Marinobacter were only found in the Kaoping slope sample, and Halobacillus was only found in the Penghu submarine canyon sample.
目錄
口試委員會審定書 ii
誌謝 iii
中文摘要 iv
Abstract v
表目錄 ix
圖目錄 x
附錄目錄 xi
第一章 前言 1
第一節 海洋及沉積物 1
第二節 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡 2
第三節 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡的沉積物來源 4
第四節 海洋細菌 4
第五節 研究動機與目的 6
第二章 材料與方法 8
第一節 樣本採集 8
第二節 培養基 8
第三節 總有機碳、總氮以及碳氮比 8
第四節 計數、培養與分離 9
第五節 分離株之形態及生理、生化特性檢測 10
第六節 16S rRNA基因序列之分析 13
第三章 結果 16
第一節 平板計數 16
第二節 總有機碳、總氮以及碳氮比 16
第三節 分離株之生理生化特性以及分群 16
第四節 分群代表株16S rRNA序列分析 18
第五節 分群代表株之親緣關係 19
第四章 討論 21
第一節 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡之細菌數量 21
第二節 分離株之生理生化特性以及分群 22
第三節 分群代表株之生理生化特性以及分群 24
第四節 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡之細菌組成 33
第五章 結論 38
參考文獻 39

表目錄
表一 細菌數量、碳氮比、總有機碳以及總氮含量 58
表二 分離株之生理、生化特性 59
表三 分離株與相近菌種標準株之相似度 60
表四 墨西哥灣深海沉積物之碳氮比、總有機碳以及總碳含量 62
表五 代表株J27與相近菌種標準株之特性比較表 63
表六 代表株J17以及J2與相近菌種標準株之特性比較表 64
表七 代表株J42以及J36與相近菌種標準株之特性比較表 65
表八 代表株M30與相近菌種標準株之特性比較表 66
表九 代表株M70與相近菌種標準株之特性比較表 67
表十 代表株M3與相近菌種標準株之特性比較表 68
表十一 代表株M64與相近菌種標準株之特性比較表 69
表十二 代表株M31與相近菌種標準株之特性比較表 70
表十三 代表株M58與相近菌種標準株之特性比較表 71
表十四 代表株M32以及M13與相近菌種標準株之特性比較表 72

圖目錄
圖一 採樣地點 73
圖二 採樣儀器 73
圖三 16S rRNA基因序列建構之親緣關係樹 74
圖四 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡之各別細菌組成 75
圖五 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡之細菌組成 76
圖六 福爾摩沙峽谷、澎湖峽谷以及高屏斜坡之細菌組成文氏圖 77

附錄目錄
附表一 採樣資料 78
附表二 培養基 78
附表三 測試用培養基 79
附表四 聚合酶連鎖反應液的組成以及反應條件 80
附表五 分離株J27 16S rRNA基因序列 81
附表六 分離株J17 16S rRNA基因序列 82
附表七 分離株J2 16S rRNA基因序列 83
附表八 分離株J42 16S rRNA基因序列 84
附表九 分離株J36 16S rRNA基因序列 85
附表十 分離株M30 16S rRNA基因序列 86
附表十一 分離株M70 16S rRNA基因序列 87
附表十二 分離株M3 16S rRNA基因序列 88
附表十三 分離株M64 16S rRNA基因序列 89
附表十四 分離株M31 16S rRNA基因序列 90
附表十五 分離株M58 16S rRNA基因序列 91
附表十六 分離株M32 16S rRNA基因序列 92
附表十七 分離株M13 16S rRNA基因序列 93
附表十八 縮寫名詞對照表 94
參考文獻
Ahmed, I., Sin, Y., Paek, J., Ehsan, M., Hayat, R., Iqbal, M., & Chang, Y. H.(2014). Description of Lysinibacillus pakistanensis. Int J Agric Biol 16, 447–450.

Ahmed, I., Yokota, A., & Fujiwara, T. (2007). A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11, 217–224.

