跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮行健
研究生(外文):Hsing-Chien Juan
論文名稱:南海現代深海事件層中顆粒性有機碳之組成與來源
論文名稱(外文):Composition and provenances of particulate organic carbon within the modern deep-sea event-layer in the South China Sea
指導教授:蘇志杰
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:總有機碳穩定碳同位素碳氮比值正烷烴事件層
外文關鍵詞:Total organic Carbon(TOC)stable carbon isotope(d13C)TOC/TNn-alkanesevent-layer
相關次數:
  • 被引用被引用:3
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
作為西太平洋最大的邊緣海,每年有大量的沉積物經由河流輸入至南海,加上其容易受颱風、地震與火山爆發等天然災害影響,使得南海深海沉積物具有保存古事件紀錄的潛力。本研究透過沉積物中顆粒性有機碳的組成與來源來分析南海現代深海事件層特性,並比較不同區域有機碳分布差異。
結果顯示南沙群島8支岩心多半只於表層發現事件層,整體TOC介於0.07-0.71%,d13C值介於-18.4~-22.4‰之間,TOC/TN則約介於5~10。有機碳主要由海洋藻類所貢獻,但事件層中d13C值有偏低之現象,推測可能為來自不同地區之海洋藻類,僅在鄭和群礁南側水道一支岩心(OR1-1068-4)中的事件層中有明顯陸源有機物的訊號。事件層中常含有大量碳酸鹽類導致TOC受到稀釋而呈現相對低值。中央海盆3支岩心則大部分受到事件擾動,整體TOC介於0.17~1.39%,d13C值介於-18.9~-22.8‰之間,TOC/TN則約介於3~9,有機碳來源為陸海源混合,顯示事件層沉積物應為陸源,且在細顆粒與粗顆粒沉積物上都有TOC隨著陸源訊號增加而升高之趨勢。其中TOC最高值出現在中央海盆正中央岩心(OR1-1133-A1)第三層事件層,其有機碳來源可能為近岸海草。
本研究進一步利用n-alkanes正烷烴分析檢驗禮樂灘北方岩心(OR1-1068-8)中之表層事件層,結果顯示TOC/TN隨著n-C26~35在整體正烷烴內的比例增加而升高,顯示TOC/TN與d13C在此區域確實可以指示有機碳之陸海源。另CPI顯示事件層中陸源有機碳分布類似於陸上土壤,代表事件層沉積物應為陸源,且帶來大量陸源有機碳,暗示極端氣候事件可能對區域性陸源有機碳之輸出與埋藏有重大影響。
As one of the largest marginal seas in the Western Pacific Ocean, the South China Sea(SCS) annually receives large amount of sediments from surrounding continental rivers. In addition, SCS is also frequently influenced by natural hazards like typhoon, earthquake and volcanic eruption. It makes SCS has potential to preserve the natural hazard records in the deep-sea sediments. In this study, we attempt to clarify the characteristics of the SCS modern deep-sea event-layer through the sediment composition and the provenances of particulate organic carbon(POC), moreover, to find out the features of POC distribution in different regions.
In Spratly Islands, the natural hazards related event-layers were found in the core top of gravity cores. According to the total organic carbon(TOC)(0.07 to 0.71%), d13C-values(-18.4 to -22.4‰) and TOC/TN ratio(5 to 10) in the gravity cores, we suggest the organic carbon is mainly from marine algae, however, the lighter d13C-values in event-layers may influenced by marine algae of different species or regions. The terrestrial signal only can be seen in the event-layer which located at the southern channel of the Zhenghe Qunjiao(OR1-1068-4). The relatively lower TOC can also be found in event-layer which caused by dilution of carbonate. Three cores which were taken from the Central Basin are almost entirely affected by event-related activities, and its TOC is between 0.17 to 1.39%, d13C-values range from -18.9 to -22.8‰ and TOC/TN ratio ranges from 3 to 9. The composition of organic carbon indicates it may be formed by mixing of terrestrial and marine materials. The highest TOC is found in the third event-layer in the center of Central Basin(OR1-1133-A1), the result suggests it may be composed by nearshore sea grasses and marine algae.
We further utilized n-alkanes analysis of the event-layer in core OR1-1068-8 which located at north of Reed Bank. It shows higher TOC/TN with increasing n-C26~35 of entire n-alkanes, which reveals TOC/TN and d13C can be used to identify the provenances of organic carbon in this region. Furthermore, the Carbon Preference Index(CPI) of the organic carbon in event-layer is similar to soil on land. It implies that large amount of terrestrial organic carbon might be delivered from land and formed thick event-layer in deep-sea and has great impact on carbon burial.