Ahmed, I., Yokota, A., Yamazoe, A., & Fujiwara, T. (2007). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to
Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57, 1117–1125.

An, S. –Y., Kanoh, K., Kasai, H., Goto, K., & Yokota, A. (2007).Halobacillus faecis sp. nov., a spore–forming bacterium isolated from a mangrove area on Ishigaki Island,Japan. Int J Syst Evol Microbiol 57, 2476–2479.

Arıstegui, J., Duarte, C. M., Agustı, S., Doval, M., Álvarez–Salgado, X. A., & Hansell, D. A. (2002). Dissolved organic carbon support of respiration in the dark
ocean. Science 298, 1967–1967.

Baker, J. A. (1938). Light as a factor in the production of pigment by certain bacteria. J Bacteriol35, 625.

Bowman, J. P. (1998).Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium from Antarctic sea ice. Int J Syst Evol Microbiol 48, 1037–1041.

Callow, A. B. (1923). On catalase in bacteria and its relation to anaerobiosis. J Pathol Bacteriol26, 320–325.

Carlson, P. R., & Karl, H. A. (1988). Development of large submarine canyons in the Bering Sea, indicated by morphologic, seismic, and sedimentologic characteristics.
Geol Soc Am Bull100, 1594–1615.

Carson, B., Baker, E., Hickey, B., Nittrouer, C., DeMaster, D., Thorbjarnarson, K., & Snyder, G. (1986). Modern sediment dispersal and accumulation in Quinault
submarine canyon—a summary. Mar Geol71, 1–13.

Chiu, J. K., & Liu, C. S. (2008). Comparison of sedimentary processes on adjacent passive and active continental margins offshore of SW Taiwan based on echo character
studies. Basin Res20, 503–518.

Cohen‐Bazire, G., Sistrom, W., & Stanier, R. (1957). Kinetic studies of pigment synthesis by non‐sulfur purple bacteria. J Cell Compar Physl49, 25–68.

Coorevits, A., Dinsdale, A. E., Heyrman, J., Schumann, P., Van Landschoot, A., Logan, N. A., & De Vos, P. (2012). Lysinibacillus macroides sp. nov., nom. rev. Int J
Syst Evol Microbiol 62, 1121–1127.

D''Hondt, S., J?rgensen, B. B., Miller, D. J., Batzke, A., Blake, R., Cragg, B. A., Cypionka, H., Dickens, G. R., Ferdelman, T.,&Hinrichs, K. –U. (2004). Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221.

D''Hondt, S., Spivack, A. J., Pockalny, R., Ferdelman, T. G., Fischer, J. P., Kallmeyer, J., Abrams, L. J.,Smith, D. C., Graham, D., &Hasiuk, F. (2009).
Subseafloor sedimentary life in the South Pacific Gyre. P Natl Acad Sci106, 11651-11656.

da Silva, M. A. C., Cavalett, A., Spinner, A., Rosa, D. C., Jasper, R. B., Quecine, M. C., Bonatelli, M. L.,Pizzirani-Kleiner, A.,Corção, G., &de Souza Lima, A. O. (2013). Phylogenetic identification of marine bacteria isolated from deep–sea sediments of the eastern South Atlantic Ocean. SpringerPlus 2, 1.

Di Martino, P., Fursy, R., Bret, L., Sundararaju, B., & Phillips, R. (2003). Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole–producing bacteria. Can J Microbiol49, 443–449.

Du, J., Xiao, K., Li, L., Ding, X., Liu, H., Lu, Y., & Zhou, S. (2013). Temporal and spatial diversity of bacterial communities in coastal waters of the South China
Sea.Plos One8, e66968.

Escobar–Briones, E., & García–Villalobos, F. J. (2009). Distribution of total organic carbon and total nitrogen in deep–sea sediments from the southwestern Gulf of Mexico.
B Soc Geo Mex 61, 73–86.

Fütterer, D. K. (2000). The solid phase of marine sediments. In Marine Geochemistry (pp. 1-25). Berlin Heidelberg: Springer.

Fry, J. C., Parkes, R. J., Cragg, B. A., Weightman, A. J., & Webster, G. (2008). Prokaryotic biodiversity and activity in the deep subseafloor biosphere. Fems
Microbiol Ecol66, 181–196.

Gärtner, A., Blümel, M., Wiese, J., & Imhoff, J. F. (2011). Isolation and characterisation of bacteria from the Eastern Mediterranean deep sea. A van Leeuw 100,
421–435.

Gauthier, G., Gauthier, M., & Christen, R. (1995). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small–subunit
rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species
combinations. Int J Syst Evol Microbiol 45, 755–761.

Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., & Bertrand, J. –C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a
New, Extremely Halotolerant, Hydrocarbon–Degrading Marine Bacterium. Int J Syst Evol Microbiol 42, 568–576.

Gest, H., & Mandelstam, J. (1987). Longevity of microorganisms in natural environments. Microbiol Sci 4, 69.

Glaeser, S. P., Dott, W., Busse, H. –J., & Kämpfer, P. (2013). Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus,
Bacillus barbaricus,Bacillus macauensis,Bacillus nanhaiensis,Bacillus rigui,Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int J Syst Evol
Microbiol 63, 2934–2944.

Gonzalez–Domenech, C. M., Martínez–Checa, F., Quesada, E., & Béjar, V. (2009). Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium.
Int J Syst Evol Microbiol 59, 1290–1296.

Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A., & Cotter, P. D. (2015). The Prevalence and Control of Bacillus and Related Spore–Forming Bacteria in
the Dairy Industry. Front Microbiol 6.

Gorshkova, N. M., Ivanova, E. P., Sergeev, A. F., Zhukova, N. V., Alexeeva, Y., Wright, J. P., Nicolau, D. V., Mikhailov, V. V., &Christen, R. (2003). Marinobacter
excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53, 2073–2078.

Gregersen, T. (1978). Rapid method for distinction of Gram–negative from Gram–positive bacteria. Eur J Appl Microbiol 5, 123–127.

Grimaud, R. (2010).Marinobacter. In K. N. Timmis (Ed.), Handbook of Hydrocarbon and Lipid Microbiology (pp. 1289–1296). Berlin Heidelberg: Springer.

Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar
Geol 285, 69–86.

Hayat, R., Ahmed, I., Paek, J., Ehsan, M., Iqbal, M., & Chang, Y. H. (2013). A moderately boron–tolerant candidatus novel soil bacterium Lysinibacillus pakistanensis
sp. nov. cand., isolated from soybean (Glycine max L.) rhizosphere. Pak J Bot 45, 41–50.

Heß, S., & Gallert, C. (2015).Staphylococcus argensis sp. nov., a novel staphylococcal species isolated from an aquatic environment. Int J Syst Evol Microbiol 65, 2661–2665.

Hentges, D. J. (1996). Medical Microbiology. 4th edition. In Baron S (Ed.), Chapter 17Anaerobes: General Characteristics.Galveston (TX): University of
Texas Medical Branch at Galveston

Heyrman, J., Logan, N. A., Rodríguez–Díaz, M., Scheldeman, P., Lebbe, L., Swings, J., Heyndrickx, M., &De Vos, P. (2005). Study of mural painting isolates,
leading to the transfer of ‘Bacillus maroccanus’ and ‘Bacillus carotarum’ to Bacillus simplex, emended description of Bacillus simplex, re–examination of the strains
previously attributed to ‘Bacillus macroides’ and description of Bacillus muralis sp. nov.Int J Syst Evol Microbiol 55, 119–131. Hsiung, K. –H., Su, C. –C., Yu, H. –S., & Chang, J. –H. (2015). Morphology, seismic
characteristics and development of the sediment dispersal system along the Taiwan–Luzon convergent margin. Mar Geophys Res 36, 293–308.