致謝 i
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 南海深海事件層 1
1.2 研究區域背景 4
1.3 陸源有機碳之傳輸與埋藏 12
1.4 有機碳來源之指標 16
1.5 研究目的 20
第二章 研究方法 21
2.1 岩心採樣 21
2.1.1 採樣區域 21
2.1.2 採樣方法 21
2.2 樣本處理流程 25
2.2.1 岩心前處理與保存 25
2.2.2 沉積物樣本前處理與保存 25
2.3 實驗分析方法 27
2.3.1 多重感應元岩心紀錄儀(MSCL) 27
2.3.2 掃描式X光螢光分析(Itrax) 28
2.3.3 X光攝影 28
2.3.4 沉積物基本參數 29
2.3.5 粒徑分析 30
2.3.6 超量210Pb定年 33
2.3.7 總有機碳(TOC)、總氮(TN)含量分析及碳氮比值(TOC/TN)) 38
2.3.8 穩定碳同位素(δ13C)分析 39
2.3.9 n-alkanes正烷烴分析 40
第三章 實驗結果與討論 45
3.1 南沙群島岩心 45
3.2 中央海盆岩心 63
3.3 有機物分布差異 71
3.4 OR1-1068-8颱風事件層n-alkanes正烷烴分析 75
3.5 陸、海源混合比例 80
3.6 總有機碳及陸源有機碳埋藏量 82
第四章 結論 86
參考文獻 87
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), DOI: 10.1029/2001000252.
Blair, N. E. and Aller, R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4, 401-423.
Blair, N. E., Leithold, E. L., Brackley, H., Trustrum, N., Page, M. and Childress, L. (2010). Terrestrial sources and export of particulate organic carbon in the Waipaoa sedimentary system: Problems, progress and processes. Marine Geology, 270(1), 108-118.
Boutton, T. W. (1991). Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. Carbon isotope techniques, 1, 173.
Brassell, S. C. and Eglinton, G. (1983). The potential of organic geochemical compounds as sedimentary indicators of upwelling Coastal Upwelling Its Sediment Record, 545-571.
Bray, E. and Evans, E. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22(1), 2-15.
Burdige, D. J. (2007). Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?.Chemical reviews,107(2), 467-485.
Calvert, S. and Veevers, J. (1962). Minor structures of unconsolidated marine sediments revealed by x‐radiography. Sedimentology, 1(4), 287-295.
Canfield, D. E. (1994). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114(3), 315-329.
Croudace, I. W., Rindby, A. and Rothwell, R. G. (2006). ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications, 267(1), 51-63.
Eglinton, G. and Hamilton, R. J.(1967). Leaf epicuticular waxes. Science, 156(3780), 1322-1335.
Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051), 686.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol, F. (2007). Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450(7168), 407-410.
Goericke, R. and Fry, B.(1994). Variations of marine plankton d13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles, 8(1), 85-90.
Goldberg, E. D.(1963). Geochronology with 210Pb. Radioactive Dating. Proceedings of theSymposium on Radioactive Dating Held by the International Atomic Energy Agency in Co-operation with the Joint Commission on Applied Radioactivity, Athens, November 19–23. 121–131.
Goldsmith, S. T., Carey, A. E., Lyons, W. B., Kao, S. J., Lee, T. Y. and Chen, J. (2008). Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology, 36(6), 483-486.
Goñi, M. A., Monacci, N., Gisewhite, R., Ogston, A., Crockett, J. and Nittrouer, C. (2006). Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua(Papua New Guinea). Estuarine, Coastal and Shelf Science, 69(1), 225-245.
Gordon, E. S. and Goñi, M. A. (2003). Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta, 67(13), 2359-2375.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. and Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442-1445.
Hamblin, W. K. (1962). X-ray radiography in the study of structures in homogeneous sediments. Journal of Sedimentary Research, 32(2). 201-210.
Hedges, J., Keil, R. and Benner, R.(1997). What happens to terrestrial organic matter in the ocean? Organic geochemistry, 27(5), 195-212.
Hedges, J. and Oades, J. (1997). Comparative organic geochemistries of soils and marine sediments. Organic geochemistry, 27(7), 319-361.
Hedges, J. I. and Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine chemistry, 49(2-3), 81-115.
Holmes, C. W. (1998). Short-lived isotopic chronometers: a means of measuring decadal sedimentary dynamics. US Geological Survey Fact Sheet, 73-98.
Kao, S. J., Shiah, F. K., Wang, C. H. and Liu, K. K. (2006). Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan. Continental Shelf Research, 26(20), 2520-2537.
Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N. and Middelburg, J. J. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles, 24(4), DOI: 10.1029/2010GB003848.