Hsiung, K. –H., & Yu, H. –S. (2011). Morpho–sedimentary evidence for a canyon–channel–trench interconnection along the Taiwan–Luzon plate margin, South China Sea.
GeoMar Lett 31, 215–226.

Hua, N. –P., Kanekiyo, A., Fujikura, K., Yasuda, H., & Naganuma, T. (2007). Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately
halophilic bacteria isolated from a deep–sea methane cold seep. Int J Syst Evol Microbiol 57, 1243–1249.

Huu, N. B., Denner, E. B., Ha, D. T., Wanner, G., & Stan–Lotter, H. (1999). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese
oil–producing well. Int J Syst Evol Microbiol 49, 367–375.

J?rgensen, B. (1977). Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment. Mar Biol 41, 19–28.

J?rgensen, B. B., & Boetius, A. (2007). Feast and famine—microbial life in the deep–sea bed. Nat Rev Microbiol 5, 770–781.

Jensen, V. (1968). The plate count technique. The ecology of soil bacteria. Liverpool University Press, Liverpool,United Kingdom, 158–170.

Jiang, J., Pan, Y., Hu, S., Zhang, X., Hu, B., Huang, H., Hong, S., Meng, J., Li, C., &Wang, K. (2014). Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 64, 1662–1669.

Jung, M. Y., Kim, J. –S., Paek, W. K., Styrak, I., Park, I. –S., Sin, Y., Paek, J., Park, K. A., Kim, H., &Kim, H. L. (2012). Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. Int J Syst Evol Microbiol 62, 2347–2355.

Kaiser, M. J. (2011). Marine ecology: processes, systems, and impacts: Oxford (U.K.) Oxford University Press.

Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., & D’Hondt, S. (2012). Global distribution of microbial abundance and biomass in subseafloor sediment.
P Natl Acad Sci 109, 16213–16216.

Kallmeyer, J., Smith, D. C., Spivack, A. J., & D’Hondt, S. (2008). New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr6, 236–
245.

Kaye, J. Z., Márquez, M. C., Ventosa, A., & Baross, J. A. (2004). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and
Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep–sea hydrothermal–vent environments. Int J Syst Evol Microbiol54, 499–511.

Khandeparker, R., Meena, R. M., & Deobagkar, D. (2014). Bacterial diversity in deep–sea sediments from Afanasy Nikitin seamount, equatorial Indian Ocean.
Geomicrobiol J 31, 942–949.

Kim, M., Oh, H. –S., Park, S. –C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity
for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64, 346–351.

Kim, S. –J., Lee, J. –C., Han, S. –I., & Whang, K. –S. (2015).Halobacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment.
Int J Syst Evol Microbiol 65, 4434–4440.

Kloos, W. E., & Wolfshohl, J. F. (1991). Staphylococcus cohnii Subspecies: Staphylococcus cohnii subsp. cohnii subsp. nov. and Staphylococcus cohnii subsp.
urealyticum subsp. nov. Int J Syst Evol Microbiol 41, 284–289.

Ko, K. S., Oh, W. S., Lee, M. Y., Lee, J. H., Lee, H., Peck, K. R., Lee, N. Yong., & Song, J. –H. (2006). Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis. Int J Syst Evol Microbiol 56, 2541–2544.

Kuisiene, N., Raugalas, J., Spröer, C., Kroppenstedt, R. M., & Chitavichius, D. (2008). Bacillus butanolivorans sp. nov., a species with industrial application for the
remediation of n–butanol. Int J Syst Evol Microbiol 58, 505–509.

Lai, Q., Liu, Y., & Shao, Z. (2014).Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). A van Leeuw 105, 99–
107.

Lee, C. S., Jung, Y. –T., Park, S., Oh, T. –K., & Yoon, J. –H. (2010).Lysinibacillus xylanilyticus sp. nov., a xylan–degrading bacterium isolated from forest humus.
Int J Syst Evol Microbiol 60, 281–286.

Lee, J. –C., Jeon, C. O., Lim, J. –M., Lee, S. –M., Lee, J. –M., Song, S. –M., Park, D.-J., Li, W.-J., &Kim, C. –J. (2005). Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 55, 2027–2032.

Li, L., Kato, C., & Horikoshi, K. (1999). Bacterial diversity in deep–sea sediments from different depths. Biodivers Conserv8, 659–677.

Li, T., & Wang, P. (2014). Bacterial diversity in sediments of core MD05–2902 from the Xisha Trough, the South China Sea. Acta Oceanol Sin 33, 85–93.

Li, Y., Liu, Q., Li, C., Dong, Y., Zhang, W., Zhang, W., & Xiao, T. (2015). Bacterial and archaeal community structures in the Arctic deep–sea sediment. Acta Oceanol Sin
34, 93–113.

Liu, C. –S., Lundberg, N., Reed, D. L., & Huang, Y. –L. (1993). Morphological and seismic characteristics of the Kaoping Submarine Canyon. Mar Geol 111,
93–108.

Liu, C., Schnurle, P., Wang, Y., Chung, S., Chen, S., & Hsiuan, T. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terr Atmos
Ocean Sci 17, 615.

Luskin, B., Heezen, B. C., Ewing, M., & Landisman, M. (1954). Precision measurement of ocean depth. Deep Sea Research (1953)1, 131–IN137.

Matsuyama, H., Minami, H., Kasahara, H., Kato, Y., Murayama, M., & Yumoto, I. (2013).Pseudoalteromonas arabiensis sp. nov., a marine polysaccharide–producing
bacterium. Int J Syst Evol Microbiol 63,1805–1809.

Matsuyama, H., Sawazaki, K., Minami, H., Kasahara, H., Horikawa, K., &Yumoto, I. (2014). Pseudoalteromonas shioyasakiensis sp. nov., a marine
polysaccharide–producing bacterium. Int J Syst Evol Microbiol 64, 101–106.

Maturin, L., & Peeler, J. (2006). Bacteriological Analytical Manual Chapter 3. Aerobic Plate Count.

Methé, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X., Moult, J., Madupu, R., Nelson, W. C., &Dodson, R. J. (2005). The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. P Natl Acad of Sci USA 102, 10913–10918.

Munn, C. (2011). Marine microbiology: Garland Science.

Nybakken, J. W. (1993). Marine biology: an ecological approach.

Oard, M. (2008).Flood by Design: Receding Water Shapes the Earth''s Surface: New Leaf Publishing Group.

Okamoto, T., Maruyama, A., Imura, S., Takeyama, H., & Naganuma, T. (2004). Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16S rRNA, gyrB and ectBC gene sequences. Syst Appl Microbiol 27, 323.

Parkes, R. J., Cragg, B. A., Bale, S., Getlifff, J., Goodman, K., Rochelle, P. A., Fry, J. C., Weightman, A. J., &Harvey, S. (1994). Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410–413.

Parkes, R. J., Cragg, B. A., & Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeol J
8, 11–28.

Quillaguaman, J., Hashim, S., Bento, F., Mattiasson, B., & Hatti‐Kaul, R. (2005). Poly (β‐hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis
LC1 using starch hydrolysate as substrate. J Appl Microbiol 99, 151–157.

Rebesco, M., Hernández–Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014).Contourites and associated sediments controlled by deep–water circulation processes:
state–of–the–art and future considerations. Mar Geol 352, 111–154.

Reller, L. B., Weinstein, M. P., & Petti, C. A. (2007). Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis44, 1108–1114.

Romanenko, L. A., Zhukova, N. V., Lysenko, A. M., Mikhailov, V. V., & Stackebrandt, E. (2003). Assignment of ‘Alteromonas marinoglutinosa’NCIMB 1770
to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int J Syst Evol Microbiol 53, 1105–1109.

Roohi, A., Ahmed, I., Paek, J., Sin, Y., Abbas, S., Jamil, M., & Chang, Y. H. (2014). Bacillus pakistanensis sp. nov., a halotolerant bacterium isolated from salt mines of the
Karak Area in Pakistan. A van Leeuw 105, 1163–1172.