Leithold, E. L., Blair, N. E., Childress, L. B., Brulet, B. R., Marden, M., Orpin, A. R. and Alexander, C. R. (2013). Signals of watershed change preserved in organic carbon buried on the continental margin seaward of the Waipaoa River, New Zealand. Marine Geology, 346, 355-365.
Lin, I., Liu, W. T., Wu, C. C., Wong, G. T., Hu, C., Chen, Z. and Liu, K. K. (2003). New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30(13), DOI: 10.1029/2003GL017141.
Liu, J., Xiang, R., Chen, Z., Chen, M., Yan, W., Zhang, L. and Chen, H. (2012). Sources, transport and deposition of surface sediments from the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 71, 92-102.
Liu, J. T., Kao, S. J., Huh, C. A. and Hung, C. C. (2013). Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of Marine Science, 5, 47-68.
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C.A. and You, C.-F. (2015). Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153, 238-273.
Lüdmann, T., Wong, H. K. and Berglar, K. (2005). Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophysical Research Letters, 32(5), DOI: 10.1029/2004GL021967.
Masiello, C. A. (2007). Carbon cycle: Quick burial at sea. Nature, 450(7168), 360-361.
Mayer, L. M. (1994). Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58(4), 1271-1284.
Meyers, P. A. (1990). Impacts of late Quaternary fluctuations in water level on the accumulation of sedimentary organic matter in Walker Lake, Nevada. Palaeogeography, palaeoclimatology, palaeoecology, 78(3-4), 229-240.
Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3-4), 289-302.
Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic geochemistry, 27(5), 213-250.
Meyers, P. A. and Teranes, J. L. (2002). Sediment organic matter. Tracking environmental change using lake sediments, 239-269.
Milliman, J. D. and Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. The Journal of Geology,91(1), 1-21.
Mulder, T., Syvitski, J. P., Migeon, S., Faugères, J. C. and Savoye, B. (2003). Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6), 861-882.
Nishimura, M. and Baker, E. W. (1986). Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochimica et Cosmochimica Acta, 50(2), 299-305.
O''Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553-567.
Oro, J., Tornabene, T., Nooner, D. and Gelpi, E. (1967). Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. Journal of bacteriology, 93(6), 1811-1818.
Pedrosa-Pàmies, R., Sanchez-Vidal, A., Calafat, A., Canals, M. and Durán, R. (2013). Impact of storm-induced remobilization on grain size distribution and organic carbon content in sediments from the Blanes Canyon area, NW Mediterranean Sea. Progress in oceanography, 118, 122-136.
Perdue, E. M. and Koprivnjak, J. F. (2007). Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuarine, Coastal and Shelf Science, 73(1), 65-72.
Qu, T., Girton, J. B. and Whitehead, J. A. (2006). Deepwater overflow through Luzon strait. Journal of Geophysical Research: Oceans, 111(C1), DOI: 10.1029/2005JC00.139.
Redfield, A. C. (1963). The influence of organisms on the composition of seawater. The sea, 2, 26-77.
Seiter, K., Hensen, C., Schröter, J. and Zabel, M. (2004). Organic carbon content in surface sediments—defining regional provinces. Deep Sea Research Part I: Oceanographic Research Papers, 51(12), 2001-2026.
Selvaraj, K., Lee, T., Yang, J., Canuel, E., Huang, J., Dai, M. and Kao, S. (2015). Stable isotopic and biomarker evidence of terrigenous organic matter export to the deep sea during tropical storms. Marine Geology, 364, 32-42.
Shanmugam, G.(2002). Ten turbidite myths. Earth-Science Reviews, 58(3), 311-341.
Talbot, M. R. and Johannessen, T. (1992). A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters, 110(1), 23-37.
Thunell, R. C., Qingmin, M., Calvert, S. E. and Pedersen, T. F. (1992). Glacial‐Holocene Biogenic Sedimentation Patterns in the South China Sea: Productivity Variations and Surface Water pCO2. Paleoceanography, 7(2), 143-162.
Trask, P. D. (1939). Organic Content of Recent Marine Sediments: Part 6. Special Features of Sediments, 428-453.
Wang, G., Xie, S. P., Qu, T. and Huang, R. X.(2011). Deep South China Sea circulation. Geophysical Research Letters, 38(5), DOI: 10.1029/2010GL046626.
陳宇璜,(2016)。南海現代沉積作用與極端事件紀錄,國立台灣大學海洋研究所碩士論文,共66頁。
劉昭蜀、范時清、趙煥庭,(2002)。南海地質,共498頁。
羅又郎、馮偉文,(1994)。南海表層沉積類型與沉積作用若干特徵。 熱帶海洋, 13(1),第47-54頁。
羅建育,(2005)。快速測量海床沉積物聲學與物理性質之新利器。海洋技術季刊14(4),第26-32頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top