Rowe, G. T., & Pariente, V. (2012).Deep–sea food chains and the global carbon cycle 360, Springer Science & Business Media.

Satomi, M., La Duc, M. T., & Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly–facility surfaces. Int J Syst Evol Microbiol 56,
1735–1740.

Seiter, K., Hensen, C., Schröter, J., & Zabel, M. (2004). Organic carbon content in surface sediments—defining regional provinces. Deep Sea Research Part I:
Oceanographic Research Papers 51, 2001–2026.

Shanmugam, G. (2015). 3D palaeogeographic reconstructions of the Phanerozoic versus sea–level and Sr–ratio variations: Discussion. J Palaeogeogr4, 234–
243.

Shieh, W. Y., Chen, Y. –W., Chaw, S. –M., & Chiu, H. –H. (2003). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst
Evol Microbiol 53, 479–484.

Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., Narlikar, J. V., &Bhargava, P. M. (2006).Bacillus aerius sp. nov., Bacillus
aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J
Syst Evol Microbiol 56, 1465–1473.

Spergser, J., Wieser, M., Täubel, M., Rosselló–Mora, R. A., Rosengarten, R., & Busse, H. –J. (2003).Staphylococcus nepalensis sp. nov., isolated from goats of the
Himalayan region. Int J Syst Evol Microbiol 53, 2007–2011.

Spring, S., Ludwig, W., Marquez, M., Ventosa, A., & Schleifer, K. –H. (1996). Halobacillus gen. nov., with Descriptions of Halobacillus litoralis sp. nov. and
Halobacillus trueperi sp. nov., and Transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Evol Microbiol 46, 492–496.

Stropko, S. J., Pipes, S. E., & Newman, J. D. (2014). Genome–based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillusindicus and emended
description of Bacillus indicus. Int J Syst Evol Microbiol 64, 3804–3809.

Täubel, M., Kämpfer, P., Buczolits, S., Lubitz, W., & Busse, H. –J. (2003).Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int J Syst Evol
Microbiol 53, 725–730.

Takeda, K., & Furusaka, C. (1970). The bacteria isolated anaerobically from paddy field soil. 1. Succession of facultative anaerobes and strict anaerobes. 2. Classification
of facultative anaerobes and strict anaerobes. J Agr Chem Soc JPN44, 343–355.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30, 2725–2729.

Teske, A. (2013). Marine Deep Sediment Microbial Communities. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes:
Prokaryotic Communities and Ecophysiology (pp. 123–138). Berlin, Heidelberg: Springer Berlin Heidelberg.

Teske, A., Cypionka, H., Holt, J. G., & Krieg, N. R. (2007). Enrichment and isolation Methods for General and Molecular Microbiology, Third Edition (pp. 215–269):
American Society of Microbiology.

Vaidya, B., Kumar, R., Korpole, S., Tanuku, N. R. S., & Pinnaka, A. K. (2015). Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated
from coastal surface sea water. Int J Syst Evol Microbiol 65, 2056–2063.

Velmurugan, N., Kalpana, D., Cho, J. –Y., Lee, G. –H., Park, S. –H., & Lee, Y. –S. (2011). Phylogenetic analysis of culturable marine bacteria in sediments from South
Korean Yellow Sea. Microbiology+ 80, 261–272.

Vogelstein, B., & Gillespie, D. (1979). Preparative and analytical purification of DNA from agarose. P Natl Acad Sci 76, 615–619.

Watson, J. D., & Levinthal, C. (1965). Molecular biology of the gene. Molecular biology of the gene.

Yakimov, M. M., Timmis, K. N., & Golyshin, P. N. (2007). Obligate oil–degrading marine bacteria. Curr Opin Biotech 18, 257–266.

Yoon, J. –H., Lee, C. –H., & Oh, T. –K. (2005).Bacillus cibi sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 55, 733–736.

Yoon, J. –H., Yeo, S. –H., Kim, I. –G., & Oh, T. –K. (2004).Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated
from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1799–1803.

Yu, H. –S., Chiang, C. –S., & Shen, S. –M. (2009). Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping)
Submarine Canyon. J Marine Syst 76, 369–382.

Yu, H. –S., & Hong, E. (2006). Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal
sediment transport. J Asian Earth Sci 27, 922–932.

Yu, H. –S., & Song, G. –S. (2000). Submarine Physiographic Features in Taiwan Region and Their Geological Singificance. J Geol Soc China–Taiwan 43, 267–286.

Zaballos, M., López–López, A., Ovreas, L., Bartual, S. G., D''Auria, G., Alba, J. C.,Legault, B., Pushker, R., Daae, F. L., &Rodríguez–Valera, F. (2006). Comparison of
prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea. Fems Microbiol Ecol 56, 389–405.

Zhang, J., Sun, Q. –l., Zeng, Z. –g., Chen, S., & Sun, L. (2015). Microbial diversity in the deep–sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol
Res 177, 43–52.

Zhang, Y. Z., Chen, W. F., Li, M., Sui, X. H., Liu, H. –C., Zhang, X. X., & Chen, W. X. (2012).Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean
root. Int J Syst Evol Microbiol 62, 359–363.

Zhou, Y., Wei, W., Che, Q., Xu, Y., Wang, X., Huang, X., & Lai, R. (2008).Bacillus pallidus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58, 2850–2854.

井曉歡、王杏、熊尚凌、朱四東、陳勇、楊季芳、陳吉剛 (2016)。東太平洋多金屬結核病兩個站位深海沉積物細菌多樣性。微生物學報56,1434–1449。

王風平、周悦恆、張新旭、肖湘(2013)。深海微生物多樣性。生物多樣性21,445–455。

劉玉娟、田新朋、黃小芳、龍麗娟、張偲 (2014)。中國南海沉積環境可培養細菌多樣性研究。微生物學通報41,661–673。

吳依璇 (2012)。臺灣西南海域南海棚坡與高屏棚坡上海底峽谷形貌之比較。臺灣大學海洋研究所學位論文,台北。

李學恭、徐俊、肖湘 (2013)。深海微生物高壓適應與生物地球化學循環。微生物學通報40,59–70。

邱逢臻、蕭高明 (2006)。船的形形色色一海洋偵測大隊。科學發展404,20–27

徐聖婷 (2015)。臺灣西南海域現代沈積物之傳輸途徑與機制。臺灣大學海洋研究所學位論文,台北。

陳松春、王詠絢 (2007)。天然氣水合物探勘技術。科學發展412,26–31

陳冠銘 (2016)。高屏海底峽谷大型底棲動物群聚結構與環境因子之關係。臺灣大學海洋研究所學位論文,台北。

曾靜宜 (2009)。台灣西南海域陸棚及峽谷內沈積物傳輸方式。臺灣大學海洋研究所學位論文,台北。

黃任億 (2006)。台灣西南海域高屏陸坡盆地及澎湖海底峽谷–水道系統的沉積作用及演化。臺灣大學海洋研究所學位論文,台北。

熊衎昕 (2012)。臺灣–呂宋島聚合帶沈積物散佈系統及其從源到匯之意義。臺灣大學海洋研究所學位論文,台北。

熊衎昕、俞何興 (2012)。以從源到匯之觀點探討臺灣西南外海沈積物散佈系統及傳輸之意義。鑛冶:中國鑛冶工程學會會刊220,7–15。

蔡文城 (1996)。微生物學 (第三版)。台北:藝軒圖書出版社。

戴昌鳳 (2014)。臺灣區域海洋學。台北:臺大出版中心出版.

謝文陽 (1999)。發酵糖類時會釋出氣體的兼氣性海洋細菌之研究 (一) (編號:46246/14715)。台北:國立臺灣大學海洋研究所
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top